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Abstract—Wireless spectrum is a precious resource and must be
allocated and used efficiently. Conventional spectrum allocations
let a government agency (e.g., FCC) sell a portion of spectrum to
one provider. This is not only restrictive, but also limits spectrum
reuse and may lead to significant under-utilization of spectrum. In
this paper, we develop a novel truthful double-auction scheme to
let any resource owner (e.g., a cellular provider), who has spare
spectrum at a given time period, sell to one or more providers
that need additional spectrum at that time. Spectrum auctions are
fundamentally different from conventional auction problems since
spectrum can be reused and competition among buyers is complex
due to wireless interference. Our proposal is the first double-auc-
tion design for spectrum allocation that explicitly decouples the
buyer-side and seller-side auction design while achieving: 1) truth-
fulness; 2) individual rationality; and 3) budget-balance. To accu-
rately capture wireless interference and support spectrum reuse,
we partition the conflict graph so that buyers with strong direct and
indirect interference are put into the same subgraph, and buyers
with no interference orweak interference are put into separate sub-
graphs. Then, we compute pricing independently within each sub-
graph. We then develop a scheme to combine spectrum allocation
results from different subgraphs and resolve potential conflicts.We
further extend our approach to support local sellers whose spec-
trum can only be sold to buyers within certain regions, instead of all
buyers. Using conflict graphs generated from real cell tower loca-
tions, we extensively evaluate our approach and demonstrate that
it achieves high efficiency, revenue, and utilization.
Index Terms—Radio spectrum management, wireless networks,

.

I. INTRODUCTION
A. Motivation

T HE EXPLOSIVE growth and dynamic nature of wire-
less traffic makes it costly for a single wireless service

provider to buy sufficient spectrum, based on a long-term con-
tract, to sustain its peak load, which may only last for brief
periods of time. This long-term spectrum allocation, which is
prevalent today, is highly inefficient. This motivates the need for
dynamic spectrum access—wherein a wireless service provider
only obtains sufficient spectrum to support the “typical” traffic
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demands and can: 1) purchase additional spectrum on-demand
from other providers to satisfy higher traffic demands; or 2) offer
spare spectrum to other providers for profit when there is lower
demand.
While dynamic spectrum access is attractive and it is now

technically feasible to dynamically change the spectrum to use
on-the-fly [6], [20], [28], an important open issue remains—how
to allocate spectrum across multiple parties. It is essential to
have an incentive framework that can effectively foster collab-
oration while guarding against dishonest behaviors.
We aim to achieve the following properties for the spectrum

double auction, where the first three properties are necessary
economic properties for a good double auction and the re-
maining three quantify the effectiveness of the auction:
1) Truthfulness: Bidders cannot benefit from bidding differ-

ently from their true valuation.
2) Individual rationality: Bidders get nonnegative utilities,
i.e., sellers are paid no less than their asks and buyers do
not pay more than their bids.

3) Budget-balance: The total amount paid to the sellers is no
more than the total amount received from the buyers. This
prevents the auctioneer, who runs the auction, from losing
money

4) Efficiency: It is the difference between the sum of the win-
ning buyers' valuations and the sum of the winning sellers'
valuations. To achieve good efficiency, the goods should be
sold to the buyers that value them the most and be sold by
the sellers that value them the least. Reference [15] shows
that it is impossible to simultaneously achieve truthful-
ness, budget-balance, and maximum efficiency. Thus, in
this paper we aim to achieve truthfulness, budget-balance,
and high (but not maximum) efficiency.

5) Revenue: It is the total amount of payment from all winning
buyers. A winning buyer may pay a different amount from
its bid, depending on the auction design. A higher revenue
gives sellers a stronger incentive to participate.

6) Utilization: Unique to spectrum auctions, we seek to max-
imize the spectrum utilization by allowing as many buyers
as possible to reuse the spectrum. We quantify the utiliza-
tion based on the total number of buyers that are assigned
spectrum. In addition, we also optimize fairness: Payments
should capture the real competition that each individual
auction participant faces, where the competition is deter-
mined by the wireless interference experienced by each
buyer.

B. Challenges

Designing a good double auction for spectrum reuse poses
the following significant challenges: 1) How to accurately cap-
ture wireless interference among the buyers? This is necessary
to support spectrum reuse, where multiple buyers may share
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the same spectrum. Achieving spectrum reuse is the key prop-
erty that distinguishes spectrum auctions from traditional auc-
tions, which assume all entities compete against each other for
an item. 2) How to design a truthful double auction? Simply ap-
plying truthful auctions for the sellers and for the buyers does
not lead to a truthful double auction. It is critical to ensure par-
ticipants cannot gain by manipulating the interaction between
the two sides. This is especially challenging in a spectrum auc-
tion because the buyer-side auction differs from the seller side in
that we need to take into account wireless interference between
buyers in order to support spectrum reuse. 3) How to maximize
spectrum utilization while preserving budget-balance? To max-
imize spectrum utilization, we need to sell as many channels as
possible and let them be concurrently used by as many buyers
as possible. However, this goal conflicts with budget-balance, as
selling more channels means a lower average price and possibly
lower revenue (as the price is determined by the loser's price).
Lower revenue means that fewer channels may be sold due to
the need to preserve budget-balance. We will further elaborate
these challenges in Section II-B.

C. Limitations of Existing Spectrum Auctions
The many advantages offered by double-sided spectrum auc-

tions have resulted in strong research attention to the problem.
Despite considerable previous work, significant challenges
still remain. In particular, some works fail to support spectrum
reuse while preserving truthfulness [23], [26]. The first work
that satisfies all economic properties and supports spectrum
reuse is TRUST [31]. It follows the classic McAfee's double
auction [13], which jointly computes the auction result for
buyers and sellers. However, to apply the classic design, it
makes several simplifications that could sacrifice performance.
Specifically, it randomly groups noninterfering buyers and re-
quires buyers in the same group to win or lose together. Hence,
the fate of a group is determined by the lowest bidding buyer.
A group can lose even if it has many high-bidding buyers,
which results in unfairness and low efficiency. It also enforces
uniform pricing for all buyers that win the same channel, in
which case the price can be no more than the lowest bid of
these buyers. This limits total revenue and further hurts the
auction performance because only a few channels can be traded
in order to preserve budget-balance. Several follow-up works
share similar problems [27], [2].

D. Our Approach
We develop a novel double auction for dynamic allocation of

spectrum in Section III. uses separate designs of
the buyer and seller-side auctions while achieving truthfulness,
budget-balance, and individual rationality. Compared to the
classic joint design strategy (i.e., McAfee [13]) used by most
existing spectrum double-auction designs [31], [27], a unique
advantage of our separate auction designs for the buyers and
sellers is that this enables flexible combinations of different
buyer- and seller-side designs. This significantly increases
the design space and can immediately benefit from future
enhancements to auction design on either the buyer or seller
side. Moreover, it also allows different properties of both sides
to be captured accurately, which is especially important for
spectrum double auctions since the buyer side is much more
complicated due to wireless interference. We show how to

combine the design of the two sides to ensure budget-balance
and identify the necessary properties of a single-side auction in
order for the double auction to be truthful.

consists of three components: 1) seller-side auction de-
sign, assuming channels are sold; 2) buyer-side auction de-
sign, assuming channels are sold; and 3) determining the
number of channels, , to sell to satisfy budget-balance.
The buyer-side design is more challenging due to the com-

plications of wireless interference. We propose to partition the
graph into subgraphs based on the wireless interference among
the buyers. Graph partitioning enables us to compute allocations
independently in each subgraph and then combine the results.
Therefore, it reduces the randomness of independent set con-
struction and allows us to better capture competition in each
subgraph and achieve higher revenue by computing prices in
each subgraph independently.
We identify important requirements of a good partition

algorithm: cutting as few edges as possible while yielding
balanced partitions. These two requirements correspond to
the well-known metric, called the Normalized Cut. We apply
spectral clustering [16], which is an effective approximation
algorithm to minimize the Normalized Cut. We then use the
group bid definition in [27] to sort the groups and determine
potential winners in a subgraph. We develop a novel pairwise
merge procedure to combine the allocation results from sub-
graphs and preserve truthfulness. It merges the results from two
subgraphs at a time and reduces the efficiency and revenue loss
due to conflicts between subgraphs.
In Section IV, we further extend to support localized

sellers, i.e., sellers that sell spectrum that can only be used by
buyers in certain regions. To optimize performance and max-
imize the number of trades to carry out, we develop cross-re-
gion budget-balance to allow regions to help each other and let
a seller win in all regions as long as it is budget-balanced in
any one region. In addition, we discuss practical issues of ap-
plying in Section V, such as incorporating quality of ser-
vice, leveraging prior knowledge about bid distributions, and
how to avoid starvation.
We extensively evaluate our approaches using conflict graphs

generated from real cell tower locations derived from a major
US cellular provider (Section VI). Our results show that
consistently yields high efficiency, revenue, and utilization
and significantly outperforms the existing approaches: It out-
performs by orders of magnitude when compared to TRUST
and improves all three metrics to up to 4 when compared to
TDSA [27]. When localized sellers are considered, im-
proves efficiency to up to 13 of that of District [24], revenue
to up to 5.5 , and utilization to up to 21.5 .

II. BACKGROUND

A. Spectrum Double Auction
Adouble auction implements a two-sidedmarket. Themarket

consists of three groups of entities: buyers, sellers, and an auc-
tioneer. Buyers submit bids that specify the item they are inter-
ested in and their maximum willingness to pay. Sellers submit
asks that include the item they offer for sale and their asking
price. The auctioneer evaluates the bids to determine the win-
ners and the items that are traded. The auctioneer also deter-
mines the amount to pay the sellers and the amount to charge
the buyers. All payments from buyers are paid to the auctioneer,
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Fig. 1. Double auction: Spectrum market.

and the auctioneer pays the sellers. A buyer's utility is then the
difference between his valuation of the item that he wins and the
amount that he pays to the auctioneer. A similar utility applies
for the sellers.
Fig. 1 shows a spectrum double auction. Here, the sellers are

spectrum resource owners (e.g., cellular service providers or or-
ganizations that own spectrum resource). The buyers can be en-
tities that need more spectrum. To capture the interference re-
lationships among the buyers, measurement can be conducted
by the buyers, sellers, auctioneer, or a third party to derive the
conflict graph. We can leverage existing approaches to either
actively or passively measure the conflict graph (e.g., [1], [18],
[19], and [30]).
After winning an auction, buyers then start using the new

spectrum by switching some of their clients onto the new spec-
trum. Techniques in intracell handover (e.g., [4] and [5]) and
spectrum virtualization (e.g., [6] and [20]) can be applied to ef-
ficiently and seamlessly switch users to the new spectrum.
Basic Auction Setting: We consider a two-sided spectrum

market where the goods of interest are wireless channels (fre-
quency bands) and the players are spectrum resource users,
such as cellular service providers. We assume a seller offers
one channel for sale and a buyer seeks to buy one channel as
considered in previous work [31], [27]. A seller can sell to any
buyer in the market. We relax this requirement in Section IV.
The auction runs periodically to enable spectrum reallocation
in a dynamic fashion. The multiunit double-spectrum auction
is more challenging and is left for future work.
We define Critical value as the lowest value that a buyer can

bid and still win. A monotonic allocation means that a buyer
who wins by bidding will still win if it bids , where .
The definitions are similar for the seller side.

B. Challenges in Spectrum Double Auction

Challenges in Supporting Spectrum Reuse: Spectrum auction
is fundamentally different from a conventional auction in that
an item in a conventional auction can be won by one buyer,
whereas spectrum can be reused by multiple buyers as long as
they do not interfere with each other.
Wireless interference dictates how spectrum can be reused, so

it has significant impact on the design of spectrum auction. A
conflict graph [9] is commonly used to capture the interference
relationship between the buyers, where each node in the conflict
graph denotes a buyer and there is an edge between two nodes
if the corresponding buyers interfere.

Wireless interference has significant impact on spectrum auc-
tion. First, conventional auctions do not allow an item to be
bought by multiple buyers. However it is important to support
spectrum reuse in spectrum auctions to maximize the utiliza-
tion of the spectrum resource. Second, the conflict graph sig-
nificantly complicates the competition among buyers. A buyer
only directly competes with nearby interfering buyers, but at the
same time a buyer's competition is coupled with the competition
seen by other buyers, depending on their interference. As an ex-
ample, consider the conflict graph: , where
“ ” represents the interference between two adjacent buyers
and the numbers are their bids. In this example, buyer or
buyer individually does not outbid buyer . However, since the
buyers and do not conflict with each other and can share the
channel, letting them win together is a better choice than letting
buyer win alone. In other words, a buyer's auction outcome
not only depends on its competitors' bids, but also depends on
its competitors' competitors' bids and so on. This significantly
complicates the auction design.
Challenges in Designing a Truthful Double Auction:Asmen-

tioned in Section I, it is challenging to achieve truthfulness in a
double auction. Combining a truthful seller-side auction and a
truthful buyer-side auction does not necessarily lead to a truthful
double auction. This is because the single-sided auctions do not
need to consider budget-balance, whereas in a double auction,
a participant may try to improve his utility by manipulating
the point where budget-balance is achieved and changing the
number of traded items. We illustrate this using the following
example.
Consider the buyer-side design that tries to maximize effi-

ciency on the buyer side by maximizing the sum of winning
buyers' bids and uses critical value pricing. When only one
side is considered, the auction is truthful, but this design is not
truthful in a double auction. Suppose there are four buyers
, and , where , and do not conflict with each other and
they all conflict with . The valuation of , and is 3, and the
valuation of is 7. Assuming we have 1 channel to allocate,
the winners are , and because the sum of their valuation
is 9, which is greater than 7. The critical value for each winner
is 1 because one of the three nodes, say , can win even when
its bid is as low as 1 (as the sum of is still as high as 's
bid). Hence, the total revenue is 3 (considering that buyers pay
their critical price). However, it is possible that on the seller
side, when one channel is sold, the selling price is higher than
3, in which case budget-balance is not satisfied and this trade
cannot happen. Hence, no buyer gets a channel, and everyone
has 0 utility.
Now lies and lowers its bid to 1. , and still win, but the

critical values of and both become 3 and 's critical value is
1 in order for the sum of their critical values to still be as high
as 's bid. The total revenue thus increases to 7. If this is higher
than the price on the seller side, the channel will be traded and
receives a positive utility of . Thus, the double auction
is not truthful since 's utility increases when lies about its
valuation.
Challenges in Maximizing Utilization Under the Constraints

of Auction Design: In an idealized world where everyone
is altruistic, we would design the system solely to maxi-
mize resource utilization, i.e., reuse whenever possible and
always allocate all channels. However, in reality there is a
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cost associated with the resource, and service providers need
incentives for sharing it. Though an auction is considered an
efficient way of providing such incentives, it comes with con-
straints. First, auction design becomes complicated in order to
support spectrum reuse. One extreme is no reuse at all, in which
case it becomes an auction for normal goods and traditional
approaches can be applied. Our goal is to allow reuse while
still having a sound auction design. Second, always allocating
all available channels means there will be no losing seller, i.e.,
no competition. However, competition is the major reason that
makes auction effective. In a double auction where all sellers
always win, the sellers can ask for whatever price they want,
and the market would never work. Thus, the auction design
needs to be highly effective in boosting competition so that the
level of competition is sufficient to support the market, while
many channels get allocated. This is especially important in a
spectrum auction, where the spectrum resource is precious.

C. Related Work

There is previous work on this topic. Researchers have con-
sidered both single-sided auction [29] and double auction for
allocating spectrum resource. We focus on double auctions in
our work. McAfee's double auction [13] is one of the earliest
double-auction designs for single-unit, homogeneous goods that
satisfies all the desired economic properties. Reference [3] then
proposes a more generalized approach to design double auctions
that achieve these economic properties. It introduces the concept
of substitutability and removes the requirement for the goods to
be homogeneous. It then provides a way to evaluate every single
trade, determine whether it should take place, and finally deter-
mine the price.
However, it is challenging to apply these existing approaches

to spectrum auctions due to the unique properties of the spec-
trum resource. Unlike traditional goods, where all buyers com-
pete with each other, a buyer in a spectrum auction competes
with only those that interfere with it. Thus, defining the appro-
priate substitutability is critical to the economic properties of
spectrum auction. The pioneering and most representative work
in spectrum double auction is TRUST [31]. It uses a simple way
to define substitutability by generating noninterfering groups at
the cost of auction performance. In comparison, our work only
establishes substitutability within each subgraph, and deviates
from [3] as we cannot evaluate an individual trade alone to de-
termine if it can be sacrificed but need to defer the decision until
we have the complete picture. Our approach is an instance of
[3] only when there is no conflict between subgraphs and every
trade can potentially be evaluated independently. For the gen-
eral case, we need a new solution like ours to make the alloca-
tion decision.
Next, we discuss TRUST in more detail. TRUST divides

buyers into multiple independent sets or groups, where the
buyers in each independent set do not interfere with each other.
For each group, TRUST computes the group bid as the lowest
bid in the group multiplied by the group size. Then, McAfee
is applied by treating each group as one virtual buyer. As in
McAfee, all winning groups pay the group bid of the group
in the sacrificed match. Within the group, all members share
the price equally. TRUST enables spectrum reuse by grouping

buyers and achieves truthfulness by applying McAfee's design.
We believe it has several weaknesses:
• Low efficiency: The independent sets are constructed ran-
domly. It is possible that a high bidding buyer loses just
because it is put into a bad independent set. As a result, the
final winning groups can be suboptimal.

• Low revenue: The group bid only depends on the lowest
bid in the group, and all higher bids are ignored. Thus, the
group payment is significantly limited by the lowest bid,
which can be much lower than other bids in the group.

• Unfairness: TRUST uses uniform price for the buyers that
are assigned the same channel. However, buyers assigned
the same channel may have different interference (compe-
tition) patterns. The uniform pricing forces some winners
to pay for the competition of other winners.

We illustrate the above weaknesses using the following ex-
ample. The conflict graph and bids are:

. Assume two sellers each offering one channel: chan-
nels 1 and 2, respectively. Let and be the inde-
pendent sets generated by TRUST. The group bid of is

, while the group bid of is . Thus
is matched with seller 1 and is matched with seller 2.
is the last profitable match, so only wins. and

together pay the group bid of , which is 4. Hence, and
each pay 2.
In this example, because is in the same group as , his bid is

ignored even though it is the highest. and winning together
gives the highest efficiency. However, TRUST fails to consider
that possibility because of the group bid computation. TRUST
also yields low revenue in this example since it only uses the
lowest bid, while the winning bidders can potentially pay much
more. TRUST is also unfair to in this example because he
cannot win, no matter how high he bids.
There have been several works on improving

TRUST [7], [25], [27] and alleviating some of the problems
in TRUST. However, they are still similar in spirit in that
they still use random independent sets and enforce uniform
price for buyers assigned the same channel. Thus, they still
suffer from low efficiency and poor fairness. For example,
[25] improves on TRUST to sacrifice fewer buyers. However,
it uses a single-sided auction, a much simpler problem.
Reference [7] builds on [25], but focuses on the privacy aspect
instead of the auction design. Reference [27] proposes a new
definition of group bid that achieves better auction performance
and preserves all economic properties. Our evaluation also
compares with [27].
There are also some spectrum double-auction designs that are

not based on TRUST. However, they are either not truthful or
do not support general conflict graphs. For example, [23] pro-
poses an online spectrum double auction where buyers can re-
quest for resource at different times. It assumes a complete con-
flict graph (i.e., everyone interferes with everyone else), which
simplifies the competition pattern and disables spectrum reuse.
Reference [26] proposes a single-unit double auction with dis-
criminatory pricing, but their auction is not proven to be truthful.
Several papers consider practical issues in spectrum auction.
Reference [2] proposes a double auction similar to TRUST, but
takes the buyers' frequency preference into consideration while
forming groups. This is complementary to our work. Refer-
ence [24] focuses on incorporating market locality. Our design
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also supports this feature and achieves much better performance
as shown in Section VI. In addition, [8] proposes a double-auc-
tion-based approach for mobile data offloading, but it does not
consider wireless interference as in spectrum auctions.

III. OUR SOLUTION
A. Overview
Design Strategy:We develop a novel double auction for dy-

namic spectrum allocation. It consists of the following three
parts: 1) seller-side auction design assuming channels are
sold; 2) buyer-side auction design assuming channels are
sold; and 3) a procedure to determine the number of channels,
, to sell to satisfy budget-balance.
To the best of our knowledge, our solution represents the

first double-auction design for spectrum allocation that explic-
itly decouples the buyer-side and seller-side auction design
while achieving: 1) truthfulness; 2) individual rationality; and
3) budget-balance. Previously, seller- and buyer-side auctions
were designed jointly in order to satisfy all three properties
(e.g., McAfee's principle used in TRUST and all its variants).
Decoupling seller-side and buyer-side design is crucial for

dynamic spectrum allocation for two reasons. First, by using
separate auction designs for the buyers and sellers, we no longer
require groups of buyers that share the same channel to be
formed in advance to match with sellers one by one. Instead, we
can make more informed decisions based on the bids to select
a stronger set of winners and improve efficiency, revenue, and
utilization. Second, it enables flexible combination of different
buyer/seller-side designs. This is especially beneficial in our
context since the two sides have rather different properties. For
example, it is commonly assumed that a seller can sell to any
buyer in the auction. Competition between sellers is similar to
traditional auctions, whereas the buyers' competition is much
more complicated due to complex wireless interference.
Proof Strategy: The key to designing the two sides separately

is a new proof strategy to establish truthfulness in a (decoupled)
double auction. Formally, we have the following theorem.
Theorem 1: A double auction for dynamic spectrum allo-

cation is truthful if the following two conditions hold: i) both
seller-side and buyer-side auctions are truthful when the number
of channels that are sold, denoted as , is fixed; and ii) no seller
or buyer can improve its own utility by unilaterally modifying
its own bid and causing to change.
The correctness of this theorem is easy to see: When a bidder

lies but does not change , it cannot gain because both sides
are truthful when is fixed. When a bidder lies and changes ,
it cannot gain either because no seller or buyer can improve its
own utility by unilaterally modifying its own bid and causing
to change. Thus, a bidder never gains by lying, and the auction
is truthful.
We use the following theorem from [10] to assist our design.
Theorem 2: If every losing bidder (i.e., unallocated) in an

auction pays nothing, it is truthful if and only if its allocation
algorithm is monotonic and it uses critical value as payment.
Design Overview: Below is an overview of our design. The

buyer-side auction is complicated since buyers' competition is
determined by the complex conflict graph and buyers without
interference can share a channel. Therefore, this paper focuses
on the buyer-side auction design.
The seller-side auction is a standard auction since a seller can

sell to any buyer in the auction. Therefore, we can apply uniform

pricing or VCG for single-unit auction. We prove it satisfies the
properties specified in Theorem 1.
To determine the number of channels , we start by set-

ting as the total number of channels that sellers collectively
have.We run seller- and buyer-side auctions separately, and then
check if budget-balance is satisfied (i.e., the payment collected
from the buyers is no less than the payment to be paid to the
sellers). Note the payment is determined by our seller-side and
buyer-side auction design described below and not the sum of
winning bids/asks. If budget-balance is already satisfied, we ter-
minate. Otherwise, we decrease by 1, and run the auction
again. By reducing , it requires buyers to bid even higher to
win and sellers to ask even lower to sell, thus reducing the gap
between revenue and payment. We stop when the budget-bal-
ance is satisfied and channels are then traded. This procedure
always terminates because budget-balance is satisfied when
drops to 0. Thus, we guarantee budget-balance, which is stated
in the following theorem.
Theorem 3: Our design satisfies budget-balance.
Note that McAfee's design is a special case of our framework,

where both the buyer-side design and the seller-side design use
uniform pricing. This shows that our framework is general and
under our framework it is possible to design a double auction
that satisfies all three economic properties. We describe our de-
sign in detail.

B. Seller-Side Design
The seller-side design is a standard auction since there is no

need to consider interference among sellers. Thus, we simply
use the traditional uniform price design. Assuming channels
are sold, the sellers with the lowest asking prices win, and
they each get paid at the th seller's asking price. When
there is no th seller, a predetermined “reserve” price
can be used. This uniform price design is known to be truthful
in a single unit auction when is fixed. Moreover, since sellers
are paid higher than their asking prices, individual rationality is
satisfied. In the Appendix, we further prove Theorem 4 to ensure
this design is truthful when applied to a double auction.
Theorem 4: This seller-side design, when applied to double

auctions, does not allow a seller to unilaterally manipulate
(i.e., the number of channels that can be sold) and gain.

C. Buyer-Side Design
Overview: To ensure fairness and achieve high revenue, it

is important for the buyer-side auction to explicitly take into
account the fact that different buyers face different levels of
competition depending on their locations and interference pat-
terns. Existing approaches do not account for such individuality
and apply uniform pricing, where all buyers that share the same
channel pay the same amount. This is not only unfair, but also
reduces revenue since a buyer's payment is limited by the lowest
bids among the buyers that share the channel.
Our key idea is to divide-and-conquer. Specifically, we first

partition the conflict graph into subgraphs. Independent sets
are then constructed within each subgraph, and pricing is com-
puted independently in each subgraph. We then design a merge
strategy to combine the winners from different subgraphs
while preserving truthfulness. Note that when computing the
allocation within each individual subgraph, we ignore the inter-
subgraph conflict edges. During the merge procedure, we need
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Fig. 2. Benefit of graph partition. (a) Without partition. (b) With partition.

to add back the intersubgraph conflict edges. As a result, some
winners from individual subgraphs may have to be removed
due to the intersubgraph conflict edges. The challenge is how
to do so without compromising truthfulness.
Benefit of Graph Partition: Before going to the details of our

design, we first show the two major benefits of graph partition:
1) better independent set construction, and 2) higher revenue
due to the removal of the uniform pricing constraint.
We illustrate these benefits using an example in Fig. 2. It

shows a conflict graph involving 6 nodes. We ignore the seller
side in this example and assume we want to allocate 1 channel.
To see the benefit 1), Fig. 2(a) shows the groups constructed
by TRUST: : ( ) and : ( ). The group bids of

and are and , respectively,
which are the lowest bid multiplied by the group size. Hence, in
TRUST, wins and pays the first losing group's bid, which is
30. The efficiency on the buyer side is the sum of all winning
buyers' bids, which is , and the revenue is
30. Now if we treat each subgraph independently as shown in
Fig. 2(b): , , and win in their subgraphs, and each pays the
first losing buyer's bid, i.e., 10, 20, and 30, respectively. Then,
we get the efficiency of and revenue of

, both of which are higher than TRUST.
To demonstrate the benefit 2), we consider the case when

TRUST happens to construct the same groups as ours, namely
: ( ) and : ( ). The group bids of and

are and , respectively. So wins,
and pays the first losing group's group bid, which is 30. This
is still lower than the revenue in our scheme because the rev-
enue of TRUST is limited by the uniform pricing (i.e., the lowest
bid multiplied by the number of buyers). The difference in rev-
enue may have an even bigger impact when we take the seller
side into consideration. If the revenue is lower than the amount
sellers should get, some channels cannot be traded because it
violates budget-balance, which further reduces efficiency and
revenue.
Essentially, partitioning allows us to decouple nodes with no

or weak interference into different subgraphs to improve the
independent set construction and avoid unnecessary coupling
in different buyers' pricing when they interfere with different
sets of nodes. Note the example shows a disconnected conflict
graph, but the idea also works on realistic, densely connected
conflict graphs as we show in Section VI.
Design Questions: Several important questions should be ad-

dressed in order to realize the benefits of graph partition:
• How to partition the graph to retain important interference
relationships within a subgraph and decouple nodes with
weak and no interference into different subgraphs?

• How to compute auction results within each partition?
• How to merge the auction results from different partitions
to achieve truthfulness and budget-balance?

We answer each question in turn.
1) Graph Partitioning: Given a graph , a graph partitioning

algorithm strives to find a partitioning that min-
imizes a certain objective. For the purpose of dynamic spectrum
allocation through double auction, a good graph partitioning al-
gorithm should balance two key requirements: 1) the number of
intersubgraph edges should be small, and 2) different subgraphs
should be similar in size. If a subgraph is too small (e.g., having
only one buyer), a small number of channels can satisfy all its
buyers, leaving no losing buyers and no revenue from the sub-
graph. On the other hand, too big a subgraph may lead to poor
independent set construction and poor performance due to the
uniform pricing in each group.
Two common objectives have been proposed for graph parti-

tion: RatioCut and Normalized cut (NCut). The former normal-
izes the weights of the edges on the cut by the number of ver-
tices in each partition (i.e., minimizes , where

is the total weight of all edges between and the
remaining nodes , and denotes the number of vertices in
). The latter normalizes the weights of the edges on the cut

by the sum of node degrees in each partition (i.e., minimizes
, where denotes the sum of degrees of

all nodes in the partition ). It is easy to see and
are minimized when either the number of vertices or the sum
of node degrees within each partition is the same. This captures
our goal of finding balanced cuts while minimizing the weights
of edges on the cut.
Minimizing either RatioCut or NCut is an NP-hard problem.

Spectral clustering is a well-known effective scheme to find
approximate solutions to this NP-hard problem (see [12] for
a nice tutorial). There are many variants of spectral clus-
tering [12], [14], [16]. In this paper, we use the Meila–Shi
algorithm [14] to minimize NCut, which is the recommended
algorithm in [12] due to its excellent performance and solid
mathematical foundation. Let be the adjacency matrix
with weight on its th row and th column. Let be the
degree matrix, which is a diagonal matrix with the node degree

on the diagonal. The Meila–Shi algorithm takes
the eigenvectors corresponding to the smallest eigenvalues
of the normalized graph Laplacian matrix
(where is the identity matrix), and then invokes another
algorithm (e.g., k-means clustering [11]) to cluster points by
their respective components in these eigenvectors.
To automatically determine the number of clusters to create

(i.e., ), we follow the suggestion of [12] and apply the eigengap
heuristic. Specifically, let be the eigenvalues
of the normalized graph Laplacian matrix sorted in an as-
cending order. The eigengap heuristic computes all the eigen-
gaps (i.e., difference between two successive eigenvalues) and
chooses the number of clusters such that is the
largest eigengap.
Note that when the conflict graph is disconnected, we first

divide it into multiple connected components since nodes in
different connected components have no competition at all.
Then, we apply spectral clustering to each connected compo-
nent to further partition the connected component.
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2) Allocation and Pricing Within a Subgraph: When a good
partitioning is found, we first compute the allocation in each
subgraph independently. For that we can apply existing algo-
rithms, such as TRUST. To further improve the performance, in
our implementation we apply the allocation algorithm proposed
in TDSA [27]. It is similar to TRUST but it defines a new group
bid and allows a subset of a group to win while the rest lose.
Consider a group and assume its members are sorted in a de-
creasing order of their bids. Denote members as 1 to , and the
group bid as . This group bid quantifies
the maximum potential payment of a group if we allow a subset
of this group to win. For each subset, the maximum potential
payment is the lowest bid in the subset times the size of the
subset. Thus, this group bid finds the highest potential payment
by enumerating all possible sizes of the subset. For example,
if a group contains bids (1, 3, 5), its potential payment could
be either letting 5 win alone, which corresponds to payment of

; or letting 3 and 5 win together, which yields a pay-
ment of ; or letting all of them win, which yields a
payment of . The maximum payment achieved is 6 in
this example.
To allocate channels, the groups with the top group bids

win. A winning group is then charged the first losing group's
group bid and all members in the group share the price equally.
If amember cannot afford its fair share (i.e., is smaller than
the first losing group bid, which is possible due to TDSA-based
group bid computation), does not win, and the price is shared
among the remaining group members. Since the winning group
has a higher group bid than the losing group, there always exists
a subset of the winning group such that they all bid no lower than
their fair share. This automatically guarantees individual ratio-
nality on the buyer side. We prove that this procedure finds the
critical value of a buyer under our partition and merge frame-
work in Theorem 6 described in the Appendix.
We also make a temporary assignment by sorting the chan-

nels in increasing order of their asking prices and assign the
first channel to the first group and second channel to the second
group, and so on. Note if there is no conflict between the sub-
graphs, then this is a good final allocation and we can com-
pute the total revenue by summing up the revenue from each
subgraph and determine if needs to be reduced or not. In
this case, the scheme looks like a very simple generalization
of McAfee/TRUST/TDSA in that it finds and sacrifices the last
efficient trade such that the payment is sufficient to support the
remaining sales. However, it often requires removing edges for
better andmore balanced partition, in which case the assignment
is subject to change in the merge procedure below.
3) Merge Strategy: Next, we describe how to merge alloca-

tion results from different subgraphs. We merge two subgraphs
at a time. The input to the merge are the winners selected from
the two subgraphs, including their channel assignment. The pur-
pose of the merge is to find one way to reorder the channel as-
signment in one subgraph such that winners on the cut do not
conflict. If such a reordering does not exist, certain nodes on the
cut may be dropped. Note all these happen without affecting the
pricing within each subgraph. We propose the following bid-in-
dependent merge strategy to select a node to drop. We prove this
merge strategy preserves truthfulness.

Fig. 3. Pseudo-code for bid-independent merge.

Fig. 3 gives the pseudo-code of the merge procedure for two
subgraphs and . In lines 1–4, we preprocess the buyers on
the cut by combining the buyers that share the same channel
on each side into one virtual node because these buyers are al-
ways assigned the same channel no matter how the assignment
is reordered. Lines 5–6 compute the effective degree for each
buyer , which denotes the number of edges that has on the cut.
This information is used in lines 7–12 to determine which buyer
to drop when a feasible reordering does not exist. We search for
a feasible reordering by enumerating all possibilities. The cost
of this procedure is acceptable because its complexity depends
on the number of channels (which is small) instead of number
of buyers. We drop buyers in a decreasing order of their effec-
tive degrees in order to minimize the number of dropped buyers
and reduce loss in efficiency and revenue. Every time a buyer
is dropped, the effective degree of the remaining nodes is up-
dated. We iterate until a feasible reordering is found, and then
use it to derive a joint assignment for the union of and .
Intuitively, our partition and merge framework preserves truth-
fulness because both operations by themselves are bid-indepen-
dent and there is no incentive to lie. It is still possible to lie to
change the allocation in subgraphs, which changes the input of
the merge operation, but a buyer cannot gain in this way due to
the use of critical value pricing. We formally prove truthfulness
in Theorem 5.
Fig. 4 shows an example of merging two subgraphs. Let

and be the left and right subgraphs, respectively, and and
denote the channels to be allocated. The labels next to nodes

represent the channel assignments to the nodes. Fig. 4(a) shows
the assignment to the winners in each subgraph. If in one sub-
graph, some winning buyers on the cut share the same channel,
they should be merged to form a virtual buyer before we pro-
ceed. There are no such buyers in this case, so we go to the next
step by adding back the removed edges. In Fig. 4(b), the three
previously removed edges are added back. There is conflict be-
tween nodes 3 and 4 and conflict between nodes 2 and 7. In
Fig. 4(c), the algorithm tries to reorder the assignment in by
swapping and , but there is still conflict between nodes 3
and 7. Thus, in Fig. 4(d), node 3, which is the node on the cut
with highest degree, is dropped to resolve the conflict.
Theorem 5: is truthful.
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Fig. 4. Simple example of the merge procedure. (a) Subgraphs with temporary
assignment. (b) Removed edges added back. (c) Assignment reorder fails to
resolve conflict. (d) Node 3 dropped.

Proof: To prove this theorem, we first prove Theorems 6
and 7 in the Appendix, and then apply Theorems 1 and 4.

IV. INCORPORATING SELLER LOCALITY
Motivation: So far, our solution assumes a seller can sell to

all buyers. In reality, a seller may own channels in a limited
area and cannot sell to all buyers. This problem is considered
in [24], but it requires each buyer–seller pair to be budget-bal-
anced, which is a very strong requirement and can significantly
limit spectrum reuse because the new buyer may not be able to
afford the entire cost of a channel. An important advantage of a
spectrum double auction is that we can leverage payment from
multiple buyers that reuse the same channel to pay to a seller.
Challenges:A naive approach is to divide the global area into

regions where each region is covered by a few sellers and in each
region sellers can sell to all buyers in that region. Then, our al-
location can be applied to each region independently, assuming
each buyer only belongs to one region. However, treating each
region as an individual auction can prevent feasible trades and
limit spectrum reuse because the revenue in a single region may
not be enough to satisfy the sellers' price (i.e., budget-balance
is violated within one region), while the revenue from multiple
regions together may be sufficient to pay for the sellers (i.e.,
budget-balance is satisfied globally). Moreover, uniform pricing
for sellers may not be truthful since only the sellers whose cov-
erage overlap compete against each other. Different sellers face
different competition.
To address these challenges, we change the seller-side design

of the auction to use Cross-region budget-balance and Nonuni-
form seller-side pricing. In Cross-region budget-balance, we
allow a region that has sufficient revenue to help other regions.
Note in this design we treat the auction across all the regions
as a single auction, and a service provider still only places one
ask for selling its resource in the regions that it is available. We
illustrate the idea using a simple example. Consider a region
with three sellers 1, 2, and 3, and sellers 2 and 3 are already
budget-balanced in other regions (i.e., sellers 2 and 3 get enough
payment from the buyers in other regions). Then, we can allo-
cate seller 2 and 3's resource in this region without considering
their asking price when checking budget-balance, and this re-
gion is budget-balanced as long as the revenue is high enough
to pay for seller 1. Note this not only improves spectrum reuse,

Fig. 5. Pseudo-code for allocation with cross-region budget-balance.

but also strictly improves auction efficiency, as we allow more
buyers to win, increasing buyer utility without affecting seller
utility. In Nonuniform seller-side pricing, we compute the crit-
ical value of winning sellers under our new allocation algorithm
to ensure truthfulness. We describe these in detail as follows.
Cross-Region Budget-Balance: To generalize the intuition

from the previous simple example, we design the scheme
outlined in Fig. 5. At a high level, it finds regions that are
budget-balanced and uses them to lower the budget requirement
for the other regions that overlap with the budget-balanced
regions. As shown in Fig. 5, lines 1–5 initialize all regions and
all sellers to not be budget-balanced, and all sellers are initially
included in the auction. In lines 6–17, we drop the seller with
the highest asking price that is still not budget-balanced until
all regions are budget-balanced. Because the selling price is
determined by the losing sellers' prices, dropping a seller lowers
the selling price and makes it easier to satisfy budget-balance.
Every time a seller is dropped, as shown in lines 9–13, we com-
pute allocation in each region that is still not budget-balanced
and check if budget-balance is satisfied with the new allocation,
assuming any seller that is not already budget-balanced will be
paid at the last dropped seller's asking price. For sellers that
are already budget-balanced, we consider the payment as 0. In
lines 14–17, if a region becomes budget-balanced in this round,
we label all its sellers left as budget-balanced, and we also label
this region as budget-balanced. Finally, all the sellers that are
budget-balanced will win.
With cross-region budget-balance, the point where budget-

balance is satisfied is no longer characterized by a single .
Instead, it is a vector of numbers , where is the first losing
seller's position in region .
Nonuniform Seller-Side Pricing: It is easy to see that the

above allocation is monotonic for sellers. Then, in order to
achieve truthfulness, we pay the winning sellers their critical
values. If a seller becomes budget-balanced after seller is
dropped, its critical value is the 's asking price. Different
sellers' critical values may differ, which is desirable, since it
captures their different competition patterns. We prove that it is
indeed the critical value in Theorem 8 in the Appendix.
According to Theorem 2, we conclude that the seller side is

truthful if the budget-balance point does not change. To show
that the double auction is truthful, we require that no seller can
change the budget-balance point and gain by lying. The proof is
similar to the proof of Theorem 4 and is omitted.
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V. PRACTICAL ISSUES

Next, we discuss practical issues involved in applying .
Auction Cost: Auction can be conducted periodically or

on demand whenever the inputs change significantly. The
frequency of auction needs to be chosen to balance the cost
of running the auction and changing the spectrum allocation
versus the optimality of the spectrum allocation. In case of a
sudden change in demand or conflict graph, a new auction can
be conducted to reallocate the spectrum resources. The auction
cost includes gathering inputs for the auction (e.g., bids, asks,
conflict graph), computing the auction solution, disseminating
auction outputs, and collecting payments. On average, given
3–7 sellers and with the NYC downtown conflict graph, which
has 230 buyers (see Section VI for the details of the data),
the auction takes 48 s to run on a desktop with Intel E8200
CPU and 2 GB memory. As part of this, spectral clustering,
computing allocation within subgraphs, and merging take 10,
23, and 15 s, respectively. This is fast enough for practical use.
When the conflict graph is big, allocation in different subgraphs
and the merge between different pairs of subgraphs can be
easily parallelized to save time. Spectral clustering only needs
to be recomputed when the conflict graph changes. The cost of
changing spectrum allocation involves notifying user devices,
changing parameters on towers and devices, and handoffs.
Handoffs can be achieved efficiently owing to recent advances
in handoff and spectrum virtualization techniques.
Monitoring Quality of Service: The auction-based approach

is only useful if its results are honored. That is, sellers stop using
channels that are sold in the auction area, and buyers only use
the channels they win in the appropriate area. To ensure this,
the auctioneer monitors the quality of service by letting the
buyers report performance anomalies and the locations where
the anomalies occur. Upon receiving an anomaly report, the auc-
tioneer identifies the potential causes of the anomaly and verifies
the real coverages of the involved participants. Using unautho-
rized spectrum resource is illegal. If that happens, the auctioneer
can take legal action. If the anomaly is caused by careless pa-
rameter settings or resource management, the involved partic-
ipants can be punished by making it harder for them to win in
future auctions by using the following Reputation Score.
Reputation Score: The auctioneer maintains a reputation

score for both buyers and sellers to reflect
their quality. For a seller, the score can be based on his channel
quality. For a buyer, it can be based on whether this buyer
uses wireless resources carefully without causing extra inter-
ference to other buyers. The higher the score, the better the
reputation. When computing the allocation, we divide every
seller's asking price by its reputation score so that it is harder
for a seller with a bad reputation to win. We then multiply a
seller's reputation score with its critical value to compute its
final payment. Since the critical value is computed based on the
reputation-weighted asking prices and is greater than a winner's
asking price divided by its reputation, individual rationality
is achieved. Similarly, for buyers we can multiply their bids
by their reputations when computing the allocation, and then
divide its critical value by its reputation score to get the real
price they need to pay to ensure individual rationality. Similar
ideas have been used in sponsored search auctions and online
advertisement auctions [21], [22]. Truthfulness is preserved
as the reputation scores do not depend on bids. Moreover,

budget-balance is satisfied regardless of whether we consider
the reputation score adjustment when determining because
the real selling price is always less than or equal to the price
before adjustment and real payment is always greater than or
equal to its corresponding unadjusted value. Using the adjusted
values may allow a higher .
Leveraging Prior Knowledge: The independent set con-

struction is critical to the performance. Our solution mitigates
the randomness but the construction can be further improved
if the auctioneer has prior knowledge, e.g., distributions of
buyers' valuations. Specifically, we can maximize the expected
valuations in winning groups, which directly relates to auction
efficiency by formulating the construction as amaximum weight
independent set problem (MWIS). The expected valuation of
an independent set is simply the sum of expected valuations
of all the members. The MWIS problem on conflict graphs
can be approximated in polynomial time, e.g., [17]. When
the error of prior knowledge with respect to the actual bids is
up to 10%, the efficiency improves by 16% over our current
scheme on average; when the error increases to up to 50%, the
average improvement becomes 6%. The auction is still truthful
as long as the prior knowledge is bid-independent and cannot
be manipulated.
Avoiding Starvation: Our conflict graph partition is designed

to minimize the number of intersubgraph edges while balancing
the subgraphs. However, it is still possible that well-connected
nodes are on the cut of two subgraphs. These nodes may be
always dropped even if they win in their subgraph due to their
large degrees and get starved. To address the starvation issue, we
can introduce randomness in the merge procedure by dropping
a buyer with a probability proportional to its degree. Thus, well-
connected nodes are more likely to be dropped, but they are not
always dropped and will not starve. This new procedure is still
bid-independent, so truthfulness is preserved.

VI. EVALUATION
Simulation Setup: In order to experiment with realistic con-

flict graphs, we use the location data of cell towers from a large
US service provider.We consider there are buyers at each tower/
location looking for spectrum resources at that location and that
they do not collude. We construct the conflict graph for three
cities: New York City (NYC), San Francisco (SF), and Chicago.
In each city, we pick a grid (approximately 5 5 km ) encom-
passing the downtown area and use all the cell towers in the
grid to generate the conflict graphs. We consider that two nodes
conflict if the internode distance is smaller than 500 m, which
is considered a typical cell range. We also vary the range to see
how the network density impacts performance. We only present
results with conflict graphs generated based on real locations,
but we also experimented with random conflict graphs and ob-
served similar benefits.
We use 5 sellers by default, and also vary the number from

3 to 7 to see the impact. The small number of sellers is consis-
tent with the reality where there are only a few large spectrum
owners. The number of winning sellers is constrained by the
conflict graph and increasing the number of sellers further has
little impact on the result. For the sellers' asks and buyers' bids,
the absolute values do not matter and only their ratio matters.
We generate the buyers' bids drawn from a uniform distribution
between 0–100. We also use a uniform distribution to generate
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the asking prices. Since each grid can cover at most 25 buyers
and we assume buyers and sellers value the spectrum resource
similarly such that the price from the two sides compare fairly,
we generate the asking prices to be between 0–2500 such that
the mean is 25 times the mean of a buyer's bid. We also scale
the sellers' asking prices to see its impact in our evaluation.
We compare our scheme to TRUST and TDSA [27] in terms

of the following three metrics:
1) Efficiency: This is widely used to quantify auction perfor-

mance. It is defined as the difference between the sum of
all winning buyers' bids and the sum of all winning sellers'
asks.

2) Revenue: It is defined as the total payment from all winning
buyers. Revenue is different from efficiency on the buyer
side since revenue depends on critical values, whereas effi-
ciency depends on bids. A higher revenue gives a stronger
incentive for sellers to participate.

3) Utilization: This is defined as the number of winning
buyers. This is a unique metric in spectrum auctions
because the spectrum resource is precious but reusable,
and a higher utilization means more winners can utilize
the spectrum at the same time, which is preferred. Utiliza-
tion cannot be derived from efficiency since the winning
buyers may not be the ones with the highest bids, and it is
impossible to tell the number of winning buyers just from
the efficiency value.

For every setting, we repeat the experiment 20 times with dif-
ferent random asking prices and bids and report the average.
Performance at Different Locations: We first compare the

performance in all three cities. As shown in Fig. 6, the perfor-
mance varies significantly across cities. Specifically, SF gives
the highest value for all three metrics, while Chicago gives the
lowest and NYC lies in between. The performance difference
is primarily due to the difference in the number of buyers. SF
has 16% more buyers than NYC, while the number of buyers
in Chicago is only around half of that in NYC. With the same
interference range, more buyers means more spectrum reuse,
and this tends to generate higher revenue, thus more channels
can be traded. We also evaluate the impact of network density
with fixed location by varying interference range in subsequent
experiments. Among all the schemes, achieves the best
performance for all three metrics and for all three cities. Com-
pared to TRUST, 's efficiency is 22 –62 , its revenue is
27 –126 , and its utilization is 42 –65 . TRUST does not
perform well because it is limited by the use of uniform pricing
and the lowest bid in each group. Only few channels can be sold,
and their revenue is low. TDSA performs better than TRUST
because it searches for the best subset of a group to win and is
thus more robust to the lowest bid in a group. still outper-
forms TDSA by 51% to 101% in efficiency, 57% to 115% in
revenue, and 47% to 93% in utilization. This is because :
1) decouples pricing in different subgraphs to better capture the
competition; and 2) combines the top groups from different sub-
graphs to reduce randomness and find a set of winners with
higher valuations.
For the rest of our study, we use the NYC conflict graph as

default and study the impact of other parameters.
Impact of the Number of Sellers: Next, we vary the number

of sellers. Fig. 7 shows that as the number of sellers increases,

Fig. 6. Performance at different locations. (a) Efficiency. (b) Revenue.
(c) Utilization.

Fig. 7. Impact of the number of sellers. (a) Efficiency. (b) Revenue.
(c) Utilization.

more channels become available and the price reduces due to in-
creased seller-side competition. As a result, more channels can
be traded, and all performance metrics improve. consis-
tently outperforms the existing approaches. Its improvement is
highest when there are only 3 sellers, in which case its perfor-
mance is 3 of TDSA in all three metrics. TRUST does not sell
a single channel in the 20 runs with 3 sellers because its revenue
is low and it is more challenging to sell a channel while ensuring
budget-balance when the number of sellers is small. When the
number of sellers increases to 7, compared to TRUST, 's
efficiency is 28 , its revenue is 72 , and its utilization is 24 ;

outperforms TDSA by 85% in efficiency, 97% in revenue,
and 86% in utilization.
Impact of Network Density: Next, we vary the network

density by changing the buyer communication range from 250
to 750 m. A longer range indicates more competition among
buyers and fewer buyers can reuse a channel. As shown in
Fig. 8, the benefit of our scheme increases with the range
since it is harder to sell a channel, and a good auction design
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Fig. 8. Impact of network density. (a) Efficiency. (b) Revenue. (c) Utilization.

becomes even more important. For example, when the range is
250 m, our scheme outperforms TDSA by 29% in efficiency,
55% in revenue, and 30% in utilization. The corresponding
numbers for a range of 750 m are 152%, 172%, and 173%,
respectively. The performance trend in TRUST is less clear
because TRUST heavily depends on the random independent
set construction. However, under all three ranges, is much
better than TRUST: Its efficiency is 14 , its revenue is 22 ,
and its utilization is 13 .
Impact of Bid Distribution: To understand the impact of bid

distribution, we scale all sellers' asking prices by a factor be-
tween 0.5 to 1.5 after the initial ask is drawn from a uniform
distribution between 0 and 2500. This changes the ratios be-
tween sellers' valuation and buyers' valuation. A higher asking
price requires a higher revenue from the buyer side in order
to sell the channels, and is more challenging for an auction.
This trend is shown in Fig. 9. In all cases, outperforms
the existing schemes. The benefit of increases with the
asking price. For example, when we scale the asking price to 1.5
times, our approach improves all three metrics to around of
those in TDSA. The improvement over TRUST is even larger,
as TRUST does not sell anything and all its metrics are 0.
Seller Locality: To study localized sellers, we compare

to the District algorithm described in [24], which is specifi-
cally designed to incorporate seller locality. For fair compar-
ison, we compare with the solution in [24] that does not require
prior knowledge. In order to take seller locality into considera-
tion, it takes a conservative approach and requires every single
seller–buyer pair to be budget-balanced, and then finds the as-
signment for buyers one by one.
We randomly generate three regions and also randomly as-

sign buyers to one of these regions with the same probability.
District requires a preselected parameter that specifies the max-
imum number of winning buyers, and picks that many highest
bid buyers and uses the bid of the first buyer that is not selected
as the amount to charge the winning buyers. We vary that pa-
rameter from 10 to 160.
Fig. 10 summarizes the result. We make three observations:

First, our scheme is significantly better in all the experiments.

Fig. 9. Impact of bid distribution. (a) Efficiency. (b) Revenue. (c) Utilization.

Fig. 10. Local sellers. (a) Efficiency. (b) Revenue. (c) Utilization.

For example, improves efficiency to 3.5 to 13 of
that of District, revenue to 162% to 5.5 , and utilization to
5.5 to 21.5 . The main reason is that District requires each
seller–buyer pair to be budget-balanced. This artificial restric-
tion makes it hard to complete a trade. Our scheme not only
benefits from considering all the buyers from all regions, but
also uses cross-region budget-balance to allow regions with
higher revenue to help weaker regions, thus achieving much
better performance. Second, the preselected parameter (i.e., the
maximum number of winning buyers in District) has significant
impact on the performance of District, and the best parameter
is difficult to determine. If the parameter is too small, too few
buyers get selected; if the parameter is too big, the payment
from winning buyers becomes too low, and only a few sellers
have their budget-balance requirement satisfied as a result. In
comparison, our scheme does not require a preselected param-
eter. Third, compared to the default setting as in the previous
evaluation where a seller can sell to all buyers, the absolute
efficiency, revenue, and utilization are all lower. This is as what
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we would expect since the sellers here only sell in a specific
region, which may not cover all buyers.

VII. CONCLUSION
In this paper, we develop a truthful spectrum double auc-

tion to allow different providers to buy and sell spectrum to
each other dynamically. We explicitly decouple buyer-side and
seller-side designs to capture different properties of the two
sides. To accommodate complicated interference patterns on the
buyer side, we partition the conflict graph to decouple nodes
with no or weak interference while putting nodes with strong in-
terference in the same subgraph. In this way, group bids and crit-
ical values can accurately capture the real competition among
different buyers. We design a novel merge strategy that com-
bines the auction results from different subgraphs to achieve
truthfulness. We further extend our approach to support local-
ized sellers' spectrum resources. Using real cell tower topology
traces from a large US wireless provider, we show our approach
achieves high efficiency, revenue, and fairness and significantly
outperforms existing work.

APPENDIX

Proof of Theorem 4
Proof: To change by lying, a seller needs to change

the point where the budget-balance is satisfied, which requires
the seller to change the total selling price. Let be the total
selling price when channels are sold and be the total
revenue. Let be the utility of seller when it asks
and channels are sold. Since the seller-side design is truthful,
we have , where is 's true valuation
and can be any value. We consider the following cases.
1) is a winning seller: cannot change as long as it still

wins. If it changes and now loses, its utility does not
improve.

2) is a losing seller. We consider the following cases.
• Lie by asking higher. Obviously, cannot increase in
this case since does not reduce for any . is a
losing seller in the original case, so it is not within the
top . cannot become the top by asking higher.

• Lie by asking lower. We only consider when wins be-
cause its utility is still 0 if it still loses. We consider the
following cases.
• Case 1: does not change: 's utility cannot improve
because .

• Case 2: reduces to : is not in the top when
it bids truthfully, so . Thus, either re-
ceive 0 utility or negative utility because

.
• Case 3: increases to . We consider the following
cases:
is in the top when it bids truthfully, and the

th asking price does not change. Thus,
does not change. In the original case, only chan-
nels are sold, so we know . Hence,
budget-balance is not satisfied, and this case cannot
happen. is not among the top sellers when it asks
truthfully. Hence, . 's utility cannot
increase in this case because .

Theorem 6: Our buyer-side design is truthful when is
fixed.

Proof: It is easy to see that the design is monotonic, i.e.,
if a winner wins at , it still wins if it bids , as bidding
higher does not reduce the group bid and all other decisions
are bid-independent. Next, we verify that the price we charge
is the critical value. Specifically, we charge a winner the first
losing group bid in its subgraph divided by , if members of
its group bid higher than that. We find the maximum , so no
more members can be admitted and still afford the fair share.
To prove it is the critical value, we should show: 1) a buyer
still wins if it bids higher; and 2) a buyer loses if it bids lower.
1) holds because the buyer's group bid (which is greater than
times of the critical value) is still higher than the first losing

group and the merge process is bid-independent. To see 2), we
consider three cases: i) remains the same; ii) increases; and
iii) decreases. For i), if a buyer bids lower than that value,
it cannot afford its fair share for the same even if its group
still wins. ii) cannot happen because other members' bids do not
change and no new members can afford the fair share. In iii),
the fair share is even larger as decreases, so the buyer does
not win either. Thus, a buyer never wins if it bids lower than the
price we charge. Therefore, the buyer side with bid-independent
merge is truthful when is fixed according to Theorem 2.
Theorem 7: Bid-independent merge-based allocation does

not allow a buyer to unilaterally change and gain.
Proof: The proof has the same structure as the proof to

Theorem 4, but from a buyer side.
Theorem 8: In our extension to incorporate seller locality, the

price we pay to a seller according to our nonuniform seller-side
pricing is the critical value of that seller.

Proof: Suppose seller becomes budget-balanced after
dropping sellers. To prove is charged with its critical value,
we show: 1) wins if it asks lower; and 2) loses if it asks
higher.
To prove 1): since is not dropped in the original case and

it now asks lower, it cannot be dropped before sellers are
dropped. Thus, we consider two cases: i) If becomes budget-
balanced before sellers are dropped, it wins. ii) If does not
become budget-balanced before sellers are dropped, the same

sellers are dropped as in the original case. That is because
the order of their asking prices does not change, regions without
do not change, and 's regions are still not budget-balanced as

in the original case. Thus, the same th seller is dropped, and
becomes budget-balanced in the same region. Hence, wins.
To prove 2): similarly we consider: i) If is dropped before
sellers are dropped, does not win. ii) If is not dropped

before sellers are dropped, the same sellers are dropped
as in the original case because all regions that have are still
not budget-balanced and other regions are not affected by 's
asking price. Now it selects the highest asking seller that is not
budget-balanced to drop. In the original case, the th dropped
seller, denoted as , was selected. Now asks higher than , so
is dropped instead and loses.
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