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On Approximating Minimum 3-Connected
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Abstract—Over years, virtual backbone has attracted lots of
attention as a promising approach to deal with the broadcasting
storm problem in wireless networks. Frequently, the problem
of a quality virtual backbone is formulated as a variation of the
minimum connected dominating set problem. However, a virtual
backbone computed in this way is not resilient against topology
change since the induced graph by the connected dominating set
is one-vertex-connected. As a result, the minimum -connected
-dominating set problem is introduced to construct a fault-tol-

erant virtual backbone. Currently, the best known approximation
algorithm for the problem in unit disk graph by Wang et al.
assumes and , and its performance ratio is 280
when . In this paper, we use a classical result from
graph theory, Tutte decomposition, to design a new approximation
algorithm for the problem in unit disk graph for and

. In particular, the algorithm features with (a) a drastically
simple structure and (b) a much smaller performance ratio, which
is nearly 62 when . We also conduct simulation to
evaluate the performance of our algorithm.

Index Terms—3-connected -dominating set, approximation
algorithm, fault-tolerant, Tutte decomposition, virtual backbone,
wireless networks.

I. INTRODUCTION

I T IS well known that energy efficiency is one of the most
significant efficiency issue of wireless networks such as

ad hoc networks and wireless sensor networks [2]. In many
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cases, each battery-operated wireless node consumes most of its
energy for wireless communications. The study on the broad-
cast storm problem in wireless networks [3], which happens
when a flooding-based routing algorithm is initiated to identify
a routing path from a source to a destination, has demonstrated
the importance of a sophisticated communication coordination
to improve the energy efficiency of wireless networks. Recently,
the idea of virtual backbone, which is a subset of nodes in a
wireless networks, is in charge of managing routing informa-
tion, and thus contributes to reduce routing-related overhead,
wireless signal collision, and interference, and has emerged as
a prominent approach to address this issue.
It is known that as the size of a virtual backbone decreases, it

is getting more efficient. As a result, lots of attention has been
paid to compute a virtual backbone with smaller size [4]–[9],
[11], [27]. In theory, given a graph representing a wireless net-
work, the problem of computing the minimum size virtual back-
bone can be abstracted as the minimum connected dominating
set (CDS) problem. Since this problem is NP-hard, a significant
amount of effort is made to design a polynomial-time heuristic
algorithm with theoretical worst-case performance guarantee,
which is also known as an approximation algorithm, for it.
In graph theory, a graph is -connected (more precisely,

is -vertex-connected) if is still connected after removing
any nodes from it, and by definition (see Definition 2
for details), a CDS is only guaranteed to be 1-connected. How-
ever, wireless networks have various applications in which their
topologies are not stable due to many reasons such as uneven en-
ergy depletion at more active nodes or failures of nodes around
hostile/hazardous environments. In [12], Dai and Wu identified
that the virtual backbones for wireless networks with dynamic
topology should have higher degree of fault tolerance, and in-
troduced the concept of -connected -dominating set, where
is a positive integer given by the wireless network operator and
represents the degree of desired fault tolerance (see Definition
5 for the formal definition).
Clearly, the problem of computing a minimum size -con-

nected -dominating set is NP-hard since its special case with
is equivalent to the minimum CDS problem. Due to

the reasons, lots of efforts are made to design approxima-
tion algorithms for the minimum -connected -dominating
set problem, where and are two independent positive
integers. In [16], Wang et al. introduced the first constant
factor approximation algorithm for the minimum 2-connected
1-dominating set problem. In [15], Shang et al. proposed the
first constant factor approximation algorithm for the minimum
2-connected -dominating set problem for any positive integer
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. Most notably, in [13] and [14], the authors introduced the
first constant factor approximation algorithm for the minimum
3-connected -dominating set problem for any positive integer
. While many other efforts are made to design constant factor

approximation algorithm for arbitrary and positive integer
pair, the problem of designing constant factor approximation
algorithm for the case with arbitrary and pair is
still open [13].
This paper aims to introduce a better approximation algo-

rithm for the minimum 3-connected -dominating set problem.
In detail, we identify the two main drawbacks of the approxi-
mation algorithm in [13], [14]: 1) complicated structure of the
algorithm, which makes it very difficult to understand and im-
plement; and 2) huge approximation factor. In this paper, we ex-
ploit a classical result from graph theory, Tutte decomposition,
to design a new approximation algorithm for the problem. The
algorithm features with: 1) a drastically simple structure, and
2) a much smaller performance ratio that is nearly half of that
of the best existing one. Our simulation results show our new al-
gorithm produces smaller 3-connected -dominating sets than
the competitor on average and coincide with our theoretical per-
formance analysis.
The rest of this paper is organized as follows. Section II intro-

duces notations, definitions, and preliminaries. Related work is
discussed in Section III. Our main result, a new constant factor
approximation for the minimum 3-connected -dominating set
problem in UDG, and its improved version are proposed in
Section IV along with their performance ratio analysis. Our sim-
ulation results are presented in Section V. Finally, we conclude
this paper in Section VI.

II. NOTATIONS, DEFINITIONS, AND PRELIMINARIES

A. Notations and Definitions
This paper focuses on homogenous wireless networks, i.e.,

wireless networks of physically equivalent nodes, on two-di-
mensional euclidean space. In a homogenous wireless network,
two nodes and have a bidirectional communication link
between them only if their distance is close enough. Other-
wise, there is no communication link between them. As a result,
unit disk graph (UDG) is a good graph of choice to abstract
the wireless network [10]. Formally, a graph

on a two-dimensional euclidean space is referred
to as a UDG if for each , there exists a bidirectional
edge between them only if the euclidean distance between them
is no greater than 1, i.e., . In this paper, for any
node subset means a subgraph of induced by
. Similarly, for any edge subset will imply a

subgraph of induced by . Now, we introduce some impor-
tant definitions.
Definition 1 [Independent Set (IS) and Maximal IS (MIS)]:

Given , a subset is an independent set of
if for each pair . An independent set is
referred to as a maximal independent set if there exists no node

such that is still an independent set of .
Definition 2 [Dominating Set (DS) and Connected DS

(CDS)]: Given , a subset is a dominating
set of if for each , either , or there exists

another node such that . A dominating set ,
whose induced graph is connected, is called a connected
dominating set.
Definition 3 ( -Vertex-Connectivity): A graph is
-vertex-connected if for any subset with size at most

is still connected.
For the sake of the simplicity of our discussion, we will use

“ -vertex-connected” and “ -connected” interchangeably.
Definition 4 [ -Dominating Set ( -DS)]: Given a graph
and a DS (or CDS) , is a -dominating set if for any

has at least neighbors in .
Definition 5 [ -Connected -Dominating Set

( -CDS)]: Given a graph , a subset
is a -connected -dominating set of if: a) is
-connected, and b) is a -dominating set of .
Definition 6 (Cut-Vertex): Given a graph , a

node is called as a cut-vertex of if is
disconnected.
Definition 7 (Separator): For a 2-connected graph , a sepa-

rator of is a pair of vertices such that the subgraph
induced by is disconnected.
Definition 8 ( -Path): Given a graph , an -path of a

subgraph is a path between two different nodes in such
that no inner node of is in .
The length of an -path is the number of edges in the path.

We use to denote an -path whose length is no greater
than .

B. Tutte Decomposition of 2-Connected Graphs
Next, we briefly discuss Tutte decomposition [23], which is

a classical result in graph theory and plays a vital role in the
design and performance analysis of our constant factor approx-
imation algorithm for the minimum 3-connected -dominating
set problem.
Definition 9 (Connected Modulo): Consider a 2-connected

graph and a pair of nodes . Then,
is a connected modulo with respect to and , or in short
, if there are no two nonempty edge subsets and such

that: a) ; b) ; and c) and
intersect only at and . Otherwise, is a nonconnected

modulo with respect to , or in short . Specifically, this
is true if:
a) and are adjacent; or
b) is disconnected [see Fig. 1(a)].
Definition 10 (Split-Candidate): Consider a separator of

a 2-connected graph . Then, two edge subsets and are
called a split-candidate of with respect to and , denoted by

, if:
a) is a connected module with respect to ; and
b) is 2-connected [see Fig. 1(a)].

In this case, we call a split-separator.
Based on Tutte's theory [23], it is always possible to decom-

pose a 2-connected graph into a number of 3-connected compo-
nents with at least 3 vertices, rings, and bonds (two nodes con-
nected by three edges). In this paper, we assume the 2-connected
graph has at least 3 edges, otherwise it is trivial. For instance,
in the 2-connected graph in Fig. 2(a), there exists a split-candi-
date with respect to and , say . Then,
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Fig. 1. (a) and consist of a separator of the whole graph ,
which is a nonconnected module with respect to and . (b)

is a split-candidate of since
is a connected modulo with respect to and is 2-connected

(but not a connected modulo with respect to ).

Fig. 2. By Tutte's theory, it is always possible to use the concept of split can-
didates to completely decompose a 2-connected graph into 3-connected com-
ponents. In (a), the dot-line is added between the split-separator nodes in the
original graph. In (b), the dot-line is a virtual edge, which implies multihop
paths between two nodes in the original graph.

from the initial decomposition, we can obtain , which is a
connected module with respect to and , and a 2-connected
subgraph, say . Once decomposed, we add a virtual edge be-
tween and in both and . is 2-connected, and there
is a split-candidate with respect to and . As a result, we can
further decompose the . This process is repeated until there
is no split-candidate left, e.g., Fig. 2(b) shows the final result
of the decomposition process. According to [23], the result of
Tutte decomposition is unique, which is independent of the de-
composing process. From now on, we will refer to each of the
resulting 3-connected components, rings [e.g., the subgraph
in Fig. 2(b)], and bonds [e.g., the subgraph in Fig. 2(b)] as
T-bricks, R-bricks, and M-bricks.
It is known that after Tutte decomposition is completed, there

exist at least two virtual edges and at most one edge from the
original graph between any pair of nodes. Now, we introduce
the concept of the RMT-tree, which can be induced from the
result of the decomposition:
1) Each of -bricks, -bricks, and -bricks is contracted

into a node in the RMT-tree.
2) There exists an edge between a pair of nodes in the RMT-

tree only if their original blocks have virtual edges between
the same pair of nodes, e.g., there exists an edge between
the node representing and the node representing in
Fig. 2(b).

Fig. 3 illustrates an example of a resulting RMT-tree from the
decomposition result in Fig. 2(b). Let us refer to each node in an

Fig. 3. Resulting RMT-tree of Tutte decomposition of the graph in Fig. 2(a).

RMT-tree by a node as well as a brick (generically, but specif-
ically, -brick, -brick, or -brick). Then, by the definition
of the split-candidate and Tutte decomposition's rule, a pair of
node is a separator of if there exists a split-candidate
with respect to and during the course of the decomposition
process.

C. Some Important Lemmas
Finally, we present some lemmas that are keys to the proof of

the performance of the proposed algorithms.
Lemma 1 [13]: Let be a 2-connected domi-

nating set of a 3-connected graph . Let be a pair nodes,
which is a separator of . Suppose splits into
two parts and . Then, there exists an -path with length
at most three connecting and without going through
and .
By the lemma above, given a that is not 3-connected,

suppose is a separator of . Then, by adding the in-
ternal nodes (the number of which is at most two) of the -path
into is not a separator anymore. The key obser-
vation is that the newly added nodes do not cause any trouble
for us to make to be 3-connected by introducing any new
separator.
Lemma 2: For any 2-connected graph , let be a new vertex

that is adjacent to at least three vertices in , then the graph
obtained from by adding has no new separator.

Proof: Suppose is a pair of separators of but is
not a separator of . If one of or is , say , then

is connected since is 2-connected—a
contradiction. If neither nor is , note that has at three
neighbors in . If and happen to be two of them, the deletion
of and from still does not disconnect from . Thus,

is still connected—a contradiction. Therefore,
is not a separator of if is not a separator of .
As a corollary of Lemma 2, we have the following lemma.
Lemma 3: Let and be a separator of
. Let be the -path connecting and .

, then there are no new separators in .
Therefore, according to Lemma 3, by successively adding
-paths to remove all the separators, eventually we will make

to be a 3-connected -dominating set. The key issue con-
cerned is how to guarantee that in this process, the number of
the newly added nodes is not too much compared to the size of

.

III. RELATED WORK

In [16], Wang et al. proposed the first constant factor ap-
proximation algorithm for the minimum 2-connected -domi-
nating set problem in unit disk graph, whose performance ratio
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is 64. This algorithm first constructs a connected dominating
set using an existing approximation algorithm for the minimum
1-connected 1-dominating set problem and iteratively finds an
-path from a noncut-vertex node in a maximal 2-connected

subgraph to another maximal 2-connected subgraph to the con-
nected dominating set until the original dominating set becomes
2-connected by these repeated operations.
In [15], Shang et al. proposed a centralized algorithm

to construct 2-connected -dominating set. Given a unit
disk graph , the algorithm first computes an
1-connected -dominating set and merges this with
a series of independent sets by repeatedly
computing an independent set from the residual graph

for each in order,
where . Once the 1-connected -dominating set is
computed, an idea similar to [16], but only using -paths
with length at most 3, is applied to make the 2-connected
-dominating set. In [22], Shi et al. further gave an improved

approximation algorithm for computing a -CDS based
on a greedy strategy.
Over the years, several efforts were made to design a constant

factor approximation algorithm for the -connected -domi-
nating set problem in unit disk graph for arbitrary integer and

pairs [17]–[21]. However, all of them do not work correctly
in a sense that the approximation bound is incorrect (and cannot
be bounded) or the algorithm does not produce a feasible so-
lution for some graph instances despite of their existence [13].
Very recently, in [14], Wang et al. have proposed a new constant
factor approximation algorithm for the minimum 3-connected
-dominating set problem in unit disk graph for any positive

integer . However, the design and implementation of the algo-
rithm is nontrivial, and the constant approximation ratio is huge.
In this paper, we aim to introduce a simpler approximation al-
gorithm, which is easier to implement and is with a smaller per-
formance ratio, for the minimum 3-connected -dominating set
problem by using Tutte's decomposition technique.

IV. BETTER CONSTANT FACTOR APPROXIMATION
FOR MINIMUM 3-CONNECTED -DOMINATING

SET PROBLEM IN UDG

A. Basic Algorithm
In this section, we introduce our new constant factor approx-

imation algorithm for the minimum 3-connected -dominating
set problem in unit disk graph based on the theory of Tutte de-
composition. In Section IV-B, we introduce an enhanced ver-
sion of this algorithm, which is with a simpler algorithmic struc-
ture and is with a smaller performance ratio.
The main idea of the algorithm is as follows. First, we

compute a -CDS using the algorithm in [22] (line 1 of
Algorithm 1), and decompose the -CDS into -bricks,
-bricks, and -bricks (line 1 of Algorithm 1). By the proce-

dure of Tutte decomposition, it is known that -bricks that are
formed by several edges between two nodes has no effect on
the result of our algorithm. Therefore, we only take -bricks
and -bricks into our consideration. Next, for every -brick
with more than three nodes, we try to eliminate all of its “local”
separators (i.e., the separators with , which

Algorithm 1 Tutte-3- -CDS

1: Compute a 2-connected -dominating set by using
an existing -approximation algorithm for some positive
constant .

2: Tutte decomposes and obtains the set of R-bricks
such that the cardinality of each brick is at least 4.

3: for each R-bricks in do
4: while there exists a separator of on a ring

such that and are not a split-separator (that is
a separator shared by two bricks of any types). do

5: Find an path from a node to
such that is not a separate anymore on the

induced graph by .
6: Set .
7: end while
8: end for
9: while there exists a separator of such that and

are shared by two bricks of any types. do
10: Find an path from a node to

such that is not a separate anymore on the induced
graph by .

11: Set .
12: end while
13: Output .

are not shared by any pair of bricks) by adding some -paths
successively (lines 3–8 of Algorithm 1). After this step is com-
pleted, the remaining separators (if there are any) are only some
of the split-separators. At last, removing all split-separators
sequentially based on the RMT-tree structure (lines 9–12 of
Algorithm 1) makes the final to be a , for .
Theorem 1: The output of Algorithm 1 is a 3-connected
-dominating set.
Proof: Let be any separator in . Then, ac-

cording to the theory of Tutte decomposition, either
belongs to an -brick or is shared by two bricks. In the former
case, by lines 3–8 of Algorithm 1, all separators will be re-
moved; in the later case, by lines 9–12 of Algorithm 1,
will be removed eventually. Thus, will be eliminated
after the execution of the Algorithm 1. Moreover, by Lemma 3,
the process of removing separators does not introduce any new
separators. Thus, at the end of Algorithm 1, all separators are
removed, and we get a 3-connected graph.
Theorem 2 [22]: The algorithm for the minimum

-CDS has a performance ratio for
, where is the approximation ratio for the minimum
-CDS and 12.46 for .

The following lemma lies at the heart of our analysis of Algo-
rithm 1, which is proved by induction. An alternative and more
straightforward proof will be given in Section IV-B.
Lemma 4: Let be a cycle on nodes, and

be the number of -paths needed to remove all the separators
of . Then, we have .

Proof: We prove the lemma by induction on the number of
nodes . When , there are at most two separators in total,
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therefore at most -paths are needed to remove
all the separators. Assuming the lemma is correct for any cycle
with nodes less than or equal to , we show the lemma is
true for .
Note that after an -path has been added, the

cycle is split into two cycles (the effect of adding an -path is
equivalent to adding a virtual edge ), namely, and ,
where and

. The key observation is that after an -path
has been added to (not considering the inner nodes of
-path), the pair of nodes that is used to be a separator

of is not a separator of anymore,
. Thus, after the first -path is added,

all separators of are now contained in and ,
respectively.
The process of adding -paths can proceed whenever there

are separators left. Note that whenwe are trying to remove a sep-
arator in (resp. ) by adding an -path , it may happen
that some separators in (resp. ) have been removed at the
same time because of the adding of . Of course, this may re-
duce the total number of the -paths needed to remove all the
separators of . Thus, in the most unfavorable conditions,
adding -paths to remove separators in (resp. ) does
not help removing the separators in (resp. ), and hence
the total number of the -paths needed to eliminate all sep-
arators in is at most the number of -paths needed to
remove all separators in and separately, plus two. That
is,

where we have used the induction
hypothesis that and , and
two additional -paths are added—the first one is and the
second one is the -path that might be needed to remove the
separator .
When we add -path to connect the components separated

by that is on -brick and not a split-separator, the
endpoints of the -path may be in other bricks. However, once
the -path has been added, we always can find equivalent (will
be discussed in more detail in Section IV) -paths whose end-
points are on , so the above lemma still stands.
Theorem 3: Algorithm 1 is an 87.23-approximation for com-

puting (3,3)-CDS, where is the approximation ratio
for computing a -CDS in unit disk graphs.

Proof: We have an -approximation algorithm for com-
puting a (2,3)-CDS with (see [22]). Thus, we can get
a such that , where is the optimal so-
lution of the 2-connected 3-dominating set problem. Let de-
note the set of the -paths needed to eliminate the separators
of all the -bricks, and denote the set of the split-separator.
Suppose that is the set of -bricks, and

. According to Lemma 4,
. Clearly, every two adjacent bricks share two nodes that

consist of a split-separator, so there are bricks, and we
have . The output , where
denotes the set of all nodes added. To estimate the performance
ratio of Algorithm 1, according to Lemmas 1 and 4, we have

. This completes the proof.

Algorithm 2 Simple-3- -CDS

1: Compute a 2-connected -dominating set by using
an existing -approximation algorithm for some positive
constant .

2: while There exists a separator in do
3: By Definition, is split into two subgraphs

and . Find an -path from a
node in to another node in , and add the nodes

on the path to .
4: end while
5: Return .

Similarly, we have the following theorem.
Theorem 4: Algorithm 1 is a -approximation for com-

puting -CDS, for , where is the approximation
ratio of the minimum -CDS in [22].
Theorem 5: Let be the number of nodes in the original

graph. Then, the time complexity of Algorithm 1 is .
Proof: Computing a -CDS takes time . The

unique decomposition of a 2-connected graph can be found in
linear time; see [28]. The time complexity of second step and
third step is dominated by the Shortest-Path function, which
runs in . The if-loop is executed at most , so the
process of adding -path takes time . The second and
third steps are executed at most times since the number of the
bricks is at most . Therefore, the time complexity is at most

.

B. Simplified Algorithm

In this section, we give a much simpler approximation algo-
rithm with smaller performance ratio. We show that the naive
idea of “adding -paths to remove separators successively
until no separator left” is actually a constant approximation (see
Algorithm 2 for details). The prominent difference of the second
algorithm from the previous one is that we only use Tutte de-
composition in the performance analysis of our algorithm.
First, we focus on the special case that happens to be

a cycle on vertices, and then we show the general case
can actually be reduced to this special one, by using Tutte
decomposition.
For better visualization, next we can use a convex polygon
with vertices to represent the cycle , and we also use

a line segment to denote an -path with the same endpoints.
Label the vertices of polygon clockwise, and denote it by its
vertex set . Clearly, is a separator for
all nonadjacent vertices and . Thus, there are

pairs of separators in total. However, we are able to show
that at most -paths (rather than -paths) are
needed to eliminate all separators, and hence to make to be
3-connected. As aforementioned, this is due to the important
fact that when we add one -path to remove a specific pair
of separators, we actually remove many separators at the same
time.
More precisely, at the beginning, we have a

that is represented by a convex -polygon on vertices.
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Suppose is a separator of , and is
decomposed into of two parts and . Now add an -path
with two ending points and connecting
and . After adding the -path is no longer a
separator. More importantly, any vertex in and
any vertex in cannot constitute a pair of separators
anymore. Put another way, after adding (we may think of
it as a line segment), the convex polygon is partitioned into
two smaller subpolygons: and , and any pair of separators

in must satisfy or after adding
.

To make our presentation more concise, we introduce the
following.
Definition 11: Let be a pair of separators. Let be

an -path newly added. If after adding of is not a
separator anymore, we call the -path crosses or removes
the separator .
Definition 12: We call an -path crosses a convex polygon
if after adding the -path, some pair of separators

are removed.
In order to give an upper bound for the number of -paths

needed to remove all separators in , we take a copy of , de-
noted by . Later, we will show the number of -paths needed
to remove all separators in is actually bounded by that for
. Whenever an -path is added in , a set of corresponding
-paths (called virtual paths) is added in according to some

specific rules described below. Notice that the paths added in
can intersect each other (we may think of the -path as a line
segment with the same endpoints as the -path), but the vir-
tual paths never intersect each other (except that they can share
an endpoint in common). Thus, the virtual paths in induce a
series of partitions of into smaller subpolygons.
First, when is added in , the corresponding vir-

tual paths added in are . The adding of
partitions into two subpolygons and .
Next, we add into . There are two possible cases:

1) and are contained in the same subpolygons, say .
Then, ; 2) and are contained in dif-
ferent subpolygons, say and . In this case,

crosses with and . Then, we add virtual paths
, and , provided they are diagonals of (by

a diagonal of polygon, we mean the line segment connecting
two nonadjacent vertices).
Generally, suppose we have added a list of -paths

sequentially into , and the corresponding
virtual paths partitioned into subpolygons

. Then, when adding the th -path
into , the corresponding virtual paths are added in

according to the following rules.
• Rule 1: Let be any subpolygon, for .
Suppose that is not a triangle. If the -path
does not cross with , then no virtual paths are added in

. Otherwise, suppose the -path crosses
with , then the line segment intersects with the
convex subpolygon at exactly two edges, say
and , of , where and (resp. and ) are
separated by the line (i.e., they lie at different parts of

Fig. 4. (a) is the -path added into , and crossed the two edges
and . (b) Virtual edges and partition into three

smaller subpolygons, namely, , and . (c) Subpolygon
continues to split into and by .

Fig. 5. (a) -path added into crossed the edge and
. (b) By adding virtual paths and sequentially, has been

subdivided into three subpolygons.

the plane partitioned by ), and and (resp. and
) are not separated by .

Let and . We distin-
guish three cases.

Case 1: First, suppose that and
. If (resp. ) is a diagonal of

, then add (resp. and ) as virtual edges
in that partition into three smaller subpoly-
gons, namely, , and , where and share
two nodes in common; and share two
nodes in common; and
is a quadrangle with four nodes. Now adding ei-
ther a virtual edge or (but not both),
is split into two triangles and

(or and ;
see Fig. 4 for example.
Case 2: (say ) but .
If (resp. ) is a diagonal of , then add vir-
tual edge (resp. ). Then, was partitioned
into three subpolygons; see Fig. 5 for example.
Case 3: (say ) and
(say ). In this case, is always a diagonal
of , and the virtual edge added in coincides
with that partitions into two smaller
subpolygons; see Fig. 6 for example.

• Rule 2: If is a triangle (nomatter -path crosses
with or not), then remains unchanged, and no
virtual path corresponding this subpolygon will be added
in .
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Fig. 6. (a) Endpoints of the -path added are in . (b) Virtual
edge added in is itself, which can partition the polygon into two
subpolygons.

The above process can go on, until has been triangulated
(i.e., all subpolygons are triangles). Then, while we may still
need to add -paths in to remove some separators (if there is
any), no corresponding virtual edges will be added in (since it
has been triangulated). An example is given in Fig. 7 to illustrate
of the above process.
Now we give an important property about the above

constructions.
Lemma 5: Let denote the set of separators removed by

adding the -path sequentially into ,
and denotes the set of the separators in removed by the
virtual paths corresponding to using the above rules. Then,
we have .

Proof: Let be the -paths sequentially
added such that all separators of have been removed.
During the process of adding these -paths, the corresponding
virtual -paths are also added in the convex polygon ac-
cording the rules described above.
Suppose that when adding , the polygon

has been partitioned into triangles by the corresponding virtual
-paths . is the first -path added, corre-

sponding to which there are no virtual -paths added anymore
(since has been triangulated).
For , there are no corresponding virtual edges, so we

just need to show the lemma to be true for .
Next, we prove the lemma is true for by induction

on . The base case is obviously true. Supposing the
lemma is true for , we show the
lemma is true for .
Suppose that after adding the virtual paths corresponding to

in has been partitioned into subpoly-
gons , for . Notice that all the pairs of sep-
arators of are (where denotes the set
of separators with ). By induction hypoth-
esis, . It follows that all the remaining pairs of
separators of are included in , after adding the

-paths in .
Now consider the rules of adding virtual paths in corre-

sponding . Suppose Rule 1 Case 1 is true (other cases can be
proved in a similar way), then is partitioned into four sub-
polygons and by adding three virtual paths, say

and (see Fig. 6). Now consider the node set
corresponding the node set of in (we use the same nota-
tion), then in , all possible pairs of separators are in

Fig. 7. (a) Process of adding an -path. (b) Process of adding virtual paths
in . Step 1: is added in , and since the endpoints of are in same
polygon , (a) and (b) are same. Step 2: (a) -path is added
into ; (b): its corresponding virtual paths are and added into .
Step 3: (a): -path has crossed two polygons, one of which has 3 nodes,
so it cannot split into smaller polygons. The other polygon
can split into three polygons by and . Since after Step 3
have been split into triangles, in Steps 4 and 5, the -paths and are
added to remove the separators shared by the triangles, however cannot split
into smaller subpolygons.

(some of them may not be separators in ) before adding .
Next, we add into . Let and
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be the partition of the node set of . Then,
all pairs of separators of in are now restricted to

. On the other hand, all the separators of
are , after adding the virtual
paths corresponding to . Clearly,

(they actually differ by the pairs of
separators consisting of the two endpoints of all virtual paths).
Note that is any subpolygon of . If we consider all sub-
polygons, we know that after adding and the corresponding
virtual paths, the remaining set of separators of is contained
in that of , i.e., holds for . This completes the proof.

Lemma 6: Let be a convex polygon on vertices.
Then, can be partitioned into triangles by adding
diagonals, no matter how we partition the polygon.

Proof: We prove the lemma by induction on . When
, the lemma is obviously true. Assume it is true for a convex
polygon with less than or equal to vertices. Then, adding
one diagonal arbitrarily partitions into two subpolygons
and with and vertices, respectively. By induction hy-
pothesis, the lemma is true for and , i.e., can be par-
titioned into triangles by adding diagonals, for

. Thus, can be partitioned into
triangles by adding

diagonals.
Lemma 7: Let be a cycle on nodes. Then, at most

-paths are needed to remove all separators
of and make it to be 3-connected.

Proof: Let be the -paths sequentially
added such that all separators of have been removed.
During the process of adding these -paths, the corresponding
virtual -paths are also added in the convex polygon ac-
cording the rules described above.
Suppose that when adding , the polygon

has been partitioned into triangles by the corresponding virtual
-paths . is the first -path added, cor-

responding to which there is no virtual -paths added any-
more (since has been triangulated). According to Lemma 6,
an -polygon can be partitioned into triangles by adding

diagonals, which is independent of the ways of the trian-
gulation. Moreover, for each of , the number of
corresponding virtual -paths added is at least one. It follows
that .
After we have added the -paths in , the

adding of the corresponding virtual -paths partitioned
into triangles. Notice now in , all possible separators are
the pairs of vertices that are the two endpoints of the virtual

-paths . According to Lemma 5, now all the
possible separators in are also the pair of two endpoints of

. Additional -paths are added
to remove these separators. Thus, in the worst cases, we need
another -paths. Therefore in total, the number of

-paths needed is at most .
Theorem 6: The output of Algorithm 2 is a 3-connected
-dominating .
Proof: Because of the termination condition of the al-

gorithm, all separators have been removed, and moreover, by
Lemma 1, in the process, no new separators will be introduced.
Thus, the output of Algorithm 2 is 3-connected.

In the previous discussions, we regard the -path as a line
segment and ignore its internal nodes. This is not a serious re-
striction since, according to Lemma 2, the internal nodes can
only help us to make to be 3-connected and do not make
any troubles. If we have considered the effect of internal nodes,
the total number of -paths needed to removed all separators
of would be further reduced.
Also, we implicitly assume that the two endpoints of the
-path added are in . This is also not a serious restriction,

as the following lemma shows that we can always choose some
nodes in to act the same role. The following lemma makes
sure wherever the endpoints of the last -path are, we always
can find the nodes on to act as the endpoints.
Lemma 8: If the endpoints of the newly added -path are

the intermediate nodes of the -path added before, we can find
existing nodes in that can be acted as the endpoints of the

-path.
Proof: Since the new added nodes are dominated by at least

three nodes in at least, the lemma is true.
Next, we consider the case that is a general 2-connected

graph. The main idea is similar to that of the special case before.
The main difference is that we have to use Tutte decomposition
for our analysis.
Definition 13: If the separators in the brick are no longer

separators after adding the -path, we call the -path crosses
the brick.
From Tutte decomposition theory, every general 2-connected

graph can be decomposed into bricks and the bricks form a
unique tree. Therefore, we have with

being -Bricks or -Bricks. We know adding an -path
can at least reduce one separator. Now suppose the end-

points of the added -path are in two distinct bricks, say in
and and and . If the -path

crosses with the separators in any other blocks , then adding
-path also reduces the number of separators in . Thus, for

each , the effect of adding the -path can be replaced
by adding other virtual -paths whose endpoints are in
same brick; see Figs. 8 and 9 for example. There are three rules
for how to choose the endpoints of the virtual -path.
• Rule 1: -path crosses two bricks and and

and . Obviously,
is a split-separator. For , we add the virtual

paths and sequentially, if there are no edges
between and in (the virtual edge that
is introduced by the Tutte decomposition is treated as an
existing edge in the brick). For , it is similar. Hence,
bricks and can be split after adding ; see Fig. 8.

• Rule 2: -path crosses more than two bricks (we
take the example of three bricks into consideration) and

and
. and are split-separators. For

and , it is the same as Rule 1. Furthermore, for ,
we choose to be one endpoint of the first
virtual path, and to be the other one endpoint
if there is no edge between and . Then, can be split
into two smaller polygons and . If
and are in same polygon or and there
exists no edge between them, then and continue to
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Fig. 8. (a) -path crosses bricks and . is the split-sep-
arator shared by and . (b) For the -brick , the virtual paths
and canmake split into subpolygons

, and . For the -brick -path is corre-
sponding to the virtual path , and we cannot choose to be the endpoint
because it is adjacent to .

Fig. 9. (a) -path crosses bricks and . and
are the split-separators shared by them. (b) For , it will be split by

virtual paths and ; for , it can be split by and ;
for and will make it split into smaller polygons.

Fig. 10. General 2-connected graph based on Tutte decomposition, and all the
-bricks can be split into smaller polygons.

split by the virtual path until any and
in same polygon there is an edge; see Fig. 9.

• Rule 3: When or is in the bricks that has three nodes
or is in a -brick, the bricks remain unchanged.

From above discussions, whenever we add an -path
to remove a separator in a -brick, and whenever there
are some separators in crosses with , we can find a vir-
tual path in to make it split. Thus, whenever there is
an -path added, the -bricks can be split according to sim-
ilar rules as previously; see Fig. 10 for an illustration. Moreover,
note there are no separators in -bricks (except the splitting sep-
arator); we can consider -bricks as -bricks with three nodes
without effecting our results.
Lemma 9: denotes the set of the removed separators by

the -path added in reality, and denotes the set of the
removed separators by the virtual paths corresponding to
as the above rule, .

Proof: The proof is similar to Lemma 5.
Lemma 10: In Algorithm 2, at most -paths are

needed to make be 3-connected, where .
Proof: Suppose that is decomposed into bricks

with and . Ac-
cording to Tutte decomposition, we have

Fig. 11. Size of (3, 3)-CDS computed by SPFA in various virtual space regions.

(since two adjacent bricks share exactly two
vertices). Let denote the number of the -paths needed
to remove all separators in . Then, it follows that

where the
first inequality follows from the fact that by Lemma 9, the
number of -paths added does not exceed the total number
of -paths added in all bricks, and at most -paths
are needed to remove the splitting separators. Furthermore, we
have used Lemma 7 in the second inequality. This completes
the proof.
Theorem 7: Algorithm 2 is a 62.30-approximation for com-

puting (3, 3)-CDS.
Proof: We have an -approximation algorithm for com-

puting a (2, 3)-CDS with (see [22]), so we can obtain
a such that . According to Lemma 10, we
have

where is the optimal solution
for the (3, 3)-CDS. This completes the proof.
When , first we can compute a using the existing

algorithm in [22]. Then, we augment to using our
algorithm. Thus, we have the following.
Theorem 8: Algorithm 2 is a -approximation for com-

puting -CDS, for , where is the approximation
ratio of the minimum -CDS in [22].
Theorem 9: The approximation ratio of this algorithm is 170

for .
Proof: First, we prove the conclusion for the case .

By the algorithms in [27], we have ,
where is the maximal independent set obtained sequentially
and is some additional vertices added to make to be con-
nected. Since and , we
have . Moreover, we know .
By our algorithm, .
Obviously, . Thus, .
For , the approximation ratio can be obtained similarly

by .
Theorem 10: Let be the number of nodes in the original

graph . Then, the time complexity of Algorithm 2
is .

Proof: Computing a -CDS takes time , and
verifying whether is a separator or not are finished in

. The time complexity of adding -path is dominated
by the Shortest-Path function, which runs in . Therefore,
the time complexity is at most .
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Fig. 12. Comparison between (2, 3)-CDS and (3, 3)-CDS. (a) Comparison in
25 25 region. (b) Comparison in 50 50 region. (c) Comparison in 75 75
region.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we conduct simulations to validate the effec-
tiveness of SPFA (Algorithm 2). We randomly generate various
network topologies. For each setting, we perform the simula-
tion for 100 times and compute the average value. First, we fix
the region size of 25 25, and node size varies from 100 to 500
with the increment of 50. Next, the region size is enlarged up to
50 50 and 75 75, and the node size varies from 100 to 500,
so that we can evaluate the SPFA for different node density.
Fig. 11 plots the size of the obtained (3, 3)-CDS computed

by SPFA in various virtual space region. From Fig. 11, we ob-
serve that with the number of nodes increased, the number of
nodes (3, 3)-CDS is increased. The denser the network is, the
less nodes (3, 3)-CDS has.
In order to evaluate the performance of SPFA, we first fix the

network region, and deploy the nodes randomly. Fig. 12 shows
that the size of the (3, 3)-CDS is about 10%–15% larger than

Fig. 13. Comparisonwith the size of (3, 3)-CDS computation algorithm in [14].
(a) Comparison in 25 25 region. (b) Comparison in 50 50 region. (c) Com-
parison in 75 75 region.

(2, 3)-CDS no matter how dense the network is. The number of
nodes added to (2, 3)-CDS is increasing along with the number
of original network, but relatively slowly. This is because in a
smaller region, a large part of (2, 3)-CDS is already connected.
However, with the increase of nodes number in our network, the
ratio between nodes in (2, 3)-CDS and (3, 3)-CDS is changeless,
which indicates that the increase of network size has no signif-
icant effect to the performance of our algorithm, and we can
expect that our algorithm can perform well in dense networks.
We also evaluate our Algorithm SPFA through comparison

with the only existing alternative, FT-CDS-CA in [14]. We set
our simulation setting to be same as that of FT-CDS-CA. The
method of generating 3-connected graph is same as algorithm
FT-CDS-CA. The network size is varied from 100 to 500 nodes
with the increment by 50 nodes. For the same network size,
we vary side length of region as 25 25, 50 50, 75 75
so that we can test the algorithm for different node density.
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Fig. 13 shows that SPFA constructs much smaller (3, 3)-CDS
than FT-CDS-CA does in 25 25, 50 50, 75 75 region, re-
spectively. On average, the size of (3, 3)-CDS obtained by SPFA
is about 20% smaller than that obtained from FT-CDS-CA. This
is because the ratio of SPFA is less than 15%, while the ratio
is roughly 20%–30% in the algorithm FT-CDS-CA. From the
figures, our algorithm outperforms algorithm FT-CDS-CA with
the same size of region. That is because our algorithm always
chooses the best node, while FT-CDS-CA may not.

VI. CONCLUSION

In this paper, we studied the problem of computing
-CDS in wireless networks. We use Tutte decomposition

and design a simpler approximation algorithm with much
smaller approximation factor for the problem. As our future
work, we plan to design constant factor approximation algo-
rithm for the minimum -connected -dominating set problem
with and , which will be a theoretical ground
work for constructing a quality virtual backbone with high fault
tolerance for wireless networks.

REFERENCES
[1] W. Wang et al., “A better constant approximation of minimum

3-connected -dominating set problem in unit disk graph using Tutte
decomposition,” in Proc. 34th IEEE INFOCOM, Hong Kong, Apr.
26–30, 2015, pp. 1796–1804.

[2] R. Tan, G. Xing, B. Liu, J. Wang, and X. Jia, “Exploiting data fusion to
improve the coverage of wireless sensor networks,” IEEE/ACM Trans.
Netw., vol. 20, no. 2, pp. 450–462, Apr. 2012.

[3] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem
in a mobile ad hoc network,” in Proc. 5th Annu. ACM/IEEEMobiCom,
Washington, DC, USA, Aug. 1999, pp. 152–162.

[4] Y. Hong et al., “Construction of higher spectral-efficiency virtual back-
bone in wireless networks,” Ad Hoc Netw., vol. 25, pt. A, pp. 228–236,
Feb. 2015.

[5] Y. Li, D. Kim, F. Zou, and D.-Z. Du, “Constructing connected domi-
nating sets with bounded diameters in wireless networks,” in Proc. 2nd
WASA, Chicago, IL, USA, Aug. 1–3, 2007, pp. 89–94.

[6] F. Zou, X. Li, D. Kim, and W. Wu, “Construction of minimum con-
nected dominating set in 3-dimensional wireless network,” in Proc. 3rd
WASA, Dallas, TX, USA, Oct. 26–28, 2008, pp. 134–140.

[7] D. Kim, X. Li, F. Zou, Z. Zhang, and W. Wu, “Recyclable connected
dominating set for large scale dynamic wireless networks,” in Proc.
3rd WASA, Dallas, TX, USA, Oct. 26–28, 2008, pp. 560–569.

[8] D. Kim, Y. Wu, Y. Li, F. Zou, and D.-Z. Du, “Constructing minimum
connected dominating sets with bounded diameters in wireless net-
works,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 2, pp. 147–157,
Feb. 2009.

[9] D. Kim et al., “A better approximation algorithm for computing
connected dominating sets in unit ball graphs,” IEEE Trans. Mobile
Comput., vol. 9, no. 8, pp. 1108–1118, Aug. 2010.

[10] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Discrete Math., vol. 86, pp. 165–177, Dec. 1990.

[11] S. Guha and S. Khuller, “Approximation algorithms for connected
dominating sets,” Algorithmica, vol. 20, pp. 374–387, Apr. 1998.

[12] F. Dai and J. Wu, “On constructing -connected -dominating set in
wireless network,” in Proc. 19th IEEE IPDPS, 2005, p. 81a.

[13] D. Kim,W.Wang, X. Li, Z. Zhang, andW.Wu, “A new constant factor
approximation for computing 3-connected -dominating sets in ho-
mogeneous wireless networks,” in Proc. 29th IEEE INFOCOM, Mar.
2010, pp. 1–9.

[14] W. Wang et al., “On construction of quality fault-tolerant virtual back-
bone in wireless networks,” IEEE/ACM Trans. Netw., vol. 21, no. 5,
pp. 1499–1510, Oct. 2013.

[15] W. Shang, F. Yao, P. Wan, and X. Hu, “On minimum -connected
-dominating set problem in unit disc graphs,” J. Combin. Optimiz.,

vol. 16, pp. 99–106, Dec. 2007.

[16] F. Wang, M. T. Thai, and D.-Z. Du, “2-Connected virtual backbone in
wireless network,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp.
1230–1237, Mar. 2009.

[17] M. T. Thai, N. Zhang, R. Tiwari, and X. Xu, “On approximation al-
gorithms of -connected -dominating sets in disk graphs,” Theoret.
Comput. Sci., vol. 358, pp. 49–59, 2007.

[18] N. Zhang, I. Shin, F. Zou, W. Wu, and M. T. Thai, “Trade-off scheme
for fault tolerant connected dominating sets on size and diameter,” in
Proc. ACM FOWANC, 2008, pp. 1–8, in conjunction with MobiHoc.

[19] Y. Wu, F. Wang, M. T. Thai, and Y. Li, “Constructing -connected
-dominating sets in wireless sensor networks,” in Proc. MILCOM,

Orlando, FL, USA, Oct. 29–31, 2007, pp. 1–7.
[20] Y. Wu and Y. Li, “Construction algorithms for -connected -domi-

nating sets in wireless sensor networks,” in Proc. 9th ACM MobiHoc,
Hong Kong, May 26–30, 2008, pp. 83–90.

[21] Y. Li, Y.Wu, C. Ai, and R. Beyah, “On the construction of -connected
-dominating sets in wireless networks,” J. Combin. Optimiz., vol. 23,

no. 1, pp. 118–139, 2012.
[22] Y. Shi, Y. Zhang, Z. Zhang, and W. Wu, “A greedy algorithm for the

minimum 2-connected -fold dominating set problem,” J. Combin.
Optimiz., 2014, DOI: 10.1007/s10878-014-9720-6.

[23] W. T. Tutte, Connectivity in Graphs. Oxford, U.K.: Oxford Univ.
Press, 1966.

[24] R. Diestel, “Graph theory,” in Graduate Texts in Mathematics, 3rd
ed. Heidelberg, Germany: Springer-Verlag, 2005, vol. 173.

[25] D. B. West, Introduction to Graph Theory, 2nd ed. Upper Saddle
River, NJ, USA: Prentice-Hall, 2001.

[26] G. Chapuy, E. Fusy, M. Kang, and B. Shoilekova, “A complete
grammar for decomposing a family of graphs into 3-connected com-
ponents,” Electron. J. Combinatorics, vol. 15, no. 1, p. R148, 2008.

[27] Y. Li, S. Zhu, M. T. Thai, and D.-Z. Du, “Localized construction of
connected dominating set in wireless networks,” in Proc. NSF TAWN,
Chicago, IL, USA, Jun. 2004, pp. 1–9.

[28] J. E. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected
components,” SIAM J. Comput., vol. 2, pp. 135–158, 1973.

Bei Liu received the M.S. degree in mathematics
from Xi'an Jiaotong University, Xi'an, China, and is
currently pursuing the Ph.D. degree in mathematics
at Xi'an Jiaotong University.
Her major research interests include wireless net-

working, social networking, and approximation algo-
rithm design and analysis.

Wei Wang received the B.S. degree in applied math-
ematics from ZheJiang University, Hangzhou, China,
in 1991, and the M.S. degree in computational math-
ematics and Ph.D. degree in mathematics from Xi'an
Jiaotong University, Xi'an, China, in 1994 and 2006,
respectively.
He is currently a Professor with the School of

Mathematics and Statistics, Xi'an Jiaotong Univer-
sity. His research interests include algebraic graph
theory and approximation algorithm design and
analysis.

Donghyun Kim (S'07–M'10–SM'15) received the
B.S. degree in electronic and computer engineering
and M.S. degree in computer science and engi-
neering from the Hanyang University, Ansan, Korea,
in 2003 and 2005, respectively, and the Ph.D. degree
in computer science from the University of Texas at
Dallas, Richardson, TX, USA, in 2010.
Currently, he is an Assistant Professor with the

Department of Mathematics and Physics, North
Carolina Central University, Durham, NC, USA.
His main research interest is algorithm design and

analysis for various application fields such as security and privacy, Internet



LIU et al.: ON APPROXIMATING MINIMUM 3-CONNECTED -DOMINATING SET PROBLEM IN UNIT DISK GRAPH 2701

of things, cloud computing, big data, social computing, mobile computing,
robotics, cyber-physical systems, and wireless and sensor networking.
Dr. Kim is a member of the Association for Computing Machinery

(ACM). He is an Associate Editor of Discrete Mathematics, Algorithms and
Applications.

Deying Li received the M.S. degree in mathematics
from Huazhong Normal University, Wuhan, China,
in 1988, and the Ph.D. degree in computer science
from the City University of Hong Kong, Hong Kong,
in 2004.
She is currently a Professor with the Department

of Computer Science, Renmin University of China,
Beijing, China. Her research includes wireless net-
works, mobile computing, and algorithm design and
analysis.

Jingyi Wang received the B.S. degree in mathe-
matics and applied mathematics from Xi'an Jiaotong
University, Xi'an, China, in 2013, and is currently
a graduate student in computational mathematics at
Xi'an Jiaotong University.
His research interests include algebraic graph

theory and approximation algorithm design and
analysis.

Alade O. Tokuta (M'86–LM'14) received the Ph.D.
degree in electrical engineering and computer science
from the University of Florida, Gainesville, FL, USA,
in 1984.
Currently, he is a Professor with the Department

of Mathematics and Physics, North Carolina Central
University, Durham, NC, USA. His research inter-
ests include robotics, computer image synthesis/vi-
sion, networking, and algorithm design.

Yaolin Jiang received the B. S. degree from Sichuan
University, Chengdu, China, in 1985, and the M.S.
and Ph.D. degrees from Xi'an Jiaotong University,
Xi'an, China, in 1987 and 1992, respectively, all in
mathematics.
He has been a Professor with the Department

of Mathematics, Xi'an Jiaotong University, Xi'an,
China, since 1998, and now is also a Changjiang
Professor in China. He has published four books
and about 200 technical papers in journals and
conference proceedings. His research interests

include theoretical studies of scientific computing, model order reduction,
waveform relaxation, numerical solutions of partial differential equations,
domain decomposition methods, matrices and tensors, dynamics of nonlinear
systems, circuit simulation, and parallel processing.


