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Abstract—In rechargeable sensor networks (RSNs), energy har-
vested by sensors should be carefully allocated for data sensing and
data transmission to optimize data gathering due to time-varying
renewable energy arrival and limited battery capacity. Moreover,
the dynamic feature of network topology should be taken into
account, since it can affect the data transmission. In this paper,
we strive to optimize data gathering in terms of network utility
by jointly considering data sensing and data transmission. To
this end, we design a data gathering optimization algorithm for
dynamic sensing and routing (DoSR), which consists of two parts.
In the first part, we design a balanced energy allocation scheme
(BEAS) for each sensor to manage its energy use, which is proven
to meet four requirements raised by practical scenarios. Then in
the second part, we propose a distributed sensing rate and routing
control (DSR2C) algorithm to jointly optimize data sensing
and data transmission, while guaranteeing network fairness. In
DSR2C, each sensor can adaptively adjust its transmit energy con-
sumption during network operation according to the amount of
available energy, and select the optimal sensing rate and routing,
which can efficiently improve data gathering. Furthermore, since
recomputing the optimal data sensing and routing strategies upon
change of energy allocation will bring huge communications for
information exchange and computation, we propose an improved
BEAS to manage the energy allocation in the dynamic environ-
ments and a topology control scheme to reduce computational
complexity. Extensive simulations are performed to demonstrate
the efficiency of the proposed algorithms in comparison with
existing algorithms.
Index Terms—Data sensing, dynamic topology, energy alloca-

tion, energy harvesting, rechargeable sensor networks, routing.

I. INTRODUCTION

D ATA gathering has been a fundamental issue in Wireless
Sensor Networks (WSNs) [1], [2]. It mainly consists of

two steps: i) data sensing, which decides the sensing rate of each
sensor to well reconstruct the physical information, and ii) data
transmission, which is concerned with how to transmit sensory
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data to sink node. In order to reconstruct the physical informa-
tion with high accuracy at sink node, both data sensing and data
transmission should be optimized. As battery-powered sensors
are not feasible for long-term applications, energy harvesting
technologies have been recently introduced to achieve the goal
of perpetual network operation [3]–[6].
Data gathering optimization was previously addressed in bat-

tery-powered WSNs [7]–[11]. A popular approach is to jointly
optimize data sensing and data transmission globally by using
cross-layer optimization. As the energy budget of each sensor
is given initially, the problem can be formulated as a deter-
ministic optimization problem. However, energy arrival at each
sensor is intrinsically stochastic in RSNs. To optimize data gath-
ering, sensors have to dynamically determine their sensing and
transmission strategies in order to fully utilize the harvested en-
ergy according to the instant profile of energy arrival. These
unique features make data gathering in RSNs a radically new
and challenging problem, which is far from data gathering in
battery-powered WSNs.
In this paper, we seek to optimize data gathering in RSNs

by jointly considering data sensing and data transmission. Ex-
isting works either assumed a static network topology or con-
sidered data sensing and data transmission independently. For
example, Liu et al. proposed a distributed algorithm to jointly
compute a routing structure and a high lexicographic rate as-
signment, provided that the available logical links are prede-
termined [12]. In practice, according to the amount of avail-
able energy, each sensor can adaptively adjust its transmit en-
ergy consumption within a certain range during network oper-
ation to improve the efficiency of data gathering by selecting
optimal sensing rate and routing. Therefore, the dynamic fea-
ture of network topology should be taken into account to im-
prove the efficiency of data gathering. In addition, since sensors
should communicate with each other to compute the optimal
data sensing and data transmission upon different energy allo-
cation,1 changing the energy allocation frequently may bring
extra energy cost for communication and computation. Thus,
the extra energy cost, as well as the computational complexity,
should be taken into consideration.
The objective of this paper is to design an algorithm for

data gathering optimization via dynamic sensing and routing
(DoSR) that can maximize data gathering (in the form of
utility) by jointly optimizing energy allocation, data sensing
and data transmission for each sensor while taking the dynamic

1Energy allocation is an energy management scheme, which is used to decide
the upper bound of the energy use in each slot.
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feature of network topology into consideration. Specifically,
our contributions are summarized as follows:
• We propose a balanced energy allocation scheme (BEAS)
to manage the energy use adaptively according to the bat-
tery level and the amount of harvested energy for each
sensor, so that all sensors can efficiently utilize the har-
vested energy.

• Based on BEAS, we design a distributed sensing rate and
routing control (DSR2C) algorithm by employing dual de-
composition method and sub-gradient method. We theoret-
ically investigate the performance of DSR2C, showing that
DSR2C converges to the optimal sensing rate and routing
for the data gathering problem.

• We propose an improved BEAS scheme to manage the en-
ergy allocation that can prevent the decrease of network
utility due to extra energy cost incurred by the change
of energy allocation, and a topology control scheme to
manage the established logical links to reduce computa-
tional complexity.

• Extensive simulations based on real experimental data are
performed to demonstrate the efficiency of the proposed
algorithms.

The remainder of this paper is organized as follows. We in-
troduce the related work in Section II and describe the net-
work model and problem formulation in Section III. Then, a
balanced energy allocation scheme (BEAS) for each sensor to
manage its energy use efficiently is proposed and a distributed
sensing rate and routing control (DSR2C) algorithm to find the
optimal sensing rate and routing is designed in Section IV. We
propose an improved BEAS and a topology control scheme in
Section IV. We evaluate the performance of the proposed algo-
rithms in Section V. We conclude this work in Section VI.

II. RELATED WORK

Recently, there are many works on optimal data sensing
and routing in WSNs. In [7], Hua et al. presented a smoothing
approximation function of network lifetime maximization
problem by integrating date aggregation with underlying
routing scheme, and proposed a distributed gradient algorithm
accordingly. In [8], He et al. presented a network lifetime
maximization problem by jointly considering routing layer,
physical layer and MAC layer. An efficient heuristic algorithm,
JRPRA, was designed, which could obtain a close-to-optimal
solution. In [13], Nair et al. formulated the network utility
maximization problem as a nonconvex function and presented
a distributed and iterative algorithm to attain globally optimal
transmission rate and routing, respectively. In [14], Long et al.
formulated the throughput maximization and energy efficiency
problem as a cross-layer design problem, and then designed
a joint congestion control, random access and power control
algorithm. In [15], Xi et al. aimed to minimize the sum of
link costs and proposed an optimal power control, routing and
congestion control algorithm. However, all of the aforemen-
tioned works focus on battery-powered WSNs, which cannot
be directly applied to RSNs.
There are several works that aim to optimize energy manage-

ment, data sensing and routing in RSNs. In [16], Chen et al.

investigated the utility maximization problem for the recharge-
able sensor networks and developed a joint energy allocation
and routing algorithm, which is a low-complexity online solu-
tion. In [17], Liu et al. focused on network utility maximization
and perpetual network operation, and developed a QuickFix al-
gorithm to compute the optimal sampling rate and route, and
a SnapIt algorithm to adjust the sampling rate. In [18], Lin et
al. proposed an integrated admission control and routing frame-
work, and designed routing algorithms to optimally utilize the
available energy. In [19], Zhang et al. proposed a distributed al-
gorithm to jointly optimize energy management, data sensing
and routing for sensors to maximize overall network utility.
In [20], Joseph et al. designed a joint optimal power control,
routing and scheduling algorithm to ensure that the network re-
sources can be fairly utilized. In [21], Zhao et al. studied the net-
work utility maximization and proposed a distributed algorithm
to adjust data rates, link scheduling and routing according to the
up-to-date energy replenishing status of the sensors. Most of the
aforementioned works assume that a static network topology
and the transmit energy consumption for each sensor is fixed
initially, which may degrade the network performance.
By taking into account time-varying characteristic of network

topology, our goal is to maximize the data gathering by jointly
optimizing the optimal energy allocation, data sensing and data
transmission. Thus our work is different from existing works
and has the potential to significantly improve the network per-
formance. In addition, we proposed an improved energy alloca-
tion scheme to reduce the extra energy cost and a topology con-
trol scheme to reduce computational complexity for the sensors
to obtain the optimal data sensing and data transmission.

III. NETWORK MODEL AND PROBLEM FORMULATION

We consider a rechargeable sensor network, with recharge-
able sensors (including one sink node). Each sensor consists of a
solar cell, a rechargeable battery and a wireless module. All the
rechargeable sensors can harvest energy from solar and reserve
them in battery for future use. As typically assumed [12], [22],
the sink node is powered by unconstrained power source and
each sensor harvests less energy than what it consumes. Sen-
sors can transmit their sensory data to the sink node through the
logical links in a multi-hop manner. Furthermore, one sensor
only relays data for other sensors, which are farther from the
sink node.
A summary of notations used in this paper is given in Table I.

A. Energy Management Model
Each day is one period of solar energy harvesting process,

which can be divided into slots. Let and denote
the total amount of harvested energy and energy allocation for
sensor at slot , , respectively. We assume that
each sensor can estimate with high accuracy, which can
be inferred from historical information by existing works [23],
[24]. Let denote the remaining energy of sensor at slot
and the maximum battery level of sensor . is given
by

(1)
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TABLE I
NOTATION DEFINITIONS

where . Obviously, the
amount of energy allocation for sensor at slot should
satisfy

(2)

Moreover, in order to establish sustainable operation, sensors
cannot consume more energy than what they can collect [25],
[26], i.e.,

(3)

Let surplus variable denote the amount of harvested energy
that cannot be stored in the rechargeable battery by sensor , i.e.,

(4)

where . Obviously, a smaller means that
sensor utilizes the harvested energy more efficiently.

B. Energy Consumption Model
We only consider the energy consumption for transmitting,

receiving and sensing in this paper. Let , , and denote
the average energy cost at sensor for transmitting one unit data
to sensor , receiving and sensing one unit data, respectively.
For sensor transmitting one unit data over distance using
the logical link , the minimal transmit energy consumption

, , can be given by

(5)

where is a distance-independent term, is a distance-de-
pendent term and is the path-loss exponent (

for the free-space and short-to-medium-range radio communi-
cation) [27], [28]. The receive energy consumption for each
sensor to receive one unit data from other sensors can be ar-
ranged at a certain level. For simplicity, we assume that the
signal interference between sensors can be eliminated by under-
lying MAC layer (e.g., by TDMA or FDMA mechanism). Each
sensor can adjust its transmit energy consumption within a cer-
tain range to establish a new logical link with another sensor.
Thus, the transmit energy consumption, which can be adjusted
in , needs to be larger than the minimal transmit energy
consumption, i.e.,

(6)

We use an accessible matrix to represent the established
logical links for the sensors, whose th entry is given by

if satisfies constraint (6),
otherwise. (7)

When the element equals to 1, sensor can transmit sen-
sory data through the logical link . Let denote the set
of sensors that sensor can directly forward sensory data to, and

denote the set of sensors that can directly forward sensory
data to sensor . Therefore, if , the transmit energy con-
sumption for sensor needs to satisfy . Let denote
the total amount of the sensory data sensed by sensor at slot
, and denote the total amount of sensory data that should
be transmitted from sensor to sensor using the link at
slot . Since the sensory data needs to be transmitted to the sink
node at slot so that it can be retrieved timely, the total amount
of incoming flow and outgoing flow for sensor should satisfy
flow conservation condition,

(8)

where

(9)

The in-network traffic in sensor networks is typically low,
thus we assume that the link capacity is large enough to sup-
port data transmission [12]. According to the energy consump-
tion model, the total amount of energy consumption for re-
ceiving, transmitting and sensing for sensor at slot is

(10)

which cannot exceed the total amount of the allocated energy
for sensor at slot , as

(11)
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C. Problem Formulation

Let denote the utility function of sensor , which is
continuously differentiable, increasing and strictly concave. In
this paper, we set , since it can guarantee
the fairness of sensing rate [17], [29], [30]. We aim to maximize
the network utility by managing energy allocation, controlling
optimal sensing rate and choosing optimal routing, i.e.,

(12)

(13)

(14)

(15)

(16)

(17)

Equation (13) is flow conservation constraint, and (14) is en-
ergy conservation constraint. Equation (15) is transmit energy
consumption constraint, which ensures that the transmit energy
consumption needs to be larger than the minimal transmit en-
ergy consumption. Equations (16) and (17) are used to guarantee
that the energy allocation is reachable and uninterrupted. Note
that denotes a sensor excluding sink node.
Remark: In this problem formulation, we do not take the con-

straints for the sink node into consideration, due to the following
reasons:
• Since the sink node does not transmit sensory data to
other sensors, always equals to 0 at each slot . Hence,
sink node does not satisfy the flow conservation constraint.

• Further, all the flows are unidirectional as one sensor only
relays data for other sensors, which are farther from sink
node. Note that the sink node does not have the energy con-
straint, i.e., it is connected to the power source. Therefore,
there is no variable associated with sink node in the con-
straint , and this constraint will always hold.
In other words, if all the sensors satisfy the flow conser-
vation constraint, will also be satisfied. In
view of this, we omit this constraint for the sink node in
our formulation.

It can be observed that problem (12)–(17) is a dynamic
problem, since the energy allocation needs to be adjusted
according to both remaining energy and harvested energy in
the future. To solve the problem (12)–(17), we need to optimize
sensing rates and
flow rates ,
which are coupled with the amount of energy allocation, i.e.,

. Moreover,
each sensor can adjust its transmit energy consumption to
establish new logical links for routing selection. Hence, in the
next section, we design a DoSR, which consists of an efficient
energy allocation scheme and an optimal sensing rate and
routing algorithm.

IV. DATA GATHERING OPTIMIZATION BY DYNAMIC SENSING
AND ROUTING (DOSR)

In this part, we design an algorithm for DoSR, which consists
of two schemes, i.e., BEAS and DSR2C. During the operation,
DoSR is run dynamically at the beginning of each period and
then all sensors follow the decision obtained by DoSR in the
rest of the period.

A. Balanced Energy Allocation Schemes

We first focus on the energy allocation for each sensor. Due
to the time-varying profile of the harvested energy, it is hard for
the rechargeable sensor to provide balanced and fair data service
without an efficient energy allocation scheme.
As introduced in [24], an optimal energy allocation scheme

should satisfy the following four requirements:
1) Maintain Energy-neutral operation, i.e., (3);
2) Minimize total amount of the wasted harvested energy, i.e.,

minimize ;
3) Minimize variations in the energy allocation, i.e., minimize

;
4) Never runs out of energy, i.e.,

, where is given by (19).
In the above, 1) guarantees that each sensor cannot consume
more energy than that it can collect, 2) ensures that each
rechargeable sensor can well utilize the harvested energy and
never misses any recharging opportunity, 3) requires that each
sensor use its energy as smooth as possible, 4) guarantees that
each sensor never runs out of energy, since running out of
energy means the interruption of the continuous sensing.
We propose a balanced energy allocation scheme (BEAS),

which can satisfy the aforementioned four requirements. Specif-
ically, let

(18)

Since the total amount of utility is an increasing and concave
function of energy allocation (given in Theorem 4), it can be
found that if the battery capacity is large enough, the energy
allocation for sensor in all slots will equal to . Thus, we
take the as an initial energy allocation, i.e., .
Let denote the virtual battery level, which

is a dummy variable for ease of presentation. We have

(19)

Then, we design BEAS for each sensor to manage its energy use
in an efficient way, which guarantees .
The initial is set to be , and the virtual battery level

will be updated according to (19). Then we define an upper and
a lower bound, denoted by and , respectively, i.e.,

(20)
(21)
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Fig. 1. An illustration of .

Fig. 2. The structure of BEAS.

Denote the slot by when is reached and the slot by
when is reached. If , we set ; other-
wise, . Also, if , we set ; otherwise,

. Hereby, and indicate the slots at which
the virtual battery levels and reach and ,
respectively. In order to make the energy allocation satisfy the
second and fourth requirements, the total amount of energy al-
location before should be increased and the total amount of
energy allocation before should be decreased, respectively.
Thus, we design a balanced energy allocation scheme to reduce

and increase based on the values of and . The
detailed adjustment is given in the following.
Let denote th adjustment of energy allocation.

Let and denote the upper and lower
bound after th adjustment, and and
denote the corresponding slots, respectively. We set

, where ,
and . Then, we define the following four parameters:
• is the largest slot in set , which is smaller than

,
• is the smallest slot in set , which is larger than

,
• is the largest slot in set , which is smaller than

, and
• is the smallest slot in set , which is larger than

.
For example, if ,

and , then we have ,
, , and . An

illustration is shown in Fig. 1.
Based on the values of and , the BEAS can be

divided into three cases, which is elaborated in the following:
1) Case I: :

(22)

2) Case II: :

,
,

,

.
(23)

3) Case III: :

,
,

,

.

(24)

At each iteration, will be updated according to (23) and
(24) until . The structure of Algorithm 1
can be given by Fig. 2.
Different from a constant energy allocation scheme in ex-

isting algorithm, BEAS aims to dynamically allocate energy as
smoothly as possible, while satisfying the aforementioned four
requirements. It is easy to find that after th adjustment, the
battery level at slot , ), equals to or
0. Furthermore, the battery level at slot will not change in the
rest of adjustments. Thus, BEAS will converge to the optimal
solution after at most adjustments. We sketch BEAS in Algo-
rithm 1 and have the following result about its performance.

Algorithm 1 Balanced Energy Allocation Scheme (BEAS)

repeat

for

• Each sensor updates the virtual battery level
according to (19).

• Each sensor updates the upper and lower bounds,
and , according to (20) and (21), respectively.
Meanwhile, the values of and are setted.

• Each sensor finds the values of , , and
, respectively.

end

• Each sensor updates its energy allocation
according to (22)–(24).

• .

until

return
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Theorem 1: Sensor under BEAS will obtain a unique en-
ergy allocation, which satisfies the aforementioned four require-
ments.

Proof:
1) The initial energy allocation is and

. Hence, . We only
need to prove that the total amount of energy allocation
after the adjustment equals to the total amount of energy
allocation before the adjustment.
For Case I, since all the energy allocation are not changed,
it satisfies the equality condition.
For Case II, the BEAS only changes the energy allocation
for slot , . Thus, we only need
to calculate the total mount of energy allocation for slot ,

. As

the total amount of energy allocation does not be changed
by BEAS.
For Case III, similar to Case II, we only need to calcu-
late the total amount of energy allocation for slot ,

. As

the total amount of the energy allocation is not changed.
Hence, we know that BEAS only changes the energy allo-
cation in each slot, and does not change the total amount
of energy allocation. Thus, we have

2) In BEAS, it is known that the necessary conditions for
the convergence of BEAS is that the battery level should
satisfies and at the
same time. Otherwise, the energy allocation will be up-
dated until it satisfies these two necessary conditions. As

means that the maximal battery level
is not larger than , for each slot equals to zero.
Thus, the total amount of the wasted energy is minimized.
Since means that the battery level for each
slot always is no smaller than the energy allocation, each
sensor never runs out of energy. Hence, the second and the
fourth conditions are satisfied.

3) In the BEAS, if there exists a (or ), the first
task for the sensor is to find the and (or

and ), and the following task is to adjust the
energy allocation. In order to prove that BEAS minimizes
the variations of energy allocation, we need to prove that
each adjustment of energy allocation minimizes the varia-
tions.

Assume that the th adjustment minimizes the varia-
tions. We need to prove that the th adjustment also minimizes
the variations.
For Case I: since the energy allocation will not be changed,

the variations will not be changed. Thus, the variations are min-
imized. Furthermore, it is easy to find that Case I indicates that
the energy allocation converges to the optimal solution.
For Case II: since is larger than the , which

means that the sensor needs to increase the energy allocation for
the slots before to make battery level satisfy

. According to the definition of , it can be
found that there are two possible values for : the first one
is and the second one is ,
where . Now, we analyze the perfor-
mance based on these two possible values, respectively.

If , the battery level is larger
than and . Hence, we can
obtain that , where .
This is because will be smaller than
if .

If , the battery level is smaller
than 0, and . After th adjust-
ment, equals to 0, Hence, we cannot increase the

energy allocation before and can only increase the en-
ergy allocation for the slots between , as, other-
wise, the will be smaller than 0 again.
Hence, the sensor can only adjust the energy allocation be-

tween the to decrease the , as

If we aim at minimizing , it

is easy to find the optimal energy allocation, which is given by
, .

Similarly, there are two possible values for : the first
is and the second is , where

. By a similar process, we can find that
the sensor can only adjust the energy allocation between the

and the optimal energy allocation is given by
, .
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For the Case III, since is smaller than 0, which
means that the sensor needs to decrease the energy alloca-
tion for the slots before in order to make battery level

. According to the definition of , it can
be found that there are two possible values for : the first
is and the second is , where

. We can analyze Case III in the same
way as Case II. Thus we omit the detail. The optimal solution
for Case III can be given as follows:
When ,

(25)

and when ,

(26)

In general, we find that the th adjustment is the optimal
adjustment solution. Thus, we can conclude that each adjust-
ment is the optimal adjustment solution for the energy alloca-
tion, which minimizes the variations in the energy allocation.

B. Distributed Sensing Rate and Routing Control
With the energy allocation , calculated by BEAS, we pro-

ceed to design a distributed sensing rate and routing algorithm.
Based on BEAS, the problem (12)–(17) can be rephrased as

(27)

(28)
(29)
(30)

In this optimization problem, the variables are sensing rates
, flow rates and transmit energy consumptions . From

the primal problem (27)–(30), it is easy to find that the primal
problem is a convex optimization problem since the relationship
between and is independent. Thus, the primal problem
can be solved by employing dual decomposition and sub-gra-
dient method [30]. In such an approach, updating Lagrangemul-
tipliers of one sensor only relates to its neighbors' information
and updating variables of one sensor only depends on its neigh-
bors' Lagrange multipliers. However, this leads to the fact that
the difference between two updates is very small. Thus, this ap-
proach has a very slow convergence rate in a large-scale sensor
network. Note that there is an underlying relationship between

and , as can be described as a function of . Thus,
we transform this optimization problem into another one by em-
ploying variable substitution.
A summary of notation for matrix used in this paper is given

in Table II.
Now, we introduce flow variables to describe the relationship

between flow rates and sensing rates . We define a diffluent

TABLE II
NOTATION DEFINITIONS OF MATRIX

matrix , where represents the ratio of the total amount
of sensory data that can be transmitted by sensor using the
logical link , to the total amount of sensory data that can
be transmitted by sensor at slot , i.e.,

if ,
otherwise.

(31)

In order to satisfy the flow conservation in (8), the diffluent ma-
trix needs to satisfy the following condition:

(32)

where is a column vector, in which all the elements are
1. As the total number of sensors is , the number of relays in
the routing path of each sensor is at most . Let

where and , , is the sequence number
of transmission. Note that is a function of , which is a
constant in each slot.
Lemma 1: All the variables of flow rates can be expressed as

functions of and , i.e.,

(33)

(34)

(35)

where and is a unit matrix.
Proof: According to the definition of and the properties

of matrix multiplication, and can be given by

(36)

(37)
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where and . Since one sensor
only serves as relay node for the other sensors, which are farther
away from sink node, all the flows are unidirectional and there
is no cycle routing in the network topology. Let denote the
total amount of sensory data that will be transmitted by sensor
after times relays from the source sensors using the logical
link . We have

It can be found that denotes the total amount of data (sensed
by sensor ) sent out by sensor using link , denotes
the total amount of data (received by sensor from its front
sensors, which are the source sensors, after 1 time relay) sent
out by sensor using link . Similarly, denotes the total
amount of data (received by sensor after times relays
from the source sensor) sent out by sensor using link .
Thus, the total amount of sensory data that can be transmitted
by sensor using the logical link is

Similarly, we have

Now, (28) and (29) can be rewritten as follows:

(38)

(39)

where

if
otherwise.

(40)

The optimization problem (27)–(30) can be rephrased as

(41)

(42)
(43)

(44)

(45)

By employing dual decomposition and sub-gradient methods,
we design a DSR2C algorithm to solve the optimization
problem (41)–(45).
Through relaxing (42) with Lagrange multipliers , (43) with

Lagrange multipliers , (44) with Lagrange multipliers and
(45) with Lagrange multipliers , respectively, the dual problem
is given as follows:

The dual problem of (41)–(45) is

(46)

This dual problem can be decomposed in each slot , i.e.,

(47)

Let ,
, and
. For simplicity, we use and denote the

average energy cost for sensing and receiving one unit data. The
dual problem can be rephrased as follows:

(48)
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Due to the convexity and differentiability of (41), the sub-gra-
dient method can be adopted to update the Lagrange multipliers

, , and iteratively at each sensor according to

(49)
(50)

(51)

(52)

where is the iteration number, is step size, satisfying ,
and .
Since is a strictly concave function of and all

the constraints are continuously differentiable for , and
, respectively, we have that is continuously

differentiable for , and , respectively. The deriva-
tives of with respect to , and can
be calculated by

(53)

(54)

(55)

where

(56)

(57)

(58)

According to the properties of matrix derivation, we have

if and ,
otherwise, (59)

if and ,
otherwise, (60)

(61)

(62)

where , denotes a sensor excluding sink node, and
denotes a sensor or sink node. Note that each sensor does not

need to know all the elements of , since only the values related
to its data transmission can affect the values of .
By using the KKT optimality, the extremal points for the ,
and can be obtained as

(63)
if ,
otherwise,

(64)
if ,
otherwise.

(65)
We sketch DSR2C in Algorithm 2 and have the following

results on the performance of DSR2C algorithm.
Theorem 2: For a sufficiently small positive constant and

optimal energy allocation , the DSR2C algorithm will con-
verge to optimal solution.

Proof: Since the primal problem is a convex optimiza-
tion problem, the global optimal solution can be obtained by
employing dual decomposition and sub-gradient method [30].
After variable substitution, the primal problem can be rephrased
as another transformed problem. By using the gradient method,

, and for the transformed problem will converge to
their extremal points, respectively. Thus, we only need to prove
that the extremal points are the global optimal points.

Algorithm 2 DSR2C

Initialization ( , )

repeat

for

• Each sensor locally updates the Lagrange multipliers ,
, and using (49), (50), (51) and (52), respectively.

• Each sensor sends its , and Lagrange multipliers to
sensor , , meanwhile collecting and forwarding all the
information from sensor , .

• Each sensor calculates its sensing rate , diffluent matrix
and transmits energy consumption using (63), (64)

and (65), respectively.

end

until , and

return , and .
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Let be the Lagrangian function of the primal problem
(27)–(30) and be the Lagrangian function of the transformed
problem (41)–(45), respectively.2 Thus, we have

(66)

(67)

(68)

According to the properties of matrix derivation given by
(59)–(62), and always holds.
If , the data transmitted through link does
not go through link . If the constraint (44) is satisfied,
constraint (43) will always holds. Thus, we omit it in (67).
Using the KKT optimality conditions, the necessary condition
associated with is that . We can
prove that holds. Let denote the sink node
and denote the link through which sensor transmits
data to sink node directly. Since only flow is transmitted
through the link ,
holds. Due to , we have . Let be a
sensor who can transmit data to sensor through link .
According to the definition of ,

holds. Since and
, holds. Similarly, we can show that

holds. Hence, the necessary condition asso-
ciated with optimal is the same as that associated with
optimal .
Due to , we have . Thus, the

necessary conditions associated with optimal , and
in transformed problem (41)–(45) are the same as these

in primal problem (27)–(30). Since the primal problem is a
convex problem, these necessary conditions correspond to the
global optimal solution of the primal problem. This means that
our proposed algorithm finds the global optimal solution of the
primal problem.
If all sensors can transmit data to sink node directly, such as

, the following properties for the optimal solution
can be obtained by DSR2C:
Lemma 2: The total amount of utility will increase

as energy allocation of any sensor increases.
Proof: Please see the proof in supplementary document.

Lemma 3: In order to maximize network utility, all the sen-
sors will consume all the allocated energy.

Proof: Please see the proof in supplementary document.
Lemma 4: For the optimal solution, the transmit energy con-

sumption should equal to the minimal transmit energy con-
sumption , which is given by (5).

Proof: Please see the proof in supplementary document.

2For simplicity, we do not present the variables for and .

According to Lemma 3 and 4, the optimization problem can
be rewritten as

(69)

(70)

(71)

Since the transmit energy consumptions for all sensors are
given, variables in this optimization problem are and .
Also, we can derive that this problem has optimal solution,
since there exists at leat one available solution, i.e., all the
sensors transmit their data to sink node directly. Thus, there
exists an optimal matrix 3 to obtain the optimal solution,
while satisfying the aforementioned constraints, i.e.,

. Let be and the total utility can
be given by .
Theorem 3: For the different energy allocation and ,

we have the following property for total amount of utility:

(72)

where means that at least one of the sensor's energy
consumption is larger than and other sensors' energy
consumption , , is not smaller than ,

, and denote the
optimal matrix for the energy allocation and ,
respectively.

Proof: Please see the proof in supplementary document.
Theorem 4: The total amount of utility is a concave function

of energy allocation .
Proof: Assume that there are three different energy alloca-

tions , and , where , and
, and denote the optimal matrix

for the energy allocation and , respectively. For the
optimal solution, it is known that , and

. According to the Theorem 3, we have

Let , and
. Thus, we have since sensors can

send out a mount of data using matrix and a amount of
data using matrix , and the total amount of energy cost is

. Due to the optimal matrix , the total amount

3Here, can be viewed as a function of the diffluent matrix , but more
complicate than . Furthermore, the matrix is full rank since matrix
can be converted into an upper triangular matrix and the determinant of the
matrix only relates to the .
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of utility will satisfy . Since
the objective function is an increasing and concave function,
we have

(73)

which shows that the total amount of the utility is a concave
function of energy allocation .
Since the total amount of utility is a concave function of en-

ergy allocation for any and the total harvested energy for
each sensor is given, the optimal energy allocation needs to min-
imize the variation of energy allocation. Thus, in this paper, we
take as the objective function and prove that
the variation of energy allocation is minimized in Theorem 1.

C. Improved BEAS
Computing the optimal data sensing and data transmission

strategies more frequently can lead to more efficient data gath-
ering. However, it also incursmore overhead for information ex-
change, which bring extra energy cost for communication and
computation toobtainoptimal data sensing anddata transmission
strategies.According toLemma3,all thesensorswill consumeall
the allocated energy,means that if the energy allocation changes,
the optimal data sensing and data transmission under BEASwill
change.Since toomuchextraenergycostmay lead to thedecrease
of network performance, we need to consider the trade-off be-
tween the extra energy cost (for communication and computa-
tion)andnetworkutilitywhenupdating theenergyallocation.
Assume that the energy cost for communication and compu-

tation for sensor to obtain the optimal data gathering is given
by a constant . If one sensor needs to change its energy alloca-
tion, the extra energy cost for sensor in the network will be in-
creased by , which is called extra energy cost in the following
sections. If the sensors employ BEAS, which does not take the
extra energy cost into consideration, they may incur too much
extra energy cost, which decreases network performance. Even
worse, sensors may run out of energy at some slots.
For Case I (see its details in Section IV), the sensors does

not need to change their energy allocation. For Case II and III,
the sensors should make decisions whether to change their en-
ergy allocation or not according to the values of available en-
ergy and extra energy cost. If the extra energy cost is very high,
the network performance may be worse than that before. So we
propose an improved BEAS according to the value of and
available energy, given as follows:
ForCase II: : Since BEAS does not take the extra

energy cost into consideration, the maximal virtual battery level
after the adjustment by BEAS will be lower than the maximal
battery level, which increases the average variation of the energy
allocation. For the improvedBEAS, the energy allocationwill be
adjusted, according to the values of extra energy cost and battery
level, tominimize theaveragevariationof theenergyallocation.

,
,
,

where and

.

For Case III: : Since the total amount of optimal
utility is an increasing function of energy allocation and the
total amount of utility satisfies (72), the total amount of optimal
utility by BEAS will be decreased if

and , where , is a parameter determined
by the function of , and . Thus, the energy al-
location will be changed only if

where is the optimal solution for , is the op-
timal solution for and is the optimal

solution for , and the improved energy allocation
scheme can be given as follows:

,
,
,

where and .

D. Topology Control Scheme

So far, when all the logical links between the sensors are
available and the transmit energy consumptionmatrix are prede-
termined by Lemma 4, the optimization problem can be solved
by the DSR2C algorithm based on the improved BEAS.
According to the definition of , if , sensor will

transmit sensory data to sensor at slot , and the total amount
of the data transmitted by link is . Otherwise,
the sensor will not transmit any sensory data to sensor through
link at slot .
In optimization problem (41), the sensor should communi-

cate with sensor , satisfying and collect infor-
mation from these sensors, to determine whether transmit/relay
sensory data to sensor or not. Hence, sensor needs exchange
information with sensor in despite of , which in-
volves large overhead. In order to decrease unnecessary network
overhead, we design a topology control scheme to decrease the
message exchange by deactivating the unused established log-
ical links, and activating them again when needed. Typically,
the computational complexity for the sensor can be treated as
increasing function of number of sensors that it communicates
with. Since decreasing the number of sensor's logical links will
decrease the number of sensors that it will communicate with,
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Fig. 3. Network topology.

Fig. 4. Experimental data of solar panels obtained from BMS for a period from
Sep. 4th to Sep. 8th, 2012.

topology control scheme can reduce the computational com-
plexity.
Initially, the sensors establish all the available logical links to

calculate the optimal data sensing and data transmission. When
the optimal data sensing and data transmission are obtained by
the DSR2C for the first slot, the transmit power control scheme
for the next slot can be designed by deactivating the established
logical links or activating new logical links as follows:
1) Deactivating:

if ,
else (74)

deactivating action means that the logical link will not be
established between sensor and sensor to calculate the op-
timal data sensing and data transmission. Thus, sensor and
sensor do not need to communicate with each other directly,
which can reduce information exchange between them. The goal
of the deactivating action is to decrease the unnecessary infor-
mation exchange for the sensors, which has no direct data trans-
mission between them.
2) Activating:

if and ,
else. (75)

Activating action means that if one of the sensors between the
logical link does not use all of the allocated energy, the
logical link will be established to calculate the optimal
data sensing and data transmission, since the remaining energy
has the potential to increase the network performance. Thus, the
sensors will not miss any opportunity to improve the network
performance.

V. PERFORMANCE EVALUATION
In this section, numerical results are shown to demonstrate

the performance of proposed algorithms over the existing algo-
rithms. All the results are obtained by MATLAB.

TABLE III
NETWORK PARAMETER VALUES

Fig. 5. Energy allocation for sensor under BEAS, QuickFix with SnapIt and
DELX, respectively. (a) Energy allocation. (b) Total energy allocation.

A. Simulation Setting

Fig. 3 shows the network topology for simulation, in which
the distance between every two neighboring sensors is
and denotes the maximal transmission distance (similar to

and ). All the sensors have the same wireless module,
such as TelosB from Crossbow [25]. The values of network pa-
rameters are given in Table III. Fig. 4 presents the solar pro-
file obtained from baseline measurement system (BMS) of Solar
Radiation Research Laboratory (SRRL) for a period from Sep.
4th to Sep. 8th, 2012 [32]. The total amount of harvested en-
ergy for the five days are 939.77 mWh, 976.39 mWh, 570.74
mWh, 498.62mWh and 1001.31mWh, respectively. Let the ini-
tial energy of the rechargeable battery for all senors be 140mWh
(504J), and the utility function be .
The proposed algorithms are compared with QuickFix with

SnapIt in [17], where , and DLEX [12]. QuickFix cal-
culates the optimal sensing rate using the average energy har-
vesting rate (see (18)) for each cycle, and SnapIt adapts the
sensing rate with the goal of maintaining the battery at a desired
level. DELX is designed to compute an optimal lexicographi-
cally data collection rate and routing path for each sensor such
that no sensor will run out of energy.

B. Performance Evaluation of BEAS

Fig. 5 depicts the results of energy allocation at each slot and
total amount of energy allocation during each day for sensor
under BEAS, QuickFix with SnapIt and DELX, respectively. It
can be observed that sensor under QuickFix with SnapIt runs
out of energy at some slots, which means that sensor at these
slots stops working. Also, it can be found that the values of al-
located energy by BEAS are much larger than that by QuickFix
with SnapIt or DLEX at most slots. From Fig. 5(b), it can be
seen that the total amount of allocated energy for sensor under
BEAS during the five days are much higher than that under
QuickFix with SnapIt or DLEX, especially for the second and
fifth days. The simulation results demonstrate the efficiency of
our BEAS, especially when the battery capacity is deficient to
store all the harvested energy.
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TABLE IV
NETWORK UTILITY FOR EACH DAY

Fig. 6. Battery level and surplus variables for sensor under BEAS, QuickFix
with SnapIt and DELX, respectively. (a) Battery level. (b) Surplus variable.

Fig. 7. Total amount of minimal and maximal sensing for each day under
DSR2C, QuickFix with SnapIt and DLEX, respectively. (a) Minimal sensing
rate. (b) Maximal sensing rate.

Fig. 6 illustrates the battery level and surplus variables
for sensor under BEAS, QuickFix with SnapIt and DLEX,
respectively. As shown in Fig. 6(a), the battery level for sensor
under QuickFix with SnapIt reaches zero at some consecu-

tive slots, which means that sensor has run out of energy and
cannot provide data service at these slots. From Fig. 6(b), it can
be seen that sensor under QuickFix with SnapIt or DLEX
cannot store all the harvested energy in the rechargeable battery
due to the limited battery capacity, and that under BEAS can
reserve all of the harvested energy. Since the harvested energy
can be reserved to power the sensor for providing data service,
thus the sensor under BEAS has more potential to improve the
network performance than that under other two approaches.

C. Performance Evaluation of DSR2C
Minimal andmaximal sensing rate usually are used to demon-

strate the weakest and strongest performance of the network,
so the total amount of minimal and maximal sensing for each
day are shown in Fig. 7. It can be found that when the max-
imal transmission distance is , sensors under DSR2C obtain
highest total amount of minimal and maximal sensing among
DSR2C, QuickFix with SnapIt and DLEX, respectively. More-
over, with the increasing of maximal transmission distance, the
total amount of minimal and maximal sensing for sensors under
DSR2C increases.

Fig. 8. Total amount of sensory data and energy utilization ratio for each day
under DSR2C, QuickFix with SnapIt and DLEX, respectively. (a) Total amount
of sensory data. (b) Energy utilization ratio.

The total amount of sensory data and energy utilization ratio
for each day are shown in Fig. 8(a). When the maximal trans-
mission distance is , sensors under DSR2C achieve the highest
total amount of sensory data for each day among DSR2C,
QuickFix with SnapIt and DLEX, respectively. With the in-
creasing of maximal transmission distance, the total amount
of sensory data obtained by sensors under DSR2C increases.
Generally, larger amount of sensory data means better network
performance. From Fig. 8(b), it can be easily found that sensors
under DSR2C with maximal transmission distance can best
utilize the harvested energy, since all of the harvested energy
has been spent. With the decreasing of maximal transmission
distance, the energy utilization ratio decreases. When the
maximal transmission distance is , sensors under DSR2C can
better utilize the harvested energy than those under QuickFix
with SnapIt or DELX. Thus, sensors under DSR2C obtain best
performance among those under these three algorithms, which
demonstrates the efficiency of DSR2C.
Table IV exhibits the results of network utility for each day.

It can be seen that sensors under DSR2C (3d) obtain the highest
network utility for each day. Note that the utility obtained by
sensors under QuickFix with SnapIt drops to negative infinity
except the first day, because sensors under QuickFix with SnapIt
run out of energy and stop working at some slots during these
days. Moreover, when the maximal transmission distance is ,
the overall network utility of the five days obtained by sensors
under DSR2C is larger than those under other two algorithms.
All these demonstrate that the performance of DSR2C is better
than that of other two algorithms.
In summary, simulation results show that the network per-

formance can be increased by adjusting the transmit energy
consumption of each sensor to establish new logical links for
routing selection. Furthermore, energy utilization ratio can
be improved by adjusting transmit energy consumption and
selecting optimal sensing rate and routing.
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Fig. 9. The average amount of data and utility during the five days. (a) The
average amount of data. (b) The average amount of utility.

D. Performance Evaluation of DoSR for Large Rechargeable
Sensor Network
In order to understand the performance of DoSR in large

rechargeable sensor networks, we perform simulations in a
200m 200 m area, in which sink node is located at
and and , , sensors are de-
ployed into this area randomly. The simulation results can
be found in the Fig. 9, where Long means that the maximal
transmission distance for each sensor is 150 m and Shortmeans
that the maximal transmission distance for each sensor, which
is the same as that set by QuickFix with SnapIt or DLEX, is 60
mm.
It can be found that with the increase of the number of sensors,

the total amount of data, as well as the total amount of utility in-
creases. Also, it can be seen from that DSRC (Long) obtains the
highest average amount of utility while DSRC (Short) obtains
the highest average amount of data. Combined with the simu-
lation results in Table IV, we observe that similar conclusions
can be made by comparison with the simulation settings where
small number of sensors are used.

E. Performance Evaluation of Improved BEAS
In this section, simulation results under BEAS and improved

BEAS are given to demonstrate the efficiency of the proposed
algorithms. Fig. 10 shows the relationship between the and
the total amount of utility. It can be found that the total amount
of the utility will be decreased with the increase of extra energy
cost. More important, the total amount of utility for the sensors
under BEAS decreases faster than that under improved BEAS.
It can be seen from Fig. 10(b) that the difference of the total
amount of the data for the sensors under BEAS and improved
BEAS is very small, but difference of the total amount of utility
is much larger. That is because the improved BEAS can maxi-
mize the total amount of data while keeping the fairness of net-
works. Thus, improved BEAS can deal with the extra energy
cost to maximize the total amount of utility.

F. Performance Evaluation of Topology Control Scheme
We use the values of sensing rates for each iteration to

demonstrate the convergence rate of DSR2C with or without
topology control scheme, when maximal transmission distance
is . The simulation results are shown in Fig. 11. It can be
found that the sampling rates under DSR2C with or without
topology control scheme have the similar convergence rate.
Table V shows the change of accessible matrix when the
topology control is added to the DSR2C. The sensor under

Fig. 10. Total amount of utility and total amount of data. (a) Total amount of
utility. (b) Total amount of data.

Fig. 11. Convergence of the DSR2C with or without topology control. (a) With
topology control. (b) Without topology control.

TABLE V
CHANGE OF FOR ADDING TOPOLOGY CONTROL TO DSR2C

DSR2C should communicate with a certain number of sensors
defined by accessible matrix to compute optimal data sensing
and routing. It can be found that topology control scheme can
reduce the communication between the sensors in an efficient
way. For example, without topology control scheme, sensor
should communicate with sensors , , , and sink node ,
but with topology control, sensor only needs to communicate
with sensor and sink node . Thus, DSR2C with topology
control can reduce computational complexity while it will not
affect convergence of the algorithm.

VI. CONCLUSION
In this paper, we have studied dynamic sensing and routing

problem to maximize overall network utility for rechargeable
sensor networks. We first proposed a balanced energy alloca-
tion scheme (BEAS) to manage energy use for each sensor as
smooth as possible. By introducing flow variables to simplify
the relationship between sensing rates and flow rates, we de-
veloped a distributed sensing rate and routing control (DSR2C)
algorithm to obtain the optimal sensing rate and routing by em-
ploying theory of dual decomposition while taking the dynamic
feature of network topology into account. An improved BEAS
was proposed by taking extra energy cost into consideration to
manage the energy allocation and a topology control scheme
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was proposed to reduce computational complexity. Extensive
simulation results are given to demonstrate the efficiency of our
algorithms by comparing with existing algorithms.
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