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Abstract—Mobile data users are known to possess predictable
characteristics both in their interests and activity patterns. Yet,
their service is predominantly performed, especially at the wire-
less edges, “reactively” at the time of request, typically when the
network is under heavy traffic load. This strategy incurs excessive
costs to the service providers to sustain on-time (or delay-intolerant)
delivery of data content, while their resources are left underutilized
during the light-loaded hours. This motivates us in this work to
study the problem of optimal “proactive” caching whereby, future
delay-intolerant data demands can be served within a given pre-
diction window ahead of their actual time-of-arrival to minimize
service costs. To that end, we first establish fundamental bounds
on the minimum possible cost achievable by any proactive policy,
as a function of the prediction uncertainties. These bounds pro-
vide interesting insights on the impact of uncertainty on the max-
imum achievable proactive gains. We then propose specific proac-
tive caching strategies, both for uniform and fluctuating demand
patterns, that are asymptotically-optimal in the limit as the pre-
diction window size grows while the prediction uncertainties re-
main fixed. We further establish the exponential convergence rate
characteristics of our proposed solutions to the optimal, revealing
close-to-optimal performance characteristics of our designs even
with small prediction windows. Also, proactive design is contrasted
with its reactive and delay-tolerant counter-parts to obtain inter-
esting results on the unavoidable costs of uncertainty and the po-
tentially remarkable gains of proactive operation.
Index Terms—predictable demand, proactive caching, resource

allocation, scheduling, uncertainty.

I. INTRODUCTION

R ECENTLY, the wireless spectrum has been wit-
nessing tremendous demand to support the emerging

throughput-hungry applications (e.g., HD video streaming),
which are dominating the wireless data traffic nowadays. By
2016, traffic from wireless and mobile devices is projected
to exceed that of wired devices, and the demand on wireless
data traffic is expected to multiply by 13-fold between 2012
and 2017 [1]. Coupling these findings with the fact that the
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available spectrum for wireless communications is a limited
resource, a major spectrum shortage problem is facing the
wireless communication industry.
It is well documented by the FCC that the wireless spec-

trum consistently incurs periods of underutilization on a daily
basis [2], [3], which is attributed to the users' behavioral pat-
terns as most users idle together in the off-peak times. This
study is also strengthened by the wireless spectrum measure-
ments carried out by RRDTool [4], [5], the wireless spectrum
tracking client, and the recent data traces collected by major
European operators in [6]. Thus, the demand on wireless spec-
trum varies between a peak level at which service providers
incur excessive costs to provide reliable delivery of data con-
tent, and an off-peak level at which the precious resource is left
underutilized.
There has been extensive research to tackle such a problem,

some of which has particularly considered offering pricing
incentives for end-users to shift their demand to the off-peak
times. Of these, the cognitive radio approach [7]–[9] enables
out-of-band users to enhance the utilization of the spectrum in
the off-peak times through low-priced service. Attempts as in
[10] and [11] jointly assign pricing and scheduling of data ser-
vices to flatten the demand fluctuations over time. In particular,
pricing incentives are traded for extra delay tolerance, hence
scheduling policies can be optimized over longer time horizon
and consequently attain reduced cost performance.
WiFi offloading [12]–[15] has also gained considerable atten-

tion to mitigate the contention on the limited spectrum of wire-
less carriers in the peak hour, and ideas about rescheduling of
carriers' traffic throughWiFi networks have been studied. How-
ever, WiFi coverage is not present in several outdoor locations
where impact of peak hour traffic congestions is severe. For in-
stance, public transit riders suffer degraded QoS since all their
wireless access has to be routed through the cellular network. In
addition, WiFi networks suffer the same large peak to off-peak
demand ratio that requires particular attention to the temporal
aspect of content service.
In the aforementioned approaches, scheduling of wireless

demand is applied reactively so that data requests are initiated
beforehand, then the service provider utilizes the leveraged
delay tolerance from end-users to schedule them efficiently.
Numerous back pressure and virtual queuing techniques have
been developed to tackle a variety of network optimization
objectives (cf. [16], [17], and the references therein). Thus,
cost reduction comes at the expense of disturbed user activity
patterns as the service is postponed to off-peak times, or the
next available WiFi connection [12].
Despite the predominance of reactive solutions in mobile

data services, it is also well known that data users possess
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consistent (therefore statistically predictable) interests and
activity patterns (e.g., [6] and [18]–[20]). This has motivated
a few recent works [21], [22] to develop proactive scheduling
strategies to smooth out the network traffic over time, reduce
the service costs, and essentially preserve the users' activity
patterns undisturbed. Such an approach has also been imple-
mented practically by some content provider [23], [24].
In the proactive operation paradigm, rather than reactively re-

sponding to incoming demands or postponing services, the ser-
vice provider utilizes the statistically predictable, albeit uncer-
tain, nature of future user demands to prefetch the predictable
demand of end-users during off-peak times so that it can be
served in part from the local memory upon request. Hence, end-
users need not change their regular demand activities.
Earlier works in this new domain, however, have focused

on the scenario of perfectly predictable demand where service
providers possess full certainty about the future demand instants
of each user through a predetermined prediction window size.
Yet, prediction uncertainties not only exist almost unavoidably,
but they also fundamentally change the nature of the problem
as they raise the possibility of wasting resources by proactively
serving undesired data.
Recent works such as [25] and [26] have considered the im-

pact of uncertainty about the exact user demand where service
providers offer valuations and pricing incentives to enhance pre-
dictability of user requests over a set of data items. Yet, uncer-
tainty about user activity, that is, whether the user will request
content at all or not, is not well studied. Furthermore, developed
algorithms in those works have been limited to offline (static)
implementation with one slot-ahead proactive service.
In this work, we give particular attention to the impact of un-

certainty about user activity and consider the design of online
(dynamic) proactive strategies that can optimally balance the
gains of low-cost transmissions with the risk of unnecessary re-
source consumption due to prediction uncertainties. In partic-
ular, we study the unavoidable costs of uncertainty due to im-
perfect prediction of user activity, even when service providers
manage to achieve perfect knowledge about the content to be
consumed. Our model also generalizes the proactive download
window size to more than one slot ahead.
In particular, we consider the generic scenario (described in

Section II) of a service provider that provides “delay-intolerant”
(also called on-time) services1 to a group of users who generate
possibly time-varying requests that are predictable time-slots
ahead of time, but with uncertainties. The main objective (also
in Section II) is for the service provider to perform proactive
service decisions depending on the degree of uncertainty about
future requests to minimize its expected convex cost over time
while maintaining on-time delivery of requested content.
In Section III, we address the basic prediction scenario in

which each user demand arrives uniformly over time so that
we can isolate the impact of prediction uncertainty on the
design and performance. For that model, we establish a global
lower bound that captures the impact of demand uncertainties
on the optimal attainable performance. Moreover, we develop
an asymptotically optimal stationary policy that achieves
the lower bound as grows to infinity with an exponential

1Delay-intolerant in that the service must be received within the same slot
that it is requested.

convergence speed. Furthermore, we contrast the performance
of our design with its reactive and the infinitely delay-tolerant
counterparts to reveal the impact of uncertainty on proactive
gains.
Then, in Section IV, we extend the previous scenario to the

more realistic case of fluctuating demand patterns in order to
explore the impact of peak and off-peak differences on the
proactive design and performance. We establish a global lower
bound for this prediction model and show that it has a signifi-
cant potential to minimize the cost below that of Section III. We
develop an asymptotically optimal cyclostationary proactive
caching policy that attains such lower bound. Similar to the
uniform demand case, we also establish the convergence speed
of the developed policies to the lower bound to be exponential
in .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the time-slotted operation of a network com-
prising a service provider, that provides data content to end-
users, e.g., YouTube, Netflix, CNN, Facebook, ESPN, etc., and
a set of users. In our design, we focus
primarily on large timescale of operation whereby the time-slot
duration is comparable to the duration of content consumption,
which may range from minutes to hours depending on the na-
ture of the services.
As we consider data content providers, remain in system for

much larger durations than that of a time-slot. In particular,
users subscribe throughmonthly or annual plans while they con-
sume content in minutes or at most hours. Thus, we approximate
the duration of cost optimization to be of infinite horizon, over
which the number of users (subscribers) is considered fixed.
A. User Demand Requirements
Over the infinite time horizon, each user generates an in-

dependent sequence of requests , where
is an indicator of a request in slot with .
That is, is the probability that user generates a request
at time . We assume that to serve each request, the service
provider consumes a uniform amount of resources.2 These de-
mands are delay-intolerant in that when a request arrives to the
service provider, it has to be fulfilled within the same time-slot
of arrival. This is true for most content services of interest, e.g.,
on-demand video services, news, or social networking updates,
especially under the large timescale network operation that is
considered in our work.
B. Fluctuating Demand Pattern
Large timescale data networks are known to exhibit statisti-

cally fluctuating, periodic demand patterns, typically on a daily
basis [4], [6], [11]. Accordingly, we assume that each day is di-
vided into time-slots whereby a user can generate one request
per slot according to the statistics of , and only require the
following mild ergodicity characteristics:

w.p (1)

2We note that the results and insights obtained in this paper apply to the more
general case of being user-dependent, and some special cases of time depen-
dency. In particular, is the amount of resources required to serve demand
of user at time , with being known to the service provider, e.g., cyclic
with some period as discussed in the fluctuating demand case. Yet, we con-
sider a constant for simplicity of notation and ease of exposition.
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Fig. 1. Cyclostationary demand for user . Average demand consistently as-
sumes different values every day depending on the user activity.

That is, is the time-average demand probability for user .
Note that this assumption does not preclude the demand pattern
from being time-varying, as will be introduced next.
The daily user activity is assumed to yield levels of

average demand. Each user changes his demand probabilities
through , over the course of the day. The
demand probability of period for user spans a fraction
of the -slot day. That is, if the day starts by slot 0, then user
requests data w.p. on slots
, and so on, as illustrated in Fig. 1. Hence, we have
, and , . These demand characteristics are
repeated consistently every day in accordance with the regular
user activities as in Fig. 1.
In the sequel (especially in Section IV), we will use the com-

pact notation to characterize the
fluctuating daily demand profile of the network.

C. Service Cost Structure
We assume that the cost of serving a total amount of de-

mand in a single slot is captured by a strictly convex, increasing
function . Minimization of time-averaged costs
for such functions calls for the smoothing of the load over time,
as is desired by all service providers. In our numerical investi-
gations, we will consider polynomial forms for this cost, while
the results are obtained for the above general class. Thus, the
obtained results in this work hold under convex cost structure.
As we consider large timescale of operation whereby time-slot
duration spans several minutes, fading dynamics of wireless
channel are assumed averaged out, and hence are not incorpo-
rated in the cost function. Similar assumptions have been con-
sidered in other works on large timescale optimization such as
[11]–[15].

D. Reactive Operation Paradigm
As a baseline scenario, we consider the predominant practice

of reactive network operation, whereby the requests are served
upon their arrival. Thus, under reactive service, the total load
present at the service provider in slot is given by:

, since all user requests initiated in slot have
to be served in the same slot. Thus, the corresponding time-av-
erage expected cost for the reactive service model is given by

, where the distri-
bution of is governed by the profile as described
above. Clearly, such a reactive model represents a worst-case
cost performance for the service provider side as it carries no
proactive resource allocation strategies.

E. Proactive Operation Paradigm
We assume that the service provider is aware of the demand

profile that captures the statistical characteristics of future
demand, yet with uncertainties (see Fig. 2).

Fig. 2. Proactive service model.

Based on such uncertainties, proactive data services are care-
fully employed over a day-ahead ( -slot) time window so as to
smooth out the network traffic over time. We denote by
the amount of service applied at time to a potential request
from user that is expected to arrive after time-slots, i.e., at
time , where . The proactive service of a future
request can not exceed the total demand of units of service,
i.e.,

(2)

and the proactive service can never be negative, i.e.,

(3)
Then, the expected system load in a time-slot under proac-

tive control is given by

which consists of the on-time service component resulting from
the nonproactively served part of the request, and the proactive
service of future requests in the upcoming -slot interval (com-
pare to under the reactive operation).
Here, we note the implicit assumption that the service

provider is only uncertain about whether each user is going to
generate a request or not, i.e., uncertainty about user activity.
Yet, the service provider is assumed to anticipate the exact
content the user will demand given the user generates a request
at all. This assumption is motivated by the recent advances
on machine learning, collaborative filtering, and big data
analysis that enable several service providers (e.g., Netflix and
YouTube) to successfully recommend content to subscribers
[27]–[29].
In addition, our earlier works [25], [26] have particularly

studied the impact of uncertainty about the exact content to
be requested by end-users, and have established the notion
of demand shaping through valuations and pricing incentives
whereby service providers can significantly enhance such
certainty and quality of proactive downloads. Thus, in this
work we move on to the study of the impact of uncertainty
about the user activity assuming service providers are capable
of fully predicting the exact content to be requested, in case of
a request.

F. Problem Statement and Notion of Asymptotic Optimality
The objective of proactive design is to develop the controller

that minimizes the time average expected cost

s.t. Constraints (2), (3) (4)
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where the subscript captures the proactive service window
size,3 and the superscript indicates proactive operation.
The exact solution of (4) is intractably complex due to the in-

finite dimensionality of the problem. Instead, we aim to develop
efficient proactive caching policies that can optimally utilize
statistical predictions as the prediction window grows. Fortu-
nately, our analysis will also show that the performance of these
policies converge to the optimal exponentially fast, thereby pos-
sess close-to-optimal performance even for moderate values of
the prediction window.
Before we present the design and analysis of such asymptot-

ically optimal stationary policies, we formally define the notion
of asymptotic optimality as follows.
Definition 1: A proactive caching policy is asymp-

totically optimal under the demand profile if
.

III. PROACTIVE SERVICE OF UNIFORM DEMAND

We break down our analysis into two scenarios: that of
uniform demand discussed in the current section, and that of
fluctuating demand postponed to Section IV. Uniform demand
means we have time-invariant prediction errors of future de-
mand, whereas fluctuating demand means that uncertainties are
time-varying according to a cyclostationary pattern as observed
in datasets [4], [6]. This is done for two reasons. First and
foremost, considering uniform demand allows us to isolate the
impact of prediction uncertainties from that of fluctuations.
Second, the uniform demand case allows us to present the main
approach without the notational complexity that time-varying
demands necessitate.
Under our niform Demand model, for user is

an independent and identically distributed (i.i.d.) sequence of
random variables with , i.e., all requests of the
same user are statistically indistinguishable over time. Note that
such uniform demand is a special case of the fluctuating pattern

introduced in Section II with and
, for all . To clarify the distinction, throughout this section,

we simply use instead of to characterize the uniform
demand, and return to the fluctuating case in Section IV.
We remark that uniform demand, as opposed to a fluctuating

demand with the same time-average, promises less proactive
gains, as all time-slots being equally uncertain creates the
highest confusion about the best way of proactively performing
services. Therefore, the proactive gains under uniform demand
comes only from the uncertain knowledge of the demand
captured by .
Next, we establish a global lower bound as a function of

the prediction uncertainties on the minimum attainable cost
by any proactive policy, and investigate its characteristics. In
Section III-A, we will use the lower bound to develop an asymp-
totically optimal proactive caching policy.

A. Lower Bound on Minimum Cost for Uniform Demand
In this section, we first establish a lower bound on the optimal

performance by any proactive caching policy under uniform de-
mand. We draw interesting insights and remarks on the impact

3There is a slight abuse of notation since represents both the number of
slots per day and the proactive window size. That is, proactive service can be
applied up to one day ahead.

of uncertainty on optimal proactive caching by contrasting the
resulting bound with that achievable only with infinite delay tol-
erance, and that achieved by reactive operation.
Theorem 1 (Lower Bound for Uniform Demand): Let

be the set of users that generate data
requests at time according to . Then, under uniform
demand, and for any , the optimal proactive caching cost,

of (4), satisfies

(5)

s.t. (6)

where is the probability
of set under the uniform demand model.

Proof: Please refer to Appendix A.
In the objective of (6), the term cap-

tures the average proactive service assigned to a request from
user before it is actually realized, where is a possible
set of requesting users, and the term is the total proactive
service assigned to all possible requests from user when the
current set of demanding users is . The theorem establishes
that no proactive caching policy can achieve a lower cost than
the nontrivial bound under the uniform demand model.
We note that the optimization of is convex and yields a
unique solution by the strict convexity of . Such optimiza-
tion is numerically tractable and can be easily computed, e.g.,
through dual or interior-point methods.
The bound is interesting in its own right, as it cap-

tures the impact of unavoidable prediction uncertainties on the
lowest attainable cost by proactive design, even if it is known in-
finitely ahead of time. Deferring the goal of attaining this bound
to Section III-B, we next develop some interesting insights on
it.
Insights on the Lower Bound: 1)We first contrast our bound

to the trivial lower bound under infinitely delay-tolerant

services given by . It is known that

this level of cost is achievable by stationary policies as the
delay tolerance grows to infinity (see, e.g., [31] in the context
of smart grids). However, it is loose for proactive services of
delay-intolerant demands with unavoidable prediction uncer-
tainties . This is because proactive caching must experience
the costs of prediction uncertainties that can be eliminated by
delay-tolerant services at the expense of (potentially unbound-
edly high) delay. In fact, we next prove that proactive caching
cannot achieve unless at the extreme conditions where the
prediction is perfect.
Theorem 2 (Unavoidable Costs of Uniform Uncertainty):

Under the uniform demandmodel with given , ,
with equality if and only if , .

Proof: We first establish the result that full certainty about
future demand is necessary to achieve .
Lemma 1: Let , and

, then a proactive
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caching policy asymptotically achieves only if
w.p.1.

Proof: The proof follows by Jensen's inequality and
Fatou's Lemma. Please refer to Appendix D.

Back to the Proof of Theorem 2: Note that represents
the average proactive service applied, whereas is the av-
erage amount of such service that is actually matched by user
demand, hence made useful for the service provider. The differ-
ence captures the wasted proactive service due
to future demand uncertainties.
Lemma 1 shows that w.p. 1 is

necessary to have the equality hold for any prediction window
. Yet, for the uniform demand model and , we have

w.p.

with equality if and only if is identically 1 or 0 on
for all . This is realized when is either 1 or 0, re-

spectively. Note that, when is identically 0 on ,
the optimal control is trivially 0 on .
2) The previous insight shows that no proactive policy can

attain the delay-tolerant cost of except when
for all . Now, we turn to understanding the nature of
within the extremes. The value of in such model captures
all information about demand uncertainty as well as average
demand level. We present some key insights on the impact of
on the lower bound, in particular how it affects the proactive

gains.
Consider the proactive service of a single-user requesting
units of service in each slot with probability . The service

of units of service in a slot incurs a polynomial cost function
of degree , that is .
Fig. 3(a) contrasts, for the case of , , and

increasing values of , the average costs , ,
and achievable, respectively, by the reactive, proactive,
and infinitely delay-tolerant schemes. It shows that proac-
tive caching attains considerably lower cost as compared to
the reactive one, and almost follows the same trend of the
delay-tolerant case. In fact, the impact of uncertainty can be
seen through the slope of the cost curve. Proactive caching
cost increases slowly at small values of as the system best
utilizes the increasing certainty as well as low load levels. Yet,
as increases, costs tend to increase faster as the system
becomes more congested with incoming requests, thereby
restricting the chances of shifting the load. To further highlight
the proactive-reactive comparison, in Fig. 3(b), we plot the cost
of uncertainty of reactive and proactive operation by plotting

and , which measures the
relative cost incurred due to lack of exact information about
future demand, as compared to that of delay-tolerant services.
It reveals both reactive and proactive schemes must suffer the
cost of uncertainty with the extremes of . Yet,
reactive scheduling suffers heavy cost of uncertainty since it
does not utilize the statistical information about future demand,
however uncertain it is. In contrast, proactive caching suffers
significantly less as it exploits the statistical knowledge about
future.
3) While uniform demand scenario assumes , ,

the lower bound still applies if are unknown

Fig. 3. Comparison of reactive, proactive, and delay-tolerant costs under the
uniform demand pattern. (a) Average incurred cost. (b) Cost of uncertainty.

(unobservable) random variables, yet satisfy the ergodicity con-
dition (1). This can be seen through the proof of Theorem 1,
where conditioning over set is still applicable, and ergodicity
condition (1) ensures that . Thus, systems
that are unaware of the per-slot demand probability (even
with are nonidentical over time) cannot attain cost perfor-
mance that is smaller than .
We now move on to the design and analysis of a specific

proactive caching policy that asymptotically achieves the lower
bound with growing prediction window size.

B. Stationary Proactive Caching Policy Design and Analysis

In this section, we introduce a simple proactive caching
policy for the uniform demand model, prove its asymptotic
optimality as defined in Definition 1, establish its convergence
rate, and analyze its performance gains compared to its reactive
counterpart for a specific setting.
Definition 2 (Proactive Caching Policy ): Given the ob-

served requests in slot , our proac-
tive caching policy sets its proactive control parameter as:

, , where is the optimal
solution of the minimization in (6).
Policy , thus, is a stationary policy that observes , the set

of users who request content at time , and accordingly assigns
proactive control value for all potential re-
quests to may be requested in the upcoming slots. Intuitively,
this policy determines its proactive download amounts in re-
sponse to by utilizing the solution of the lower bound (6),
and then mimics processor-sharing type of service discipline
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Fig. 4. Impact of proactive window size on achievable cost.

by equally spreading the given amount over the horizon of the
prediction window . Next, we show that this policy is asymp-
totically optimal as increases.
Theorem 3 (Asymptotic Optimality): Under the uniform de-

mand pattern described by , our proactive caching policy is
asymptotically optimal (cf. Definition 1), therefore it achieves

as .
Proof: Please refer to Appendix B.

While asymptotic optimality is theoretically encouraging, it
is of practical interest to find out whether the policy possess de-
sirable performance guarantees in nonasymptotic regimes. This
motivates us, next, to quantify the speed at which perfor-
mance approaches its asymptotic limit as the prediction window
size grows.
Theorem 4 (Exponential Bounds on Convergence Speed): Let

, then there exists a function such that
as , and

(7)
where is a positive constant.

Proof: Please refer to Appendix C.
This theorem establishes the desirable nonasymptotic prop-

erty of our policy that its cost reaches an arbitrarily small
neighborhood of the optimal achievable level exponentially fast
with . Such a property can be attributed to the processor-
sharing nature of the control variables (e.g., being as-
signed to all prospective requests), which enables traffic aver-
aging over time, thanks to strong law of large numbers. Hence,
system randomness decays exponentially with the prediction
window size.
In Fig. 4, we plot the achieved time-average cost under

against the prediction window size to show its rapid conver-
gence to established lower bound. In the simulation, ,

, .
Before concluding this section, we also share some insights

on the question of when the cost reduction of proactive opera-
tion relative to its reactive counterpart is greatest. We consider
the scenario (as in Fig. 3) of a single-user requesting units of
service in each slot with probability . The service of units
of service in a slot incurs a polynomial cost function of degree

, that is . In this scenario, policy reduces to
if , and if , where

Through simple differentiation, we get that and
.

Proposition 1: For the above single-user model with costs
, the relative cost reduction of our policy with

respect to reactive performance function calculated as
is maximized at the unique value of

, with the value

, with as .
The proof of proposition follows easily from simple calculus

while noting that is a function of . Proposition 1 clearly
shows that is the best operating point for proactive
gains over reactive ones under the uniform demand pattern and
polynomial cost function. It is clear that similar optimal oper-
ating points will arise under different cost functions, sharing the
common characteristic of optimally balancing between utilizing
the certainty about future demand, and creating the opportu-
nity for proactive services in idle slots. On the other hand, the
relative cost reduction achieved asymptotically by an infinitely
delay-tolerant operation is given by , which is mono-
tonically decreasing in , as there is no waste of service, hence
increasing can only limit potential caching opportunities and
reduce the system gain.
Remark 1 (Complexity of ): The controls of policy re-

quire the solution to (6). While such optimization has significant
number of variables, , it needs only to be solved once, of-
fline, based on the long-term system statistics . Then, in the
online operation, the service provider has to only observe
and use the mapping for proactive service. The size
of such mapping is , yet using binary search, the complexity
of determining proactive controls in any time-slot under policy

is .

IV. PROACTIVE SERVICE OF FLUCTUATING DEMAND

In this section, we return to the general model of
luctuating Demand (i.e., ) characterized by

as described in Section II, and
study the performance of proactive caching strategies that
utilize such fluctuations to proactively shift traffic forward
in time and attain minimum service costs. The development
follows the same structure as in Section III but with heavier
notation due to the time-varying statistics of the demands.

A. Lower Bound on Minimum Cost for Fluctuating Demand
Similar to Section III, we begin by introducing a lower bound

on the minimum time-average cost achievable by any proactive
caching policy, and contrast its performance for varying
to the infinitely delay-tolerant and reactive costs.
Recall that the probability of demand from user at time is

given by . Accordingly, under fluctuating demand, we can
write

We collect the demand probabilities of all users at time in a
set as follows. . Finally, we quantify the
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fraction of daily time-slots through which set of demand
probabilities is realized by , which is given as4

for any

otherwise

where ,
.

Now, we are ready to present the general lower bound in the
following theorem.
Theorem 5 (Lower Bound for Fluctuating Demand): Let

be the set of all -tuple
demand probabilities for the users, and
characterizes complete fluctuating demand profile. Then, for
any , the optimal proactive caching cost
satisfies

(8)

s.t.

(9)

Proof: Follows the same steps as that of Theorem 1, except
conditioning goes over instead of only. Hence, it is
omitted for brevity.
Note that the lower bound in (9) is essentially more sophis-

ticated than (5) due to the additional information available at
the service provider that differentiates between the demand over
daily time-slots. Yet, the optimization is still tractable as the
problem is convex.
Next, similar to Theorem 2, we establish that ,

achieves the delay-tolerant limit
if and only if demand prediction approaches full certainty.
Theorem 6 (Unavoidable Costs of Fluctuating Uncer-

tainty): Under the fluctuating demand pattern with given
, with equality if and only if

for all .
Proof: Please refer to Appendix E.

4Note that .

Fig. 5. Comparison of reactive, proactive, and delay-tolerant costs under sinu-
soidally fluctuating demands. (a) Average incurred cost. (b) Cost of uncertainty.

In Fig. 5, we numerically compare the lower bound
to the minimum costs achievable by reactive and infinitely
delay-tolerant schemes. In this setup, we set , ,

, and set ,
which idealistically captures the peak–off-peak characteristics
of the daily demand pattern through a sinusoidal function.
As the average load varies from 0 to 1, we observe from
Fig. 5(a) that proactive costs stay very closely to the idealized
delay-tolerant limit, while the reactive costs perform very
poorly. Also, Fig. 5(b) illustrates the cost of uncertainty with
the same metric as in Fig. 3(b). We can clearly see from the
figure that fluctuating demands offer further gains over uniform
demands since fluctuations enable shifting of the load to less
congested durations with smaller service costs.

B. Cyclostationary Proactive Caching Policy Design and
Analysis
We start by defining a cyclostationary proactive service

policy for fluctuating demand patterns.
Definition 3 (Proactive Caching Policy ): Given the ob-

served requests in slot , our proac-
tive caching policy selects its proactive service amounts
as: , for each where

is the unique solution to (9).
Here, we note that policy does not only assign proactive

services based on the current realization of user requests , but
also it incorporates the statistical information about the current
demand , as well as future demand , , in
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its decisions so as to maximally utilize the available resources
at minimum cost. Clearly, the policy is cyclostationary with pe-
riod since for any positive integer . In the
following theorem, we establish the asymptotic optimality of

.
Theorem 7 (Asymptotic Optimality): Under the fluctuating

demand pattern described by , our proactive caching
policy is asymptotically optimal (cf. Definition 1), therefore
it achieves as .

Proof: Under a cyclostationary policy , the re-
sulting average cost can be expressed as

. By expanding the expectation
through conditioning on , and following similar steps
to the proof of Theorem 3, the result follows.
Hence, we can see that

is the average proactive service re-
ceived by user at the time instants with demand prob-
abilities of all users form set . Furthermore, the term

captures the proactive services
assigned to user when is current set of requesting users, ,
is the current set of demand levels, and is the potential set
of demand levels at which a request from user is expected to
be realized.
As policy employs a processor sharing discipline for its

proactive services, similar to it also enjoys an exponential
converging speed with to the ultimate lower bound (8), as
established next.
Theorem 8 (Exponential Bounds on Convergence Speed): Let

, then there exists a function such that as
and

for some positive constant .
In Fig. 6, we explicitly plot the achieved time-average

cost against the prediction window size under fluctuating
demand pattern with characteristics specified as follows. There
are users in the system who request services from a
random fashion. The day to be divided into h with
the average probability of demand for each user varies over
the course of the day according to (0.73, 0.73, 0.73, 0.78,
0.73, 0.73, 0.78, 0.86, 0.90, 0.90, 0.78, 0.67, 0.49, 0.31, 0.31,
0.2, 0.2, 0.2, 0.36, 0.43, 0.54, 0.54, 0.67, 0.67). Here, the first
element corresponds to the time period (00 am,
1 am], and the last element corresponds to the
period (11 pm, 00 am]. Thus, ,

. We adopt as the number of daily time-slots. Thus, in the
simulation, corresponds to a slot size of 5 min, which
is reasonable for a user to generate one data request.
To further highlight the impact of the proposed policy

on the system's load under different values of , we show in
Fig. 7 the daily average load levels achieved by both reactive
and proactive caching, including two instances of in addition
to the asymptotically optimal limit. Clearly, as grows, load
levels become smoother over time, and at (corre-
sponding to a time-slot size of 5 min) the proactive cost is
indistinguishable from the asymptotic optimal. We also observe
that proactive caching considerably smooths out the load over
time, while uncertainty still yields some minor fluctuations that
cannot be avoided according to Theorem 5. Here, we note that

Fig. 6. Impact of proactive window size on achievable cost of policy for
fluctuating demand.

Fig. 7. Average load levels under reactive and proactive services for fluctuating
demands.

different service providers can divide the day into different
number of time-slots . For instance, Netflix may operate
at slots with slot duration being an hour as it serves
movies with long duration. CNN, on the other hand, can divide
the day into larger number of time-slots, e.g., slots,
since its videos are shorter.
Remark 2 (Complexity of ): Similar to policy , opti-

mization (9) needs to only be solved once, offline, based on
long-term characteristics . Then, in the online operation,
mapping is harnessed to assign proactive con-
trol . The complexity of determining proactive controls
under in any time-slot is ,5 where

, and , if , and
otherwise.
Remark 3 (Memory Consumption): To enable proactive

caching at end-users, there is an amount of
data cached on device every time-slot . On the other hand, an
amount of previously applied proactive ser-
vice becomes irrelevant at the end of time-slot and thus can be
overwritten. As a result, dynamic memory allocation for proac-
tive service of user is given by .
Proactive downloads are also chosen to decrease linearly as the
size of the set of requesting users grows.

5It is also possible to develop efficient low-complexity solutions to (6) and
(9) with high performance guarantees. Nevertheless, this is not the main focus
of this work and hence can be addressed separately.



TADROUS AND ERYILMAZ: ON OPTIMAL PROACTIVE CACHING FOR MOBILE NETWORKS WITH DEMAND UNCERTAINTIES 2723

In the light of Remark 3, expected memory usage
per slot under policy for uniform demand is
given by . Furthermore,
expected memory usage under policy for fluctu-
ating demand is upper-bounded by , where

.
It is clear that memory requirements grow with prediction

window size. Nevertheless, the exponential convergence of op-
erational cost to the established lower bounds (see Theorems 4
and 8) suggests moderate values of will yield a best balance
between memory allocation and operational cost. In addition,
for fair comparison to delay-tolerant networks, we note that de-
spite such memory allocation requirements, proactive caching
does not suffer any service delays and hence enhances quality
of experience.
In the numerical simulations above, we have noted that choice

of slots corresponds to slot size of 5 min. Now, for this
case, the upper bound on memory allocation under fluctuating
demand is . An average 5-min YouTube video has a size
of MB. Thus, memory allocation for proactive caching
in such case will be less than 0.5 GB. As recent versions of
smartphones support large storage (e.g., 128 GB), it is clear that
memory requirements for proactive service are well satisfied.
Remark 4 (Memory Constraints): From the above discussion,

expected memory consumption at every time-slot for user can
be expressed as an affine expression of for uniform
demand, and for fluctuating demand. In case
that users pose memory constraints on proactive service, lower
bound optimizations (6), (9) can be modified to include such
new affine constraints, where convexity is preserved. However,
the lower bound will be dependent on proactive window size ,
that is, for each value of , we have a lower bound on minimum
achievable cost. Nevertheless, our proposed policies , are
still valid and can be applied to smooth out traffic over time.

V. MORE NUMERICAL RESULTS
In this section, we provide additional numerical results to reap

further insights on the performance of the proposed proactive
caching policies.

A. Time-Domain Performance
Following the exact simulation setup used in Figs. 3 and 4,

we plot in Fig. 8 the evolution of relative cost reduction gain
with time for both models of uniform and fluctuating demand
patterns through the use of policies , , respectively.
For both models of uniform and fluctuating demand, in-

creasing enhances the attainable cost reduction gain until it
approaches the respective upper bound obtained as grows.
We also note that the worst-case prediction under uniform
demand, resulting from identically distributed requests over
time, essentially limits the system gains due to significant
uncertainty. However, for fluctuating demand, the system is
able to attain remarkably higher gains by exploiting the time
variability of demand levels.

B. Impact of Number of Users
We study the impact of the number of users on the system's

performance for both models of demand patterns (uniform and
fluctuating) in Fig. 9. In particular, we plot the asymptotically
optimal cost reduction gain against the number of users , We

Fig. 8. Convergence of relative cost reduction with time. (a) Policy for
uniform demand. (b) Policy for fluctuating demand.

also consider the asymptotic performance of a DTN with full
certainty about generated requests. We can see that performance
of uniform demand [Fig. 9(a)] considerably falls with , even
for the DTN with full certainty. The reason is that the increased
randomness of the system because of more users, together with
the statistically indistinguishable requests, limits the opportuni-
ties of shifting the demand over time. On the other hand, fluctu-
ating demand attains considerably higher gains (although non-
increasing with ) by leveraging major caching opportunities
offered in off-peak hours. Here, we note that the comparison
above does not show the significant user dissatisfaction asso-
ciated with the DTN due to large delays, which is completely
resolved via proactive caching.

C. Certainty-Cost Reduction Tradeoff
Finally, in Fig. 10, we highlight the tradeoff between uncer-

tainty and relative cost reduction gain for the simple example
of user addressed in Section III. Since the cost function
is polynomial with degree , it is clear that is
the optimal value of that strikes the best balance between
certainty, and enough opportunities for load shift over time.
The DTN counterpart, on the other hand, attains a monotoni-
cally decreasing gain with since it does not suffer any uncer-
tainty issues; only increasing decreases the opportunity for
exploiting empty slots for load balancing.

VI. CONCLUSION
In this work, we have considered the notion of proactive

caching of delay-intolerant data services in the presence of un-
certain predictions of future user demands. We consider service
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Fig. 9. Impact of the number of users on achievable cost. (a) Policy for
uniform demand. (b) Policy for fluctuating demand.

Fig. 10. Relative cost reduction gain versus for uniform demand.

providers that utilize the statistically predictable nature of fu-
ture user demands to selectively serve data requests before their
actual time of realization. We revealed that by harnessing time
instants with low demand characteristics, service providers can
leverage significant cost reduction through proactive service of
future requests. Despite the ultimate challenge of uncertainty
about future requests, considerably lower service costs have
been proven achievable via proactive caching in large timescale
systems where delay tolerance is essentially limited. We have
studied interesting instances of predictable demand, established
fundamental lower bounds on the achievable costs through
proactive caching, and developed asymptotically optimal poli-
cies that attain these bounds rapidly as the proactive caching
window size increases. Furthermore, we have contrasted the
asymptotically optimal performance with that of infinitely

deferrable ideal scenario, and drawn interesting insights and
remarks on the unavoidable costs of prediction uncertainties.

APPENDIX A
PROOF OF THEOREM 1

Let be an optimal proactive caching policy under the
uniform demand model, where . Thus, we can
write

By conditioning on all possible sets of requesting users at time
, we can rewrite this as

By Jensen's inequality, since is assumed strictly convex,
we have

Note that is an i.i.d. sequence under the uniform demand
pattern, thus we could use . Moreover, is independent
of , .
Since , we can apply Jensen's inequality again

to have

As is monotonically increasing, we can replace
on the right-hand side (RHS) of the last ex-

pression by . Furthermore, by defining
, we obtain

Note that Constraints (2) and (3) imply that
, . Now, by minimizing the right-hand side of the last

expression over all feasible choices of , the theorem
is proved.
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APPENDIX B
PROOF OF THEOREM 3

It suffices to prove that
. We start by . Since

is a stationary policy that depends only on the current
demand realization, we can write

Now, we consider the sum , which is indepen-
dent of . Define a counter that measures the number
of occurrences of a requesting set of users in slots

. Then, .
Thus, by the strong law of large numbers, as

w.p.

By noting that the system load , bounded con-
vergence theorem implies

(10)

Second, by noting that the RHS of (10) is identical to ,
then . Yet, by the
definition of , it follows that

, which completes the proof.

APPENDIX C
PROOF OF THEOREM 4

Let , where is the indicator
function of event . We have

From Chernoff bound, we can write

where is the log moment generating function of ,
which is a Bernoulli random variable with parameter .
Hence, the tightest Chernoff bound is attained at

, which yields

(11)

Note that , . Similarly, we can show that

(12)

Note also that on .
Now, we define , thus we

can expand and bound as

for some

for some

for some

The inequality follows since is monotonically increasing,
is the value of that maximizes

the conditioned cost on , and is the largest
load the service provider can sustain under the constraints on

.
The difference can be upper-bounded by

for some

for some

where is the first derivative of , and
. Inequality (a) follows by mean value theorem
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and monotonicity6 of since
. Also, . Inequality (b) fol-

lows from upper-bounding
by , which by
(11) and (12) leads to inequality (c). Now, by setting

, the proof is
completed.

APPENDIX D
PROOF OF LEMMA 1

We have by Jensen's inequality

Note that is a strictly convex by hypothesis, and the expecta-
tion operator preserves convexity. We can write

(13)

Furthermore, since is monotonically increasing, we have

In (a), we used Fatou's lemma to replace outside the
expectation with inside it. In (b), we used the fact that

for any . Hence, if equality holds, then
w.p. 1.

APPENDIX E
PROOF OF THEOREM 6

( ) WLOG, we assume that is the set of users with
, , and . Clearly, in case of

, it is optimal to have zero proactive service for such
traffic. Now, we have

if ,

otherwise.
Thus, carries all information about , and therefore we can
omit the dependence on from the rest of the proof. Hence,
we can write the general lower bound forM2 as

(14)

6The cost function is strictly convex and increasing, thus has a positive
and monotonically increasing derivative .

Choosing if , , and ,
with . Furthermore, set otherwise.
Then, expression (14) reduces to

Note that ,
if , and for some ,

otherwise.
( ) Suppose . Then, by the convexity of , we

have

Now, suppose towards contradiction that for
some , . Consequently, for any such
that , , .
Since

then we must have

By rearranging terms, the last equality can be written as

Yet, by hypothesis we have
, which essentially

contradicts the fulfillment of the above inequality. Note that
since .
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