
2634 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

A Methodology for the Design of Self-Optimizing,
Decentralized Content-Caching Strategies

Karla Kvaternik, Jaime Llorca, Daniel Kilper, Senior Member, IEEE, and Lacra Pavel, Senior Member, IEEE

Abstract—We consider the problem of efficient content delivery
over networks in which individual nodes are equipped with content
caching capabilities. We present a flexible methodology for the de-
sign of cooperative, decentralized caching strategies that can adapt
to real-time changes in regional content popularity. This design
methodology makes use of a recently proposed reduced consensus
optimization scheme, in which a number of networked agents co-
operate in locating the optimum of the sum of their individual, pri-
vately known objective functions. The outcome of the design is a
set of dynamic update rules that stipulate how much and which
portions of each content piece an individual network node ought to
cache. In implementing these update rules, the nodes achieve a col-
lectively optimal caching configuration through nearest-neighbor
interactions and measurements of local content request rates only.
Moreover, individual nodes need not be aware of the overall net-
work topology or how many other nodes are on the network. The
desired caching behavior is encoded in the design of individual
nodes' costs and can incorporate a variety of network performance
criteria. Using the proposed methodology, we develop a set of con-
tent-caching update rules designed to minimize the energy con-
sumption of the network as a whole by dynamically trading off
transport and caching energy costs in response to changes in con-
tent demand.
Index Terms—Adaptive algorithms, algorithm design, content

distribution, content-centric networking, decentralized coordina-
tion control, distributed algorithms, distributed content caching,
distributed optimization, energy-efficient ICTs, intelligent net-
works, meshed networks, multiagent systems, nearest-neighbor
interactions, reduced consensus optimization, self-optimizing
networks.

I. INTRODUCTION

A SIGNIFICANT portion of today's Internet traffic involves
the delivery of content such as video to a multitude of

geographically distributed users who are typically indifferent
to where that content is stored or accessed from. According
to CISCO's 2012 VNI report [1], video streaming and down-
loads presently account for over 86% of all Internet traffic, and

Manuscript received April 24, 2013; revised June 06, 2014; December 24,
2014; and May 29, 2015; accepted August 19, 2015; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor A. X. Liu. Date of publication October
08, 2015; date of current version October 13, 2016. This work was supported by
the NSERC under the Vanier fund and the NSERC CRD and Bell Labs/Alcatel-
Lucent.
K. Kvaternik and L. Pavel are with the Edward S. Rogers Department of

Electrical and Computer Engineering, University of Toronto, Toronto, ONM5S
3G4, Canada (e-mail: kvaternik@utoronto.ca; pavel@utoronto.ca).
J. Llorca and D. Kilper are with Bell Labs, Alcatel-Lucent, Holmdel, NJ

07733 USA (e-mail: jaime.llorca@alcatel-lucent.com; dan.kilper@alcatel-
lucent.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2478059

services such as IPTV and Video-on-Demand (VoD) constitute
the fastest growing Internet service class. Current trends toward
ubiquitous mobile computing suggest that Internet traffic will
continue to be dominated by the distributed on-demand con-
sumption of video content.
The problem of content dissemination to a distributed set

of users is ideally addressed by some form of multicasting,
whereby each piece of data is delivered through a single trans-
mission from the source, and copies are created only at branch
points in the distribution tree.
Multicast technologies such as IP and application-layer

multicast are well suited for the delivery of real-time mul-
timedia services such as IPTV and live video streaming, in
which requests for the same data are served simultaneously.
However, the efficiency of multicasting cannot be directly
exploited for the delivery of on-demand services such as VoD
and time-shifted TV, in which content requests arrive asynchro-
nously. When the same piece of data is accessed at different
times from multiple locations, caching the data temporarily at
intermediate nodes can enable multicast delivery, significantly
reducing load at origin servers, access latency, and network
congestion [2]. It is therefore widely accepted that caching is
essential to enabling on-demand content access [2]–[7].
Several caching-based content distribution technologies are

already extensively deployed, including privately owned con-
tent delivery networks (CDNs) such as Akamai and Limelight,
peer-to-peer (P2P) systems such as BitTorrent, andWeb caching
solutions such as Squid and NetCache. In all cases, the central
idea is that replicating content and caching it throughout the net-
work facilitates the realization of important performance ben-
efits such as reduced network congestion and server loading,
reduced access latencies, and improved tolerance to transport
disruptions.
However, these technologies are typically incompatible with

one another, and they are overlay solutions implemented atop a
host-centric Internet that was never intended for the mass distri-
bution of content. As such, they often result in the suboptimal
utilization of network resources [8], [9].
The Internet's fundamental incompatibility with today's con-

tent consumption trends has therefore prompted research into
a new networking paradigm known as information-centric net-
working (ICN) [6], [10], in which content is directly accessed by
name, rather than the address of its host. In an information-cen-
tric network, content can be delivered from any network loca-
tion that caches a valid copy of that content, data packets can be
transparently cached as they travel toward their consumers, and
content can be assembled at its destination from data packets
that may arrive from multiple locations. Compared to existing
overlay solutions, ICN architectures are therefore more natu-
rally poised to leverage in-network caching [6], [11].

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2635

The use of in-network caching has also been investigated
as a possible means of reducing a network's energy consump-
tion [12]–[15]. Although information and communication tech-
nologies (ICTs) are currently estimated to account for only 2%
of the world's total carbon footprint, this proportion is expected
to grow as ICT energy efficiency improvements plateau due to
fundamental theoretical and physical limitations [16]. The ag-
gressive growth in the number of users and the variety of de-
manded services motivate research into new ways of reducing
the energy consumption of ICTs.
Regardless of the adopted technology (i.e., P2P, CDNs, or

ICN), the extent to which the benefits of in-network caching
can be realized depends crucially on the efficacy of the imple-
mented content caching strategy (CCS). A CCS is a set of poli-
cies or algorithms that prescribe howmuch of what content each
participating network node ought to cache. These may include
various file placement and eviction policies, as well as protocols
that ensure the consistency of content replicas [17].
An “effective” CCS is one that is decentralized, adaptive to

real-time changes in regional content demand patterns, and al-
lows individual nodes to be nescientwith regard to the operation
of the collective.
In a decentralized CCS, network nodes collectively achieve

a desirable caching configuration by individually making in-
dependent caching decisions based on local network measure-
ments and interactions with their nearest neighbors. The diffi-
culties associated with implementing centralized coordination
schemes in large networks obviate the need for decentralization;
the acquisition of network measurements by a central node and
the subsequent dissemination of coordination signals to each
node consume transport resources, while communication delays
accumulated in transmitting these signals over several hops can
adversely affect the stability and robustness of any coordination
scheme. Nodes are nescient if they require no a priori knowl-
edge in order to execute the CCS. The extent to which this prop-
erty applies determines how flexible and modular the network
design can be. Decentralized content caching strategies with ne-
scient nodes allow the network to undergo structural changes
such as node additions and deletions, without requiring all nodes
to be reprogrammed every time such changes occur.

A. Contributions and Related Literature
Although there is an appreciable effort within the research

community to develop various networking architectures and im-
plementation-level mechanisms that enable in-network caching,
there has been little attention devoted to the development of
content caching strategies with the network-level view of op-
timizing the use of network resources on the whole.
Existing work addressing the design of CCSs includes [3],

[5], [7], [11], [15], and [18]–[23], among others.
Many papers restrict their attention to the performance of in-

dividual caches [3], [18]or network substructures such as trees
or paths from sources to consumers [5], [7], [11], [19], [20]. Al-
though the focus on tree substructures is appropriate for en-route
Web-caching schemes developed for IP networking, it may lead
to CCS designs that fail to leverage all of the operational fea-
tures offered by ICN architectures such as content-centric net-
working (CCN) [6]. For example, the packetization of content in
CCN allows for content to be partially requested and stored; as
mentioned in [6], a destination node in a meshed content-centric
network need not be restricted to assembling requested content

from data packets cached by nodes that lie solely along a path
toward the origin server. With appropriate interest broadcasting
techniques in place, transport inefficiencies such as those de-
scribed in [21] can thus be avoided.
Most approaches to the design of CCSs are based on vari-

ations of file placement policies (such as fixed probability
caching), in combination with standard file eviction policies
(such as least recently used or least frequently used), which are
concepts borrowed from the literature on Web caching [17].
Although simple to implement, such designs are heavily based
on heuristics, and the optimality of the collective behavior
of caches in a general topology network is difficult to guar-
antee [11], [22], [23]. Sometimes these policies are tuned to
optimize performance based on network models or simulations
that make use of simplified traffic predictions, which may not
reflect actual traffic patterns once the CCS is deployed [7], [23].
Some CCS design approaches guarantee a quantifiably sub-

optimal performance only in the case that certain symmetry as-
sumptions are satisfied (such as all caches having the same size,
and all content demand rates being equal at each node) [7].
Others require nodes to know or estimate the operational param-
eters (such as cache size) of other nodes in the network, and the
efficacy with which the caching resources are utilized is known
to be affected by the accuracy of such estimates [11].
In this paper, we propose a broadly applicable methodology

for the design of decentralized, adaptive CCSs that systemat-
ically improve the efficiency with which a network's caching
and transport resources are utilized. Although the CCSs devel-
oped here can be adapted to content delivery technologies such
as CDNs and Web caching, they are designed to leverage the
operational features of networks with content-aware forwarding
capabilities, such as those found in CCN.
Elaborating on our work in [24], we base our CCS designs

on a provably convergent, decentralized optimization algorithm
called reduced consensus optimization (RCO), which was ini-
tially proposed in [25] (see also [26, Section 6]). In RCO, a
number of nodes on a connected graph cooperate in minimizing
the overall network cost, which encodes a set of network-wide
performance objectives. This network cost is comprised as the
sum of nodes' individual, privately known cost functions. There
is no special structure imposed on the network topology, and the
nodes are nescient with respect to the structure and size of the
overall network. In particular, while most existing CCS designs
consider special network structures such as trees, CCSs based on
RCO allow sources, destinations, and intermediary routers to be
interconnected in general mesh topologies (q.v. Fig. 1). More-
over, we assume that nodes are heterogeneous with respect to
their individual caching capacities, their efficiency parameters,
and the content demand rates they experience; to execute the
CCS, a node does not need to know or estimate these character-
istics as they pertain to other nodes in the network.
We focus on the problem of reducing the energy consumed

by the network's transport and storage resources. Adopting
the so-called “energy-proportional computing” model [27], we
characterize the optimal network caching configuration as a
minimizer of the network cost function. Each node's individual
cost function depends on local content demand rates (measured
in real time) and embodies the basic tradeoff induced by the
energy-proportional computing model: Caching more content
locally may reduce long-distance data transport costs at the
expense of increased caching costs, and vice versa. In this



2636 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

way, the optimal network caching configuration depends on
the intensity and regional distribution of demand for content at
any given time. In implementing the proposed CCS, individual
nodes dynamically adjust how much and which portions of
each (popular) content piece each stores, in response to their
individual costs and the caching decisions made by neighboring
nodes. Through nearest-neighbor interactions, the nodes col-
lectively balance the goal of minimizing excessive copying of
content throughout the network, with the goal of minimizing
redundant transport of data over long distances.
Although we focus on energy efficiency, the proposed design

methods are general, and can explicitly incorporate other net-
work performance objectives as well.
Our main contributions in this paper are the following. First,

we show that the decentralized content caching problem can be
formulated as static decentralized coordination control problem
(DCCP) (q.v. [26]). As such, it can be addressed by consensus
optimization (CO); our second contribution is to show how CO
can be used to solve the decentralized content caching problem.
Third, we propose a streamlined variant of CO called reduced
consensus optimization (RCO), which improves the CO solu-
tion by reducing the amount of communication overhead asso-
ciated with coordination among nodes, and removing the need
for each node to know how many other nodes are participating
in the optimization. Finally, we propose a systematic method
of designing nodes' individual objective functions in a way that
encodes the tradeoff between caching and transport costs and
induces cooperation among nodes.
An interesting paper that relates to our work is [28], where an

alternative approach to optimization-based decentralized coor-
dination control designs is presented. The work in [28] focuses
on designing individual agent costs that yield a potential game
with an efficient Nash equilibrium.
This paper is organized as follows. In Section II, we formu-

late the decentralized content caching problem as a convex pro-
gram.We describe a class of consensus optimization (CO) algo-
rithms and their convergence properties in Section III, and we
consider their application to the decentralized content caching
problem. In Section IV, we propose a reduced consensus opti-
mization algorithm, which is a streamlined version of CO more
suitable for the design of decentralized content caching strate-
gies. We consider the problem of energy-efficient content de-
livery in Section V, and we propose a method for the design
of node cost functions intended to effect desired caching be-
havior. In Section VI, we demonstrate in detail our proposed
design methodology by means of a concrete example. We apply
this methodology in Section VII to a case study involving the
eleven node European optical backbone network COST239, and
we evaluate the performance of the resulting content caching
strategy against that of the “least frequently used” (LFU) cache
policy, along several network-level performance metrics. We
conclude our paper in Section VIII.

B. Notation

All vector norms are Euclidean. The entry in the th
row and th column of a matrix is denoted . For a dif-
ferentiable function , defined by

is defined by . We use
either , or and either , or to
denote an by matrix of zeros. denotes the by identity
matrix. The set of nonnegative real numbers is denoted by ,

Fig. 1. Each node in the network can access files from the source repositories.
In general, the source nodes, the destination nodes, and the intermediary routers
can be interconnected over a general mesh topology. The th node measures a
demand for content piece .

and the set of positive real numbers by . If is a set, then
is its cardinality.

II. DESCRIPTION OF THE ADAPTIVE CONTENT
CACHING PROBLEM

We consider an abstract network of nodes that may ex-
change information over a given connected, undirected graph

, where is the set indexing the
nodes and is the set of links between them.
We assume that there is a set of content repository nodes (or

sources) that generate and store permanent copies of a large
number of files that may need to be accessed throughout the net-
work, as shown in Fig. 1. This set of source nodes may include
some of the nodes within , or it may be entirely external to

. However, all nodes within are able to access any file
stored at any source node.
We let denote the set of most popular con-

tent pieces that are to be cached throughout the network. Each
content piece may represent a single file, or an aggregate of re-
lated files with similar popularities. At each instant, the th node
in the network experiences a demand for content piece
that can be calculated as a windowed average request rate—i.e.,
supposing that denotes the sequence of time
instants at which requests for content piece arrive at node ,
the demand for at node can be calculated as

(1)

where is the Dirac delta function, and is the window size
in units of time. Intuitively, for a given traffic pattern observed
at node , selecting larger values for yields a set of signals

exhibiting less volatility.
The signal , which can be measured by node , represents

an aggregated request rate that originates either from a pool of
users directly connected to node , or from other nodes within
the network (q.v. Fig. 1).
We assume that each content piece is divided into packets

of data units in size and that each node is equipped with
a cache of size units of data.
Moreover, these packets can be individually requested from

the source repository or other nodes. This mechanism allows
each node to store selected portions of various content pieces,
if desired.
Given a communication graph , the con-

tent catalog , content sizes , cache sizes
, and the set of demand rates , the adaptive



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2637

Fig. 2. Router stores a contiguous block of content piece , starting at ,
and having a size of units of data.

content-caching problem is to decide which portions of which
content pieces each node ought to cache at time . One straight-
forward way to encode such a decision is to assume that nodes
store only contiguous blocks of a content piece. In that case,
the decision can be characterized in terms of only two numbers:

, indicating the location at which
node starts to store its contiguous block of , and

, the fraction of the whole content
piece that this block represents. Since is likely a
large integer, we may approximate and by allowing
them to take values in the real unit interval, as shown in Fig. 2.
Collecting these variables, we let

(2)

denote the vector of node 's caching decisions, and we
refer to as the network caching
configuration.
With this framework, the adaptive content caching problem

can be rephrased as follows: What constitutes the best network
caching configuration? What is deemed “best” depends on the
set of network performance objectives, which may include fac-
tors such as minimization of network congestion and improve-
ment of load balancing, reduction of access latency, enforce-
ment of various QoS measures for different classes of content,
robustness to transport disruptions and node failures, elimina-
tion of redundant traffic flows, minimization of energy costs,
and others. Such performance objectives can often be expressed
within the formalism of convex optimization. We therefore as-
sume that there exists a network caching configuration

that best meets a given set of network performance cri-
teria, and that can be expressed as a solution to an optimiza-
tion problem of the form

(3)

s.t. (4)
(5)
(6)

(7)

where (7) represents node 's cache capacity constraint, and in-
equalities (4)–(6) are required by the manner in which the deci-
sion variables are defined (q.v. Fig. 2). Furthermore, we assume
that the function can be written as

(8)

where represents a measure of node 's individual per-
formance, which may in general depend on the entire network
caching configuration .
Our aim now is to develop a set of rules by which the nodes

may update their individual caching decisions toward collec-

tively achieving the optimal network configuration . These
update rules are required to be decentralized and nescient,
meaning that nodes are required to update their decisions
through nearest-neighbor interactions, and using locally avail-
able information only. Information that is considered locally
available to node includes knowledge of the analytic structure
of its individual cost function , the demand rates
(and file sizes ), , and knowledge of its neighbors'
caching decisions. In particular, nodes should not require
knowledge of the entire network configuration at any time,
since such knowledge generally necessitates multihop commu-
nication, adding to the coordination overhead and potentially
incurring detrimental delays in the coordination signals.
The decentralized content caching problem formulated in

this section is an instance of a class of static, decentralized
coordination control problems (static DCCPs) defined in
[26, Sec. 1.2]. Formulating the decentralized content caching
problem as a static DCCP is the first of our four main contri-
butions in this paper.
Since the decentralized content caching problem is a static

DCCP, the required update rules can be developed on the basis
of a class of decentralized optimization algorithms known as
consensus optimization (CO). In the sequel, we describe the
operation and convergence properties of such schemes. Our
second main contribution is to show how such schemes can
be used to solve the decentralized content caching problem.
We then propose a streamlined version of CO called reduced
consensus optimization, which improves on the solution pro-
vided by CO. We return to the problem of designing CCSs in
Section V, where we consider the minimization of the network's
energy consumption as the primary performance objective.

III. CONSENSUS OPTIMIZATION

CO methods originate in the work of Tsitsiklis [29]and are
further developed by Nedić and coworkers in [30]. The problem
setting considered in [30] involves abstract agents who are
able to communicate with one another over an undirected graph

, and who are to collaboratively solve a convex
optimization problem of the form

where (9)

and agent has knowledge only of the set and the func-
tion . In this setting, agent updates its estimate

of some optimizer that solves problem (9),
according to the algorithm

(10)

where is the orthogonal projection operator defined as

(11)

is any subgradient of at , and is
a specially weighted adjacency matrix associated to . The
convergence rate properties of (10) are studied in [30], and its
stability properties are established in [26, Sec. 3].
We briefly summarize a set of sufficient conditions under

which the algorithm (10) is shown in [26] to converge to an ar-
bitrarily small neighborhood of the set of optimal solutions
to (9).



2638 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

1) Assumptions on the Communication Structure: The most
important technical assumption concerns the weighting of
the edges of the graph . The weighted adjacency matrix

, whose elements are the coefficients with which
each agent combines its estimate of with its neighbors'
estimates in (10), is assumed to have the following properties.
A3.1: The matrix is stochastic, symmetric and primitive.1

The intuitive meaning and the technical implications of A3.1
are discussed in [26, Sec. 2.2], for example.
There are several methods by which the edge weights can be

assigned so that the adjacency matrix satisfies A3.1 [31]. One
simple decentralized process by which all the nodes in can
select a set of edge weights satisfying A3.1 in only four steps is
given by Algorithm 3.1 below. Letting

(12)

denote the set of agent 's neighbors on , this algorithm pro-
ceeds as follows.
Algorithm 3.1:
1) , agent sets .
2) , agent sends to each agent the number

, and receives the number in return.
3) , agents and select the weight for edge

as .
4) , agent sets

A similar process is described in [32, Sec. III.B].
2) Assumptions on the Cost Structure: Just as for the steepest

descent algorithm, convergence proofs for (10) rely on certain
properties of the costs . For the purpose of designing de-
centralized content caching strategies, we can assume that the
costs are differentiable and that in (10)

(13)

In that case, the conditions considered [26](q.v. Section 3.3.2)
may be specialized to the following:
A3.2: For each , the gradient of is locally Lips-

chitz continuous—i.e., there exists a real number such
that for any and in

(14)

Moreover, the network cost us convex.
Under conditions A3.1 and A3.2, it is shown in

[26, Sec. 3] that the set [where is the set
of solutions to problem (9)] is semiglobally, practically
asymptotically stable for the algorithm (10). In other words, for
any arbitrarily large set of initial conditions and for any
arbitrarily small neighborhood of , there exists a
number such that whenever the step size ,
each sequence asymptotically approaches .

1A nonnegative matrix is stochastic if each of its rows sums to unity. Amatrix
is primitive if it is irreducible and it has a positive, real eigenvalue equal
to its spectral radius, and this eigenvalue has a modulus strictly larger than that
of any other eigenvalue of . If is a weighted adjacency matrix corresponding
to a graph , then is irreducible if and only if is connected.
Please see [26, Sec. 2.2] for more details.

Moreover, for any , the ultimate upper bound on the
agents' estimation errors is given by

(15)

where ,
and is a constant whose value depends on the problem pa-
rameters and the second largest eigenvalue of
the matrix .

A. Application of CO to Decentralized Content Caching
One way to use algorithm (10) to solve content caching prob-

lems of the form (3) to (7) is to interpret as
node 's estimate at time of some optimal network caching
configuration . With this interpretation, one may
take to represent node 's implemented
caching decision at time , and to represent node 's
“suggestion” to node on how to behave. The constraint sets

in (10) could then be related to the constraints (4) to (7) by
taking

(16)
where

otherwise (17)

and and are given by

(18)

In this way, node enforces only its own cache capacity con-
straint, and need not be aware of other nodes' cache sizes.
Another favorable aspect of our interpretation is that in order

to implement algorithm (10), a node does not require knowledge
of other nodes' caching decisions, except those in its graphical
neighborhood. However, each node needs to know how many
other nodes are participating, since it must maintain an estimate
of each component of the optimal network configuration .
This is a cumbersome requirement; each time the network un-
dergoes a structural modification such as the addition of a node,
each preexisting node must modify its decision updating rule to
include additional real variables representing an estimate of the
added node's optimal caching decision. Moreover, the dimen-
sion of each vector updated via (10) grows linearly in , and
therefore so does the communication overhead associated with
coordinating the node's caching decisions.
Motivated by these considerations, we develop a streamlined

version of CO in which node need not necessarily maintain
an estimate of every other node's optimal caching decision. We
refer to this algorithm as reduced consensus optimization (RCO)
(q.v. [26, Section 6]).

IV. REDUCED CONSENSUS OPTIMIZATION

With the interpretation of the variables given in
Section III-A, it seems excessive to have node maintain an
estimate of node 's optimal caching decision for all ,
especially if the caching decisions of node have a negligible
effect on node 's private performance measure . In large



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2639

networks, the decisions of distant nodes may well have little or
no impact on local performance measures.
For this reason, we begin by introducing the interference di-

graph whose edge set we define as

(19)

In other words, is an edge in the interference graph if the
decisions of node influence the cost experienced by node .
We do not assume any particular relationship between the com-
munication graph , and the interference graph .
Next, for each , we define as the set of all nodes
whose costs are affected by the decisions of node —i.e.,

(20)

For each , we then form the graph , which is
any smallest connected subgraph of containing all the nodes
in . Constructing is always possible since is assumed
to be connected (q.v. A3.1). In general therefore, and

. However, the choice of may not be unique,
since the shortest path connecting any may not be
unique.
We let

denote the set of agent 's neighbors on . Finally, with the set

(21)

we identify those subgraphs to which agent belongs.
Then, for all , the (unconstrained) RCO algorithm is

implemented by each agent as

(22)

where relates to as in (16), and

if

if and
otherwise

(23)

Fig. 3 illustrates the notion of the interference structure, the
construction of the subgraphs and the definition of the sets

for a simple four-node network.
The intuition behind RCO is that each subgraph has a con-

sensus matrix associated to it, with individual
entries assigned according to Algorithm 3.1. The set identi-
fies those nodes that update an estimate of 's optimal decision
.
Remark 4.1: The main difference between RCO and the stan-

dard CO algorithm (10) is that node need not maintain esti-
mates of all other nodes' optimal decisions. In (22), node up-
dates an estimate of precisely those components of associ-
ated to all nodes . This feature is particularly advan-
tageous when the interference structure is sparse since the set

Fig. 3. (a) Network with and agents' individual costs and (b) the associated
interference structure. The subgraphs , whereas and are
shown in (c) and (d), respectively. Each subgraph is constructed by including
all the nodes and edges along a shortest path from node to each node , whose
cost is affected by the actions of node .

could have a much smaller cardinality than the set . Con-
sequently, for the case in which , RCO requires
significantly fewer real-number updates and exchanges among
the nodes at each iteration, thereby reducing the communica-
tion and processing overhead associated with coordinating the
nodes' caching decisions. In Section VI-A, we quantify this re-
duction for an RCO-based CCS strategy designed to improve
energy efficiency in the four-node example network shown in
Fig. 3.
Another important advantage of RCO over (10) is that node

need not be aware of any node . In other words,
whenever , agent is nescient with respect to the
number of agents on the network , and the network's overall
interconnection structure . As a consequence, agent 's up-
date rule does not change when nodes are added or taken out of
the network, so long as the set is unaffected by the change.

Remark 4.2: The convergence rate analysis of both CO and
RCO can be carried out by means of the Lyapunov techniques
proposed in the proof of [26, Theorem 2.5.1]. The analytical
arguments outlined in [25] lead to the same structural form for
the difference equation governing the evolution of the Lyapunov
function used to study the convergence properties of CO, as for
that used to study the convergence properties of RCO. The upper
bound on the convergence rates that can be derived for RCO is
therefore expected to be of the same order as that for CO.

V. CONTENT CACHING STRATEGIES FOR ENERGY-EFFICIENT
CONTENT DELIVERY

We return now to the adaptive content caching problem
(3)–(7). Building on the work in [12]–[15], we address the
problem energy-efficient content distribution over networks
with in-network caching capabilities.
As in [12]–[15], we adopt the energy-proportional computing

model [27], in which it is assumed that the energy consumption
of network transport and routing equipment is proportional to
its utilization. In [12]–[15], the transport resources considered
include transmission, routing, and switching equipment.
In adopting this model, we approximate the amount of energy

consumed by a node as being proportional to the amount of data
it caches, in addition to the amount of data it transports from



2640 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

other nodes toward the consumer. Depending on whether a node
is a core, edge, or access router, its energy efficiency profile
is expected to be different; we account for this heterogeneity
by allowing the costs to depend on , the amount of power
(in watts) that node consumes by caching bits of data, and

, the amount of energy (in joules) that node consumes by
transporting bits of data.
Though the energy-proportional computing model is not

without criticism (since devices tend to consume some amount
of energy even when idling), studies such as those in [33] and
[14] suggest that its adoption suffices for our purposes.
In the context of content distribution, the energy-proportional

model induces a basic performance tradeoff: While transport
energy is reduced by caching as much content as possible
close to consumer demand, caching more content consumes
more caching energy. To capture this tradeoff, we propose that
individual agents' caching behavior should be governed by the
following set of operational principles:
Operational Principles
1) The fraction of content piece that node caches

should be positively correlated with —i.e., node
should cache more of the content that is in high demand,
and less of the content that is not in demand.

2) To avoid excessive copying of content within the network,
node should avoid caching the same portions of the same
content that nearby nodes cache.

3) When is high, some nodes in 's graphical vicinity
should coordinate among themselves to maximize their
collective caching coverage of content piece , so as to
make those portions not cached by available for short-dis-
tance transport to .

These operational principles are to be encoded into the update
rules governing individual agents' caching decisions by means
of appropriately designed individual cost functions . There
are many degrees of freedom associated with designing a cost
and interference structure in order to enforce these principles.
We introduce the notions of segmentation and clustering and
propose their use in guiding the design process.

A. Segmentation and Clustering

Let each content piece be divided into segments, where
is a design parameter. Then, to each node as-

sign a number , meaning that node caches
a portion of each content piece corresponding to the th seg-
ment. Next, to each node , assign a cluster of nodes

such that for all distinct and in
. In other words, each node in each cluster is assigned

to a different segment of content.
Let be the number of hops separating nodes and

along a shortest path between them over , and let
. We identify the number of segments and the

assignment of clusters , as important degrees of
freedom in the design process. Although in this paper we do
not address the question of how to optimally assign segments
and clusters to each node, we suggest that for a given network
topology , these should be chosen so as to minimize , for
each . However, we note that for a fixed , the problem ofmin-
imizing via segmentation and cluster assignments for a given
network topology can be framed as a graph coloring problem.

B. Designing the Costs
With and specified, we consider the following general

structure for the cost functions:

(24)

where is the permutation defined as
, and and are positive

real tuning parameters. Node is to minimize its individual cost
by attempting to influence the behavior of all other nodes

that affect it. The rationale for the proposed cost design can be
explained as follows. The first term in (24) penalizes node for
expending caching energy in proportion to the amount of data
cached, while the second term is a penalty for having to transport
that content which is not being cached. The second term encour-
ages node to cache larger portions of that content which is in
high demand, in accordance with the first operational principle.
On the other hand, when , the only term pertaining to
content in is the caching penalty term, prompting node
to cache less of the content that is not in demand. The first two

terms thereby capture the basic performance tradeoff induced by
the energy-proportional computing model. The remaining terms
promote cooperation among nodes, as per the second and third
operational principles.
The fourth and fifth terms in (24) are intended to encourage

nodes to maintain caching boundaries between their respective
content segments. We therefore refer to these as the segmenta-
tion boundary terms. Ideally, the contiguous block of content
piece that node caches should begin pre-
cisely where the block cached by node ends—for all seg-
ments . When this is the case, the fifth term
in (24) is identically zero. The fourth term encourages those
nodes to whom the first segments are assigned to cache all con-
tent pieces starting with the first packet. Together, these terms
have two functions. First, they penalize excessive copying of
content within a cluster. Second, they penalize caching “gaps,”
thereby promoting the caching coverage of content within a
cluster in a systematic way.
The maximization of content coverage is promoted further by

the third term in (24), to which we refer as the coverage term.
This term allows node to encourage other nodes within the
cluster to maximize the collective caching coverage of each
content piece , in proportion to its demand. The fact that this
term is proportional to reflects the importance that node
attributes to this task; when content is in high demand, it is
very important to node that nearby nodes cooperate in caching
in its entirety, if possible. This term is identically zero when

each content piece is cached in entirety within the cluster ,
thereby enforcing the third operational principle.
We note that this cost structure does not preclude either the

extreme possibility that a given content piece is not cached at
all within the network, or that each node in the network caches



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2641

Fig. 4. Segmentation assignment for the graph in the design example.

Fig. 5. Assigning the weights to each subgraph , according to (23).
Edge weights for subgraphs and are shown in (a), those for subgraph
in (b), and those for subgraph in (c). These same edge weights can be derived
by applying Algorithm 3.1 to each subgraph individually.

a complete copy of content (provided that ).
If demands fall to zero for all , then we expect that
eventually as well, due to the first and
fifth terms in (24). The qualitative characteristics of collective
network behavior resulting from the proposed costs is explored
further in Section VI-A.

VI. DESIGN EXAMPLE

Combining the ideas introduced in Sections IV and V, we
now show in detail how to apply our proposed design method-
ology. For the sake of concreteness, let us consider the example
network shown in Fig. 3(a), and a content catalog
containing only two content pieces. Node 's caching decision
at time is then given by

(25)

We begin by specifying the sets and the weights
that are needed for implementing (22). We choose and
assign the segments and clusters as indicated in Fig. 4. With
these segment and cluster assignments, the costs (24) ascribed
to each node in induce the interference structure shown in
Fig. 3(b)—namely

Fig. 3(c) and (d) respectively shows the smallest subgraphs
and containing the sets and . Therefore, we have

In this example, for all except . Recalling
that the set identifies those components of that agent
estimates through the RCO update rule (22), we note that node 2
must maintain an estimate of —not because node 3 affects
its cost, but because node 2 must act as an information conduit
between nodes 3 and 4, who interfere with one another.
The values of the weights may be chosen as shown in

Fig. 5.

We let

(26)

denote node 's estimate at time of , node 's op-
timal caching action. The RCO-based content-caching strategy
for this example then takes the form

(27)

where the weights are as shown in Fig. 5, the sets and
are as in (18), the cost functions are as in (24), and we

have used the shorthand to denote .
There are several numerical methods available for the compu-

tation of the projection (11). Since the sets and ,
defined in (18) are polytopes in , each defined as the in-
tersection of finitely many half-spaces, the projection opera-
tion may be implemented using the algorithm described in [34],
for example. That algorithm is implemented as follows. Let
be a polytope in , described as the intersection of half-
spaces—i.e.,

(28)

where , and “ ” denotes a component-wise
inequality.
We denote by the th half-space

(29)

so that . Then, given some point , its
projection onto can be iteratively computed as follows:
Algorithm 6.1 ([34, Algorithm 1]):
1) Let be arbitrary points in .
2) Let .
3) Let .
4) For , let:

a)
.

b) .
c) .

where is a tuning parameter. According to
[34, Theorem 1]

(30)

whenever is chosen to be larger than .
In Step 4a of this algorithm, we are required to compute the

projection of each point onto the
half-space ; fortunately, can easily be derived in
closed form (q.v. [35, Sec. 8.1.1], for example). A more detailed
discussion of the implementation of Algorithm 6.1 for this ex-
ample is given in [26, Sec. 7].

A. Qualitative Behavior of the RCO-Based CCS
We simulate algorithm (27) with the costs defined as

in (24), for the network shown in Fig. 4, and its segments and
clusters assigned as indicated in Fig. 4. We chose the following
parameters to obtain the simulation results shown in this section:



2642 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

Fig. 6. Content caching configurations at and . The top and
bottom plots indicate the starting location and the fraction of the
contiguous block of content that each node caches, for content
pieces 1 and 2, respectively. The nodes are labeled along the vertical axis.

• Router cache sizes: (i.e.,
router has a cache size of data units, where is the
number of data units comprising one data packet).

• Content catalog: , with and
.

• Segmentation boundary terms: , for all
and .

• Coverage terms: .
• Transport efficiencies:

J per units of data.
• Caching efficiencies:

W per units of data.
• Step size: .
• Initial conditions: , for all

and .
To implement Algorithm 6.1, we took and generated

random vectors in , where
for defined in (18) and for the sets to .
To investigate the adaptive capability of the proposed decen-

tralized caching strategy, we changed the content demand rates
at time . Initially all the demands are identical for

both content pieces and all nodes. At , node 1 experiences
an increase in demand for content piece 1 and a decrease in de-
mand for content piece 2, while node 4 experiences the exact
opposite change in demand, and demands remain the same for
other nodes.
The results are shown in Figs. 6 and 7. Fig. 6 shows the net-

work caching configuration at and , while
Fig. 7 shows the time evolution of the network configuration
and the evolution of nodes' estimates of others' optimal caching
decisions.
Since the transport and caching efficiencies and the cache

sizes are identical for all nodes, and since the two content
pieces are sized to fit within any three caches, we expect that
after an initial transient period, nodes 1, 2, and 4 should settle
to a caching configuration in which they store approximately
equal portions of each content piece, corresponding to their
assigned segments (q.v. Fig. 4). If the demands are sufficiently
large, we also expect that these three portions together should
cover most of each content piece. Moreover, the caching pattern
among these nodes should be identical for both content pieces.
The same expectations apply to the nodes 2–4, also due to the
symmetry of the demand rates and the problem parameters.
Fig. 6 shows that the caching configuration at —i.e.,
the iteration at which the demands change—is consistent
with the desired operational principles, and conforms to our
expectations.

Fig. 7. Time evolution of the content caching configuration. The plots in the
first column pertain to content piece 1, while those in the second column pertain
to content piece 2. The plots in row correspond to agents'
estimates of . Each plot shows the emergence of consensus concerning where
an agent's cached block ought to start (bottom set of lines) and where it ought
to end (top set of lines).

When demands change at , we expect that node 1
should eventually cache less of content 2 and more of content 1,
while node 4 should cache more of content 2 and less of con-
tent 1, in accordance with the first operational principle. The
content caching configuration at in Fig. 6 shows that
this is indeed the case.
We also note that the caching pattern for node 3 changes from

that at , even though the demand that node 3 experiences
remains the same throughout the simulation. This happens be-
cause ; although node 3 does not sense the change in
content demand at node 4, its caching decisions are influenced
by the “suggestions” that node 4 makes. In cooperating with
node 4 (via node 2), node 3 changes its caching behavior so as
to help cover those portions of content 1 that node 4 is no longer
caching. This behavior is consistent with the third operational
principle.
Fig. 6 shows the set of actions implemented by the network

nodes at two instants in time, while Fig. 7 shows the com-
plete time evolution of each variable updated in (27), including
nodes' “suggestions” to one another. From Fig. 7, we make
two observations. First, since nodes' individual costs differ, the
nodes are not initially in agreement as to what constitutes the
optimal caching configuration. Eventually, however, their esti-
mates reach a consensus. This happens because the first term in
the update law (27) is essentially a weighted average of node 's
“opinion” and the “opinions” of his neighbors on , on what
constitutes 's optimal action, for each . The effect of
repeated averaging can thus be intuited as a process by which
nodes compromise with one another over individual objectives.



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2643

The second observation is that the constraints (4)–(7) are at
no time violated throughout the evolution of the algorithm (27).
Remark 6.1 (The Merits of RCO): In implementing the

RCO-based update rule (27), the nodes collectively update a
total of real values, and they exchange with
their nearest neighbors a total of real
values at each iteration. By contrast, in implementing an update
rule based on the CO algorithm (10), the nodes would need to
update real values and exchange
real values at each iteration, where denotes the set
of node 's one-hop neighbors on the communication graph

. In a large network with a sparse interference structure,
implementing RCO instead of algorithm (10) can result in
drastic reductions in communication and processing overhead
associated with coordination among the nodes.
Another important benefit achieved by RCO is agents' ne-

science with regard to the operation of the collective. For ex-
ample, with the costs defined as in (24), nodes 1 and 3 in this
example need not be aware of each others' existence.
Remark 6.2 (The Scalability of RCO): From (22), we ob-

serve that the number of real-valued variables updated by node
grows linearly in and , where the set identifies
those subgraphs to which node belongs. The cardinality of
depends on the way the clusters are assigned to nodes in
the graphical vicinity of node . Consequently, the maximum
number of variables updated by any node within the network is
independent of the network size , and can be minimized by a
judicious choice of cluster assignments. On the other hand, since
nodes communicate only with their nearest neighbors, the com-
munication overhead associated with coordination among nodes
grows with node degree, rather than the size of the network.
The convergence rates of various consensus optimization

schemes are studied in [36] (q.v. Lemma 4.6) and several good
references therein, including [30] and [32]. Convergence rates
of these methods are known to be affected by the properties of
the costs , as well as the size of the Fiedler eigenvalue

(associated with the consensus matrix in A3.1), whose
value is affected by the network connectivity and the choice of
link weights [31].

VII. PERFORMANCE EVALUATION ON THE COST239

We now develop an RCO-based CCS for the 11-node Euro-
pean optical backbone network COST239, shown in Fig. 8 (q.v.
[37] for a more detailed description of this network). We eval-
uate the performance of our proposed CCS against that of the
LFU cache eviction policy along several network-level metrics,
which we define in Section VII-B. We describe the simulation
setup in Section VII-A, and we discuss the implications of our
simulation results in Section VII-C.

A. Simulation Setup

We consider the following problem parameters:
• Router cache sizes: packets, for all .
• Content catalog: , with packets,
for all .

The uniformity of the cache sizes and content piece sizes is not
required for the operation of the RCO-based CCS and is only

Fig. 8. European optical backbone network, COST239. The segment and
cluster assignments used to design the RCO-based CCSs are indicated next to
each node. The dashed lines indicate links that are not used to coordinate the
nodes.

imposed for convenience. All other parameters are adjusted rel-
ative to these, and we find that our ability to tune the cost func-
tion and algorithm step size parameters is not affected by the
specific choice of catalog, content piece and cache sizes.
1) Zipf-Like Demand Rate Signals: From the analysis of sev-

eral Web proxy traces, it is found in [3]that requests arriving at a
Web cache tend to be distributed according to Zipf's law, which
states that the relative probability of a request for the th most
popularWeb page is proportional to . In particular, given a cat-
alog of pages, with page being the th most popular page,
[3] posits

(31)

with typical values of the exponent ranging from 0.6 to
0.8—as a model for the probability that the next request that
arrives at a given cache is a request for page . For exponents
in this range, the Zipf-distribution implies that a vast majority
of all requests are made only for a small number of the most
popular Web pages. Though [3] proposes this Zipf-like model
in the context of Web caching, the model is also relevant to
caching in the context of CDNs and CCNs [13].
To reflect the features of this model, we generate the demand

rate signals according to

(32)

where is the popularity rank of content piece at iteration
and is the magnitude.
To see how the RCO-based CCS recovers from a disturbance,

we let and for the first 1000 iterations.
For the next 1000 iterations, the popularities of the files are ran-
domly reassigned, but are taken to be the same across all nodes,
while is increased to 195.
2) RCO-Based CCS: We segment each content piece into

parts, and we assign the segments and clusters as indi-
cated next to each node in Fig. 8. Our choice of is made based
on the qualitative observation that most nodes in this network
have at least four neighbors. The segments are assigned with



2644 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

the aim of diversifying the portions of each content piece being
cached within the one-hop graphical neighborhood of each node
in the network, while the clusters are assigned arbitrarily.
With , and selected, the RCO-based CCS takes the

form (27), where the cost function is given by (24), the
sets and are given by (18), the link weights are as-
signed according to (23), and the caching decision implemented
by node at iteration is given by , with car-
rying the meaning in (2). The projection operations in (27) are
implemented according to Algorithm 6.1.
The cost function parameters and the algorithm step size

are tunable in our design methodology. After several prelimi-
nary runs of the RCO-based CCS specified by our choice of
, and , we select the following cost function and algorithm

parameters in order to obtain an adequate algorithm response,
which is qualitatively assessed bymeans of plots similar to those
in Fig. 6.
Cost Function Parameters
• Segmentation boundary terms: , for all
and .

• Coverage terms: , for all .
• Transport efficiencies: J per units of data, for
all (each data packet is assumed to be units of data
in size)

• Caching efficiencies: J per units of data, for all
.

RCO Parameters
• Step size:
• Initial conditions: , for all

and .
A more careful approach to the tuning of the cost function

parameters and the step size would likely result in better al-
gorithm performance. We observe that the convergence of this
RCO-based CCS does not appear to be sensitive to the choice
of initial conditions. Moreover, increasing the magnitude of any
of the cost function parameters generally improves algorithm re-
sponsiveness in the intended way. For example, increasing
for all leads to collective caching decisions that are generally
more conservative; a nodemay not utilize its entire cache at each
iteration. On the other hand, increasing the cost function param-
eters generally necessitates decreasing the algorithm step-size
in order to maintain algorithm stability. However, simulation

experience suggests that finding a “sufficiently small” step size
is typically not difficult.
Remark 7.1: For this example, an implementation of CO

would require 4840 real-valued variables to be updated and
20 240 to be exchanged at each iteration (q.v. Remark 6.1). By
contrast, RCO requires 1760 real-valued variables to be updated
and only 2640 to be exchanged.
3) LFU Caching: We compare the performance of the RCO-

based CCS described in Section VII-A-2 against that of the LFU
cache policy, which is known to outperform most local caching
policies under the assumption that arriving requests are i.i.d.
[3]. LFU caching is particularly effective when content demand
follows a Zipf-like distribution [3]. Under LFU, nodes evict the
least frequently accessed content in order to make room for new
content. We approximate this behavior by a placement policy in
which each node caches as much of the most popular content as
possible at each . Since we have chosen , for all
and , node implements LFU by caching contents and

, whose demand rate signals and are largest
in magnitude at each time . We allow each node implementing
LFU to instantaneously acquire any content piece in response to

.

B. Performance Metrics
We compare the performance of the LFU caching policy de-

scribed in Section VII-A-3 against that of the RCO-based CCS
described in Section VII-A-2, along several efficiency-related,
network-wide performance metrics. In formulating these met-
rics, we make the assumption that each node is able to request
and acquire individual packets comprising each content piece
from the nearest node that caches them.
1) Network Transport Cost (NTC): The NTC is intended to

reflect the total actual energy cost associated with delivering un-
cached content. This metric sums the cost of transporting each
uncached packet, in proportion to the rate at which requests ar-
rive for the content piece to which the packet belongs. Specifi-
cally, we assume that if a content piece is requested times
at node , then each packet of not cached by node needs to be
transported times to node , from the nearest node in the net-
work that caches the required packet. The cost of transporting
each packet is assumed to consist of two components: one that
accounts of the energy required for intermediate nodes to route
the packet, and another that accounts for the energy expended
per unit distance that the packet travels along any network link.
We define the NTC as follows:

(33)

where is the set of all packets comprising content piece
that node does not cache at time is amount of energy

that a node requires in order to route one packet, is the
number of hops that packet of file must traverse in order
to reach node from the closest node that caches at time

is the amount of energy required to transport one packet
over a distance of 1 km, and distance that packet of
file must travel in order to reach node from the closest node
that caches at time . The link distances used in this metric
are taken from [37]. If node requires a packet of content
which is not cached anywhere within the network at time , then
the maximum distance and hop-wise penalties of

km and are incurred.
2) Average Hops Traveled (AHT) by Uncached Packets:

This metric measures the average number of hops that an
uncached packet at node needs to travel in order to arrive at
from the nearest node that caches it. This average is itself then
averaged over all nodes in the network. We define the AHT as
follows:

(34)
where is the total number of packet requests sent out
by node at time —i.e.,

(35)



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2645

3) Network Caching Cost (NCC): The NCC reflects the total
amount of energy consumed by all the caches in the network.
We assume that caching energy is proportional to the amount of
content cached [27], and we therefore formulate the NCCmetric
as

(36)

where is the amount of energy required by node to cache
one packet for seconds, where is the duration of one al-
gorithm iteration, and is the number of packets com-
prising content piece that node caches at time .
4) Node-Averaged Cache Hit Ratios (ACHRs): The cache

hit ratio (CHR) is a metric that indicates the fraction of requests
received that a cache is successfully able to serve. We adapt this
notion by considering cache hit ratios within an -hop radius of
a given node. To reflect the network-wide CHR performance,
we average these -hop radius CHRs across all nodes in the net-
work. We define , the -hop CHR at node at time ,
as follows. Let be the set of all packets pertaining to
content piece , cached within an -hop radius of node
at iteration . That is, implies that at least one node
that is at most hops away from node is caching packet .
Also, let denote the total number of packet requests
received by node between iteration and —i.e.,

(37)

Then, the -hop CHR at node is given by

(38)

where corresponds to the usual notion of CHR at node ,
and corresponds to a network-wide CHR. Next, we
define the Node-Averaged -hop CHR (ACHR) as

(39)

and the network-wide, node-averaged CHR as

(40)

We assess the performance of the proposed RCO-based CCS
described in Section VII-A-2 against that of the LFU caching
policy described in Section VII-A-3 along the four CHRmetrics

, and .
The performance of the RCO-based CCS is compared to that

of LFU along these metrics, and the results are discussed in the
sequel.

C. Results and Implications

The RCO-based CCS and the LFU caching algorithms were
run for 2000 iterations. The performance of the RCO-based CCS
is compared to that of LFU along the seven metrics defined in
Section VII-B, and the results are plotted in Figs. 9 and 10. For

Fig. 9. Performance of the RCO-based CCS (solid lines) compared to that of
LFU (dashed lines) along the three metrics calculated using expressions (33)
(top plot), (34) (middle plot), and (36) (bottom plot).

Fig. 10. Performance of the RCO-based CCS (solid lines) compared to that of
LFU (dashed lines) along the four Node-averaged CHR metrics

, and given by (39) and (40).

simplicity, we assume that all nodes have identical transport ef-
ficiency profiles, and we set the related energy efficiency param-
eters as .
Since the RCO-based CCS is initialized with no content

cached at any node, its NTC in Fig. 9 is much higher at
first. However, in coordinating their caching decisions, nodes
eventually achieve a lower network transport cost as indicated
by the NTC and AHT plots. The NCC plot indicates that for
our choice of cost function parameters, the RCO-based CCS
maintains a full cache at each node for most of the time; this
may not happen when the cost function parameters are set such
that the are lower relative to the .
Even though in both halves of the simulation the LFU caching

policy results in each node caching exactly two of the most pop-
ular content pieces, the spike in network transport cost observed
in the second half of the simulation occurs because the magni-
tude of the demand rate signals is increased at
(q.v. Section VII-A-1). The same spike in the NTC, AHT, and



2646 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 5, OCTOBER 2016

the four CHR metrics for the RCO-based CCS result addition-
ally from the fact that the caching configuration attained just
prior to the change in content popularities imposed at
is no longer “optimal” once the popularities are changed; there
is a transient adjustment period in which algorithm (27) au-
tonomously adapts to the new geographic distribution of con-
tent demands.
From Fig. 10, we notice that LFU outperforms the RCO-

based CCS for the metric, throughout the entire
simulation. This is explained by the fact that LFU caching is es-
pecially effective when content demand exhibits a Zipf-like dis-
tribution [3]. In our implementation of LFU, each node caches
exactly two of the locally most popular content pieces in the cat-
alog, thus ensuring its maximal individual CHR. By contrast, the
RCO-based CCS entails what may be interpreted as the nodes'
tendency to compromise maximizing their individual perfor-
mance for the sake of improving network-wide performance.
Indeed, the averaged CHR metrics ,
and indicate that the network-wide CHR of the
RCO-based CCS eventually becomes superior to our implemen-
tation of LFU.
It is also interesting to note that the -hop radius CHRs for

this example are not significantly improved for . This is a
reflection of our particular choice of cluster and segment assign-
ments indicated in Fig. 8; the clusters are all composed of 1-hop
neighbors in this case. In general, clusters may be assigned to
include more than a subset of a node's 1-hop neighbors. The
price potentially paid is that the number of variables that each
node needs to update and exchange with its neighbors at each
iteration may increase. The choice of clustering and segmenta-
tion represents an important degree of freedom in the design of
RCO-based CCSs, and its influence on the efficacy of the re-
sulting CCSs warrants further investigation.
The metrics plotted in Figs. 9 and 10 suggest that RCO-based

CCSs may potentially realize significant performance gains rel-
ative to caching policies that do not involve coordination among
the cache-enabled nodes. Moreover, RCO-based CCSs can ex-
hibit good adaptivity to changes in time-varying problem pa-
rameters such as content demand rates.

VIII. CONCLUSION
In this paper, we developed a flexible methodology for the de-

sign of decentralized, adaptive content caching strategies. In re-
sponse to real-time changes in content demand, a network node
implementing the proposed strategy coordinates with its nearest
neighbors and updates its caching decisions based on locally
available information only. Collectively, the nodes achieve a
network caching configuration that best meets a desired set of
network-level performance criteria.
We focused on the problem of energy-efficient content de-

livery over networks with capabilities such as those of CCN.
We provided a detailed design example illustrating the applica-
tion of our methodology, which involves designing node costs
in order to balance the tradeoff between energy expended in
caching content and that of transporting uncached content.
Our work opens many avenues for future investigation. First,

the impact of segment and cluster assignments on network-wide
performance metrics has not been investigated. There is a poten-
tially interesting connection between the number of segments
(i.e., the number of nodes in a cluster) and the hop-wise distance

between content replicas. Previous work that attempts to quan-
tify optimal hop-wise distances between content replicas (q.v.
[13], for example) may help inform best practices in making
segment and cluster assignments. Second, better designs for the
cost functions are certainly possible. For example, one might
consider designing these functions in a way that avoids redun-
dant caching among disjoint clusters. Also, though caching and
transport are the primary energy-consuming functions within a
network, they may not be the only ones; one may consider en-
coding amore elaborate set of operational principles, which take
into account the energy consumed by other network elements.
Fourth, although we focused on energy efficiency, other per-
formance objectives can just as easily be incorporated. Fifth,
it would be interesting to investigate the algorithms's ability
to cope with topological network changes. Specifically, in the
present work, cluster and segment assignments are envisioned
as initially being assigned offline. Once a network is up and run-
ning the proposed CCS, newly added nodes can be assigned seg-
ments in a way that maximizes the segment diversity in their
graphical neighborhood, and cluster mates in a way that mini-
mizes the node's hop-wise cluster radius.

REFERENCES
[1] CISCO Systems, Inc., “The zettabyte era (Cisco VNI report),” Tech-

nical report, 2012 [Online]. Available: http://www.cisco.com/web/
solutions/sp/vni/vni_forecast_highlights/index.html

[2] S.Michel et al., “AdaptiveWeb caching: Towards a new global caching
architecture,”Comput. Netw. ISDN Syst., vol. 30, pp. 2169–2177, 1998.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, 1999, pp. 126–134.

[4] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of
Web caching architectures: Hierarchical and distributed caching,”
IEEE/ACM Trans. Netw., vol. 9, no. 4, pp. 404–418, Aug. 2001.

[5] M. R. Korupolu and M. Dahlin, “Coordinated placement and replace-
ment for large-scale distributed caches,” IEEE Trans. Knowl. Data
Eng., vol. 14, no. 6, pp. 1317–1329, Nov.–Dec. 2002.

[6] V. Jacobson et al., “Networking named content,” in Proc. 5th ACM Int.
Conf. Emerging Netw. Exper. Technol., Rome, Italy, 2009, pp. 1–12.

[7] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. 29th IEEE INFOCOM, 2010,
pp. 1–9.

[8] P. Vixie, “What dns is not,” ACM Queue, vol. 7, pp. 10–15, 2009.
[9] R. Cuevas, N. Laoutaris, X. Yang, G. Siganos, and P. Rodriguez, “Deep

diving into BitTorrent locality,” in Proc. IEEE INFOCOM, Shanghai,
China, 2011, pp. 963–971.

[10] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Commun. Mag.,
vol. 50, no. 7, pp. 26–36, Jul. 2012.

[11] I. Psaras,W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proc. 2nd Ed. ICN Workshop
Inf.-Centric Netw., 2012, pp. 2920–2931.

[12] U. Lee, I. Rimac, D. Kilper, and V. Hilt, “Toward energy efficient con-
tent dissemination,” IEEE Netw., vol. 25, no. 2, pp. 14–19, Mar.–Apr.
2011.

[13] K. Guan, G. Atkinson, D. C. Kilper, and E. Gulsen, “On the energy
efficiency of content delivery architectures,” in Proc. IEEE ICC, 2011,
pp. 1–6.

[14] N. Choi, K. Guan, D. Kilper, and G. Atkinson, “In-network caching ef-
fect on optimal energy consumption in content-centric networking,” in
Proc. IEEE ICC Next Generation Netw. Symp., 2012, pp. 2889–2894.

[15] J. Llorca et al., “Dynamic in-network caching for energy efficient con-
tent delivery,” in Proc. 32nd IEEE INFOCOM, 2013, pp. 245–249.

[16] D. C. Kilper et al., “Power trends in communication networks,” IEEE J.
Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 275–285, Mar.–Apr.
2011.

[17] S. Podlipnig and L. Boszormenyi, “A survey ofWeb cache replacement
strategies,” Comput. Surveys, vol. 35, pp. 374–398, 2003.

[18] S. Jin and A. Bestavaros, “popularity-aware greedydual-size Web
proxy caching algorithms,” in Proc. ICDCS, 2000, pp. 254–261.



KVATERNIK et al.: METHODOLOGY FOR DESIGN OF SELF-OPTIMIZING, DECENTRALIZED CONTENT-CACHING STRATEGIES 2647

[19] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
Modeling, design and experimental results,” IEEE J. Sel. Areas
Commun., vol. 20, no. 7, pp. 1305–1314, Sep. 2002.

[20] A. Jiang and J. Bruck, “Optimal content placement for en-route Web
caching,” in Proc. 2nd IEEE Int. Symp. Netw. Comput. Appl., 2003, pp.
9–16.

[21] L. Dong, D. Zhang, Y. Zhang, and D. Raychaudhuri, “Optimal caching
with content broadcast in cache-and-forward networks,” in Proc. IEEE
ICC, 2011, pp. 1–5.

[22] K. Cho et al., “WAVE: Popularity-based and collaborative in-net-
work caching for content-oriented networks,” in Proc. 31st IEEE
INFOCOM, 2011, pp. 316–321.

[23] Z. Li, G. Simon, and A. Gravey, “Caching policies for in-network
caching,” in Proc. 21st ICCCN, 2012, pp. 1–7.

[24] K. Kvaternik, J. Llorca, D. Kilper, and L. Pavel, “Decentralized
caching strategies for energy-efficient content delivery,” in Proc. IEEE
ICC, Sydney, Australia, 2014, pp. 3707–3713.

[25] K. Kvaternik, J. Llorca, D. Kilper, and L. Pavel, “A decentralized co-
ordination strategy for networked multiagent systems,” in Proc. 50th
Annu. Allerton Conf. Commun., Control, Comput., 2012, pp. 41–47.

[26] K. Kvaternik, “Decentralized coordination control for dynamic multia-
gent systems,” Ph.D. dissertation, University of Toronto, Toronto, ON,
Canada, 2015.

[27] L. A. Barroso and U. Holzle, “The case for energy-proportional com-
puting,” IEEE Comput., vol. 40, no. 12, pp. 33–37, Dec. 2007.

[28] N. Li and J. R. Marden, “Designing games for distributed optimiza-
tion,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2, pp. 230–242,
Apr. 2013.

[29] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1984.

[30] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Trans. Autom. Control,
vol. 55, no. 4, pp. 922–938, Apr. 2010.

[31] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65–78, 2004.

[32] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–60, Jan. 2009.

[33] A. Vishwanath, J. Zhu, K. Hinton, R. Ayre, and R. Tucker, “Estimating
the energy consumption for packet processing, storage and switching
in optical-IP routers,” in Proc. Opt. Fiber Commun. Conf., 2013, pp.
1–3.

[34] B. Llanas and C. Moreno, “Finding the projection on a polytope: An
iterative method,” Comput. Math. Appl., vol. 32, pp. 33–39, 1996.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[36] K. Kvaternik and L. Pavel, “An analytic framework for consensus-
decentralized optimization methods: The interconnected systems ap-
proach,” IEEE Trans. Autom. Control, submitted for publication.

[37] G. Rizzelli, A. Morea, M. Tornatore, and O. Rival, “Energy-effi-
cient traffic-aware design of on-off multi-layer translucent optical
networks,” Comput. Netw., vol. 56, pp. 2443–2455, 2012.

Karla Kvaternik received the B.Sc. degree in elec-
trical and computer engineering from the University
of Manitoba, Winnipeg, MB, Canada, in 2006, the
M.Sc. degree in control theory from the University
of Alberta, Edmonton, AB, Canada, in 2009, and
is currently pursuing the Ph.D. degree in control
theory from the University of Toronto, Toronto, ON,
Canada.
She is currently a Postdoctoral Research Associate

with Princeton University, Princeton, NJ, USA,
where her research focuses on collective decision

making. Her research interests span nonlinear systems and control theory,
Lyapunov methods, nonlinear programming, and extremum-seeking control,
but her main interest is the development and application of decentralized
coordination control strategies for dynamic multiagent systems.
Dr. Kvaternik was the recipient of the prestigious Vanier Canada Graduate

Scholarship in 2010 and the recipient of the Best Student Paper award at the
2009 Multiconference on Systems and Control.

Jaime Llorca received the B.S. degree in electrical
engineering from the Polytechnic University of Cat-
alonia, Barcelona, Spain, in 2001, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Maryland, College Park, MD,
USA, in 2003 and 2008, respectively.
He has been a Communication Networks Re-

search Scientist with Bell Labs, Holmdel, NJ, USA,
since 2010. He held a postdoctoral position with
the Center for Networking of Infrastructure Sensors
(CNIS), College Park, MD, USA, from 2008 to

2010. He has authored more than 50 peer-reviewed articles and 10 patents.
His research interests include energy-efficient networks, distributed cloud
networking, content distribution, resource allocation, network information
theory, and network optimization.
Dr. Llorca is the recipient of the Best Paper Award at the 2007 International

Conference on Sensors, Sensor Networks and Information Processing, Mel-
bourne, Australia, and the 2015 Jimmy H. C. Lin Award for Innovation.

Daniel Kilper (M'07–SM'07) received the Ph.D. de-
gree in physics from the University ofMichigan, Ann
Arbor, MI, in 1996.
He is a Research Professor with the College of

Optical Sciences, University of Arizona, Tucson,
AZ, USA, and is currently serving as the Admin-
istrative Director for the Center for Integrated
Access Networks (CIAN). He holds eight patents
and authored four book chapters and more than 100
peer-reviewed publications. Within both academia
and industry, he has made contributions in the area

of communication devices and networks primarily spanning three areas:
energy-efficient communication networks, optical performance monitoring,
and dynamic optical networks.
He is an Editor for the Green Communications and Computing Networks

Series in IEEE Communications Magazine as well as for the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS Series on Green Communications
and Networking. He is a General Chair of IEEE Online Greencomm 2014 and
2015. In addition to his current position, he has served in leadership positions
in multi-university/industry consortia including the Center for Telecommuni-
cations Value Chain Research (CTVR), Center for Energy Efficient Telecom-
munications (CEET), and the GreenTouch Consortium. He was the founding
Technical Committee Chair of GreenTouch. His work has been recognized with
the Bell Labs President's Gold Medal Award, and he served on the Bell Labs
President’s Advisory Council on Research.

Lacra Pavel (S'93–M'96–SM'04) received the Ph.D.
degree in electrical engineering from Queen's Uni-
versity, Kingston, ON, Canada, in 1996.
After a postdoctoral stage with the National Re-

search Council in Ottawa, ON, Canda, and 4 years
of working in the industry, she joined the Univer-
sity of Toronto, Toronto, ON, Canada, in 2002, where
she is now a Professor with the Department of Elec-
trical and Computer Engineering. Her research is fo-
cused on joining game theory, optimization, and con-
trol with networks. Her group is working on mathe-

matical algorithms to realize intelligent networks that autonomously self-opti-
mize. She has made specific contributions to algorithms for optical networks
and for energy-efficient networks, either in communication or in transportation.
Her work resulted in a book, five issued US patents, over 80 publications in top
international journals and conferences, and several invited talks.
Prof. Pavel acted as Publications Chair of the 45th IEEE Conference on Deci-

sion and Control and has been on the Technical Program Committees of several
IEEE conferences.


