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Abstract—Physical-layer identification utilizes unique features
of wireless devices as their fingerprints, providing authenticity and
security guarantee. Prior physical-layer identification techniques
on radio frequency identification (RFID) tags require nongeneric
equipments and are not fully compatible with existing standards.
In this paper, we propose a novel physical-layer identification
system, GenePrint, for UHF passive tags. TheGenePrint prototype
system is implemented by a commercial reader, a USRP-based
monitor, and off-the-shelf UHF passive tags. Our solution is
generic and completely compatible with the existing standard,
EPCglobal C1G2 specification. GenePrint leverages the internal
similarity among pulses of tags' RN16 preamble signals to extract
a hardware feature as the fingerprint. We conduct extensive
experiments on over 10 000 RN16 preamble signals from 150
off-the-shelf RFID tags. The results show that GenePrint achieves
a high identification accuracy of 99.68% . The feature extraction
of GenePrint is resilient to various malicious attacks, such as the
feature replay attack.

Index Terms—Physical-layer identification, radio frequency
identification (RFID), similarity.

I. INTRODUCTION

R ADIO frequency identification (RFID) systems have be-
come important platforms to facilitate the automation for

various ubiquitous applications [1]–[3]. Passive RFID tags pro-
vide numerous attractive features, including remote and non-
line-of-sight access, low cost, battery freedom, and high identi-
fication efficiency. As the name suggests, the most fundamental
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and essential function of RFID systems is tag identification.
However, identities (IDs) stored in tags are considered as a kind
of “naked data.” It is hard for readers to verify the authenticity of
the tag ID transmitted from a wireless device. In fact, attackers
can easily forge a tag with the identical ID of the genuine one for
impersonation or counterfeiting. In addition, attackers can also
“overhear” the communication between the reader and tags to
obtain the application data such as tag IDs.
As the authenticity and privacy of tags are of importance,

many efforts have been done in recent years to design secure
identification and authentication protocols, such as [4]. They are
commonly with a need of changing the current standard or using
more powerful tag circuitry in order to support cryptographic
mechanisms. Most prior solutions suffer from at least one of the
following drawbacks. First, it is difficult for those techniques
to be adopted by manufacturers because they are not compat-
ible with the current industrial standards, such as the EPCglobal
C1G2 specification [5]. Second, cost concern will place a bar-
rier to introducing more powerful circuitry to tags. Third, some
data, though they have been encrypted, are still exposed to at-
tackers, which leaves a risk of privacy leakage. Designing an
identification protocol that achieves compatibility, security, and
cost efficiency is challenging.
Recently, researchers have proposed physical-layer identifi-

cation for wireless devices [6]–[8]. Physical-layer identification
solutions leverage the minor variations in analog hardware and
obtain the device-related fingerprints by analyzing the commu-
nication signals. The main task of physical-layer identification
is to find a favorable feature or feature set, which can be used
as a unique and robust fingerprint of the target device. It aims
at distinguishing different devices by what they are (hardware
feature) rather than what they hold (ID), which enables the au-
thentic identification. This technique has been adopted by many
wireless device platforms [9].
It is crucial to select a qualified feature for physical-layer

identification. A feature or feature set used in physical-layer
identification must present three properties.
1) Robustness: The feature should be resilient to the environ-

mental changes, e.g., the tag orientation or interference.
2) Uniqueness: If using the feature, devices should be suffi-

ciently distinguishable with each other.
3) Availability: Signals for identification should be collected

in a cost-effective way and without the need of specific
devices, e.g., dedicated oscilloscope or spectrum analyzer.

However, existing approaches do not provide features with all
the above properties. For example, some approaches (e.g., [10]
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Fig. 1. Distributions of the pulse intercovariance sequence of four different
RN16 preambles from two Alien 9640 tags. The number of bins is 500, and the
first 120 bins are presented in the figure.

and [11]) use the time interval error as the feature for
identifying passive tags. The TIE-based feature has properties 1
and 3, but can hardly support property 2 since it presents a rela-
tively low entropy. On the other hand, the spectral feature pro-
posed in [10] has the property 2, but is not robust to the tag ori-
entation and requires dedicated equipment. Hence, we are mo-
tivated to pursue a feature presenting all three properties.
To this end, we propose a new internal similarity based phys-

ical-layer identification system,GenePrint, for passive tags. Our
approach is based on analyzing the internal similarity of the
tag communication signal. Our observation is that signals trans-
mitted by the same tagmay differ in average power or frequency
band with different deployments, but the internal hardware fea-
ture is stable. From the RN16 preamble signals of tags, we ex-
tract two internal similarity features, namely covariance-based
distribution feature (Cov) and power spectrum density (PSD),
which can effectively differentiate UHF RFID tags. Moreover,
we show that the calculation of Cov-based similarity will not be
affected by the environmental noise. Hence, the proposed fea-
ture extraction methods do not require devices with very high
sampling rate. Fig. 1 shows some experimental results of the
Cov-based feature extraction. and are the feature vec-
tors from two RN16 preamble signals of tag . and are
the feature vectors from two RN16 preamble signals of tag .
We can obviously see that the two distributions of 's feature
vectors are very similar and can be clearly distinguished from
the two distributions of .
We implemented a GenePrint prototype system using a uni-

versal software radio peripheral (USRP)-based programming
radio device, a commercial RFID reader, and off-the-shelf tags.
GenePrint performs physical-layer identification of RFID UHF
passive tags while being fully compatible with current RFID
standards and off-the-shelf RFID products. The feature extrac-
tion only needs the preamble of an RN16 packet, which does
not contain any application data such as the tag ID. In addi-
tion, our approach is more resilient to attacks such as feature
replaying, by fingerprinting all pulses into a distribution-based
feature instead of a single value. We conduct extensive experi-
ments on over 10 000 RN16 preamble signals from 150 off-the-
shelf RFID tags. Tags are in three types—namely Impinj E41-C,
Impinj H47, and Alien 9640—with chips from two mainstream
RFID manufactures. The results show that, only using the Cov
feature, 12 000 RN16 preamble signals can be classified to dif-
ferent tags with the accuracy of 78.79%. Jointly utilizing Cov
and PSD, the identification accuracy of the same tag population

Fig. 2. Communication process between reader and one tag. The signal we use
is the preamble of the RN16, which is prior to the ID signal.

can reach 99.68% in a standard environment. The results also
demonstrate the robust performance of GenePrint by changing
the distance and angle between the antennas of the reader and
tags. The major contributions of this work are summarized as
follows.
• The GenePrint system is compatible with the current UHF
RFID standard specification. It is a generic solution and can
be implemented by off-the-shelf RFID readers and tags.

• GenePrint uses a new internal similarity-based feature
extraction method to identify RFID UHF passive tags
through the physical-layer information. Meeting the need
of having three important properties of physical-layer
identification, the extracted feature can serve as the finger-
print of a tag with high identification accuracy.

• Without reporting their IDs, the identification process of
GenePrint can improve the privacy protection for RFID
UHF tags. Moreover, the feature extracted by GenePrint
is resilient to the feature replay attack, which can enhance
the authenticity of RFID identification.

II. BACKGROUND

In this section, we briefly overview the backscattering-based
communication between an RFID reader and tags. We also in-
troduce two essential components of the RFID backscattering,
RN16 and Miller-modulated subcarrier.

A. Basic Signaling Interface

Existing UHF RFID systems commonly follow the EPC-
global C1G2 air protocol specification [5], which is regarded as
the state-of-art communication standard for connecting passive
UHF tags and readers. As described in this specification, the
signaling interface can be viewed as the physical layer in the
communication between a reader and tags, which defines all
parameters required for RF communications.
Fig. 2 shows a successful read process between the reader and

tag. According to the specification in [5], an inventory round
begins with a Query command from the reader that includes a
slot-count value and other parameters for tag modulation,
e.g., Backscatter Link Frequency (BLF). Each tag receiving
Query will pick a random value in the range of
and preload the value as its slot counter. The inventory frame
can be divided into slots, and two neighboring slots are
separated by the reader command QueryRep or QueryAdjust.
Upon each QueryRep command, a tag will decrement its slot
counter. When the slot counter reaches 0, the tag will reply an
RN16 packet, containing a 16-bit random or pseudo-random
number. Assuming that in a given slot there is only a single tag
replying to the reader, the reader will send an ACK command
containing a same RN16 as an acknowledgment to the tag. The
acknowledged tag will then reply its ID to the reader.
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Fig. 3. link preamble form under Miller-modulated subcarrier 4.

Fig. 4. Examples of the FM0 sequences and Miller-4 sequences [5].

B. Data-Independent Physical-Layer Information

One of the objectives of our approach is to seek a feature
that explicitly reflects the exact physical-layer information cor-
related to the tag. We choose the preamble of the RN16 packet.
Like most wireless communication mechanisms, EPCglobal
C1G2 also specifies a preamble before RN16. The formats
of preambles differ on their encoding methods. We show a
preamble signal captured by our USRP device in Fig. 3. This
preamble is composed of 64 square wave pulses, which are
usually called Pilot Tone, followed by a bit sequence “010111.”
In order to minimize the impact of the logic data as much as
possible, we only use the 64 pulses as the source of each tag's
physical-layer information.

C. Representation of Physical-Layer Information

Following EPCglobal C1G2 [5], tags shall encode their
preambles as one of the FM0 baseband, Miller-2, 4, or 8
modulated subcarriers. Indeed, all of them are variations of
frequency-shift keying (FSK) [12] modulation. We plot two
examples of FM0 sequences and Miller subcarrier sequences
symbols in Fig. 4. It is obvious that the FSK modulated signals
can be decoded by counting the number of changes of signal
state. For example, the FM0 symbol “0” contains a state change
from HIGH output to LOW output in the middle of the signal,
while “1” does not. In this paper, we use pulse to denote such
changes. The physical-layer features (fingerprint) of a tag can
be extracted from the RN16 preamble signal. We propose to
leverage the similarity among the pulses of a tag's preamble
signal to formulate a unique and robust feature, presented in
Section III.
In our system, we choose the preamble under the Miller-4

modulation. Our system can also use other modulation methods
that have different numbers of pulses, such as FM0 andMiller-2.
However there is a tradeoff:Modulationmethods with less num-
bers of pulses provide higher data transmission rate but less ac-
curate representation of physical-layer information.

III. SYSTEM DESIGN

A. System Overview

In this section, we present the design of our physical-layer
identification protocol and monitor-based identification system.
The GenePrint system architecture is shown in Fig. 5.

Fig. 5. Monitor-based system collects the response signals from tags under the
reader's interrogation. The system consists of three components: signal prepro-
cessing, feature extraction, and fingerprint matching.

TABLE I
PROPERTIES OF FEATURES USED IN EXISTING WORKS

The protocol is performed as follows. The commercial RFID
reader queries a fixed tag within its view field by sending a
“Query” command, as specified in [5]. Upon receiving the com-
mand, the tag replies a response with an RN16 packet. A mon-
itor-based identification system then processes the collected sig-
nals for identification. Suppose the fingerprints of all valid tags
are stored in a local database. If the hardware feature extracted
from the signals has a matched record corresponding to a valid
tag, the system successfully identifies this tag.
The monitor-based identification system consists of three

components: 1) Signal Preprocessing, which is for separating
the RN16 packets from raw signals; 2) Feature Extraction,
which analyzes the RN16 packet to yield a unique fingerprint;
and 3) Fingerprint Matching module, which accomplishes
matching the fingerprint with the one of a valid tag and notifies
the upper-layer application to accept/reject the candidate tag.
Initially, the features of all tags are extracted and stored in
a database. The extraction or matching can be performed by
using data mining methods, e.g., the KStar [13] algorithm. As
shown in Fig. 5, this monitor-based system can be seamlessly
adopted in any existing commercial UHF RFID system. It does
not disturb normal communications between the off-the-shelf
reader and tag. Instead, it only passively listens to the com-
munication and records signals for extracting the hardware
features of tags.
Among all the components, Feature Extraction is the most

primary and kernel work for GenePrint, like all the other phys-
ical-layer identification systems. In this module, it is essential
to determine the criteria of feature selection and a qualified fea-
ture.We adapt the criteria used byDanev et al. [14] as aforemen-
tioned in Section I. Before presenting the details of our system,
we summarize existing features used for identifying RFID UHF
tags in Table I.
In Table I, minimum power [15] represents the target tag's re-

sponse energy, which is usually sensitive to the propagate dis-
tance of signals. In addition, to obtain this feature, the experi-
ments in [15] are conducted in an anechoic chamber, and a spe-
cialized device, Voyantic Tag-formance Lite System, is used to
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reduce the feature's collectability. and spectral feature are
proposed by Zanetti et al. [10], [11]. They both provide high
identification accuracy on UHF tags. However, owns a
relatively low entropy that limits the uniqueness property, while
the spectral feature depends on specific signal acquisition equip-
ment and is not robust to tag locations (accuracy of 37.6% in ro-
bustness test). In contrast, the feature extraction component in
GenePrint aims at finding a new physical-layer feature (set) for
RFID UHF tags, which is qualified for all the three properties.
In our system, the hardware of the monitor is a USRP N210

with SBX daughterboard. The software is partially derived from
a Gen2 RFID project developed by Buettner andWetherall [16].
Compared to other dedicated devices, such as the spectrum

analyzer, USRP is limited in the precision and analysis due to
its lower sampling rate and weaker processing capability. For
example, our USRP SBX has a detecting spectrum ranging
from 400 MHz to 4 GHz, while a typical spectrum analyzer
has wider frequency ranging from 9 kHz to 22 GHz. Neverthe-
less, the dedicated device is usually with high cost. A typical
dedicated spectrum analyzer is more expensive than USRP by
10 times.
In addition, the USRP connects to a host machine that can

sustain up to 50 MS/s sampling rate over the GigE interface.
Unfortunately, as explained by Buettner [16], the current GNU-
Radio may lose a large amount of data if processing in such a
high sampling rate. By using this generic hardware, we are only
allowed to use a sampling rate of 10MS/s, two-magnitude lower
to that of the purpose-built readers of previous physical-layer
solutions such as [10]. It is a great challenge for extracting
the hardware feature from tags' weak signals with the impact
of strong and complex environmental signals. Experiment re-
sults in Section V show that our internal similarity-based so-
lution successfully extracts the signal feature using the generic
and low-cost hardware with higher accuracy. We also believe
if using dedicated devices in the signal acquisition, the system
may derive benefit from the sampling precision, which leads to a
higher identification accuracy. However, the improvement may
be limited.

B. Signal Preprocessing
The raw signal received by USRP includes the carrier wave,

reader command, and tag response. To achieve data-indepen-
dent feature extraction, in the first step, we should adopt a fast
scheme to separate RN16 packets from the raw signal as il-
lustrated in Fig. 6. Since the frequency of the tag response is
higher than that of reader commands, an intuitive solution is
to implement a bandpass filter followed by an inverse Fourier
transform. The data rate of tags is determined from the monitor's
perspective by decoding the Query command of the reader [5].
Hence the output of the bandpass filter is the frequency domain
of the tag's response. Thus, using an inverse Fourier transform
module can recover the original signal from the specific signal's
Fourier transform. However, as the parameters in the bandpass
filter cannot be completely precise when applying to real imple-
mentations, this process will incur signal distortion.
In order to solve this problem, we propose a fine-grained

RN16 Filter component, which can work with a variety of signal
magnitudes and frequency channels. This solution is based on

Fig. 6. Raw signal captured by USRP, which is composed of carrier wave,
reader commands, and tag responses.

Fig. 7. Different performance of reader command signal and tag response
signal. (a) Reader signal in time domain. (b) Reader signal in frequency
domain. (c) Tag response signal in time domain. (d) Tag response signal in
frequency domain.

our observation that in the frequency domain, the signal of tags
shows a significant difference from that of readers. We show
this difference in Fig. 7. In Fig. 7(a) and (c), we show the signal
of a randomly chosen reader command Query and the signal
of the corresponding tag's RN16 response. Transformed to the
frequency domain, they show a big difference, as plotted in
Fig. 7(b) and (d). Such differences can be used to filter the tag
response from the reader's signal.
More specifically, we use a sliding window to traverse

through the whole signal. Fast Fourier transform is applied to
detect whether the signal's energy in this window follows the
signal pattern of tags. The width of the sliding window is crucial
to the filter's accuracy and efficiency. In our implementation,
we set the window width approximately equal to the two thirds
of the length of RN16. This setting can guarantee that for each
RN16, the monitor will get at least one valid candidate RN16
window signal. If two adjacent windows are both valid, we
merge them to form a long candidate signal. For the isolated
window, we will perform a forward search by merging the
preceding signal part. The search scope will be one third of
the length of RN16, as shown in Fig. 8(b). In this way, we can
ensure that the preamble of the tag's response is not missed.
Another challenge is to distinguish RN16 signal from tag ID

signal. Since both of them have the same pattern in frequency
domain, the only feature to distinguish them is their signal
length. When we use Miller-4 as the data encoding method and
a BLF equal to kHz (these
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Fig. 8. Different manipulation of sliding window in RN16 Filter component.
(a) Two adjacent candidate windows will be merged together. (b) Isolated can-
didate window will search forward for the preamble.

parameters are calculated by decoding the reader command
Query) [5], the length of an RN16 signal is about 5000 points
with a USRP sampling rate of 10 MS/s while the length of tag
ID signal is about 9500 points.
For obtaining the preamble signal of RN16, GenePrint

needs to perform a fine-grained pattern recognition scheme
on all candidate RN16 signals. A much smaller window
(width points) is used to find the pulse pattern, facilitating
to precisely locate the transient point between the carrier wave
and the tag preamble. Consequently, a real RN16 signal can be
separated.
For the RN16 Filter component, we assume no collision hap-

pens. That means GenePrint identifies one tag at a time to sim-
plify the signal acquisition process. In addition, a commercial
reader may not be able to decode a valid RN16 successfully in
a Query round due to the low received signal strength (RSS)
of the signal backscattered from a tag. The reader then fails to
identify the tag (no ACK replied by the reader). However, in our
protocol, the monitor records all RN16 signals in a sequential
order, which indicates that even if the observed RN16 signals
cannot be decoded by a commercial reader, they can still be con-
sidered as valid samples, and then the corresponding tag can be
identified.

C. Feature Extraction

In this section, we detail the extraction procedure for two
different features: the covariance-based pulse inter feature
(Cov) and the power spectrum density based signal inner
feature (PSD).
1) Cov-Based Pulse Inter Feature: We develop a theoretical

model to show that the similarity among the pulses of the pre-
amble signal effectively reflects the hardware feature of tags.
For the given tag, let and be signal vectors of the th

and the th pulses at the given observed RN16's preamble signal.
can be considered as the sum of: 1) a constant vector of the

standard square wave pulse ; 2) a value representing the tag's
inherent hardware feature ; and 3) a series of random Gauss
white noise , as shown in Fig. 9. We have

(1)
(2)

By exploiting the internal similarity of the given signal, we
show that the covariance of and can be used to represent
the tag's hardware feature.
STEP 1: Noise Cancellation

Fig. 9. Pulse can be viewed as the sum of a standard square wave pulse, signals
representing the hardware feature, and a random Gauss white noise.

Theorem 1: Let , , and be
the covariance operator. Then

(3)

STEP 2: Feature Extraction
Theorem 2: Let and be the high state parts of and
, and and be the corresponding signal vectors of hard-

ware features, respectively. We have

(4)

Theorems 1 and 2 show that the calculation of Cov-based
similarity will not be affected by the environmental noise.
STEP 3: Signal Feature Establishment
If we calculate the covariance of two arbitrary pulses' high

state parts, we finally get the covariance of the corresponding
hardware features. Extending this method to all the 64 pulses'
high states and low states, then for one single signal, we have
two vectors

for integers (5)

for integers (6)

Note that each of and has elements.
Combining (5) and (6), the signal feature can be extracted as a
covariance sequence in a length of

(7)

For the signal of each tag, we can construct a vector in the
form of (7).
Although the elements in a vector are only correlated with

the hardware inherent features, the hardware inherent feature re-
flected in a specific pulse is uncertain. This means the value of
one particular element of the vector is unpredictable. Never-
theless, as the vector can present the characteristic of the tag's
hardware, it should follow a certain probabilistic distribution.
In order to verify this idea, we use an equi-width histogram

to estimate the distribution of . We first choose two different
Alien 9640 tags and , and randomly pick two RN16 pre-
amble signals for each tag. Performing the above process of fea-
ture extraction, we obtain four covariance sequences: and

for Tag , and and for Tag . Each of them is
a vector containing elements. For each
vector, all elements are sorted into 500 equally spaced bins be-
tween the minimum and maximum value of it. The bins are
displayed as rectangles such that the height of each rectangle
indicates the number of elements in the bin. Fig. 1 shows the
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results of the first 120 bins. As shown in Fig. 1, the two dis-
tributions from Tag are very similar, and they can be clearly
distinguished from the two distributions from Tag .
In our system, for each RN16 preamble, we use the distribu-

tion of the Cov-based feature as the main hardware fingerprint
of tags. Experiment results shown in Section V demonstrated
that using this feature can achieve an identification accuracy of
77.88%, 79.42%, and 79.06% for three different tag models Im-
pinj E41-C, Impinj H47, and Alien 9640, respectively.
2) PSD-Based Signal Inner Feature: In this section, we pro-

pose another similarity-based feature extraction mechanism by
using power spectrum density (PSD). Different from the Cov-
based pulse inter feature that takes pulses as basic elements, this
approach focuses on the whole signal (64 consecutive pulses)
and extracts the inner similarity of the signal in the frequency
domain.
First, we consider the preamble signal as a random process.

For mathematically describing this random process, a prob-
ability density function (PDF) is usually used. However, the
PDF is not a complete description. For instance, at two arbitrary
points in the time domain, we have samples and

. The PDF only describes and
, but cannot infer the relationship between them. In order to

characterize such a relationship, the autocorrelation function
can be utilized as follows.
Defining as a time difference variable, the autocorrelation

function can be expressed as [17]

(8)

This function can draw out the correlation between two sam-
ples depending on the distance they are spaced. Using this
metric in the frequency domain, we obtain the power spectrum
density function according to the Wiener–Khintchine–Einstein
Theorem [17]:
Theorem 3 (Wiener–Khintchine–Einstein Theorem): For a

wide-sense stationary random process whose autocorre-
lation function is given by , the PSD of the process is

(9)

Like the autocorrelation function in the time domain, PSD is
a deterministic representation of the spectral characteristics of a
random process. This can also be proved inmany other domains.
For example, the authors in [18] utilized the power spectrum
feature to classify images.
In our system, the power spectral density of a signal is esti-

mated by the Yule–Walker algorithm [19], [20], which is an au-
toregressive model-based PSD estimation method. The length
of the result vector is determined by the length of input signal
and the FFT. In our experiments, we only choose the first 20
dimensions of the result vector because the remaining parts are
too sparse.
In GenePrint, PSD is used as the secondary feature for identi-

fication. According to the experimental results, combining with
the Cov-based feature the identification accuracy of GenePrint
is over 99.68%.

D. Fingerprint Matching
Like all other physical-layer identification solutions, the

system should construct the reference fingerprint database for
tags based on the extracted features. In our prototype system,
we collect RN16 preamble signals from all 150 tags that will
be identified. For the captured signals, the proposed feature
extraction methods are employed to generate the tag features.
GenePrint then employs a KStar learning tool to produce a
single reference fingerprint from each tag's features extracted.
Each tag will have a reference fingerprint recorded together
with its ID in the database. In order to improve the identification
accuracy, multiple feature fingerprints are jointly applied to
generate a reference fingerprint. In practical RFID systems, the
database can be established using the above methods by man-
ufacturers when producing tags, or by the system administer
before deploying the tags.
For identifying a given tag, the monitor captures the RN16

preamble of the tag, generates its fingerprint via proposed fea-
ture extraction methods, and computes a matching score for
every entry in the database. The higher the matching score is,
the more similar two fingerprints are. The score is computed
using the distance computation mechanism in the learning tool.
In GenePrint, we use the entropy-based distance computation.
An entry that is scored higher than a threshold is considered
as a valid entry. We will discuss how to set the threshold in
Section V.
If there is a single valid entry, the system just reports an “ac-

cept” and the tag ID in the entry. If there are multiple valid en-
tries for a tag in the database, there are two possible strategies
for GenePrint: 1) reporting an “accept” and the tag ID in the
highest scored entry, or 2) continuing to capture multiple RN16
signals from the candidate tag and taking the average of scores
from multiple fingerprints. If there are still multiple entries, the
system reports an “accept” and the tag ID in the highest scored
entry. In our performance evaluation, we choose the strategy 2
and take at most three RN16 signals for identifying a given tag,
as described in Section V-C. If there is no valid entry, a “reject”
will be reported.

IV. CLASSIFIER SELECTION AND ANALYSIS

In this section, we implement different classifiers to evaluate
their performance in the fingerprint classification on our UHF
passive tags. Generally, the best selection of classifier should
depend on the inner structure of fingerprints used. However, due
to the affect from complicated environments and unpredictable
hardware performance in sampling, it is impossible to formu-
late an accurate and universal model for all fingerprints. In ad-
dition, different applications may tend to utilize different clas-
sifiers based on the tradeoff of accuracy, computational com-
plexity, and memory requirement. Therefore, the purpose of this
section is to give a guide in the classifier selection for the real
implementation of GenePrint by comparing the performance of
different classifiers when using the GenePrint's fingerprints.

A. Candidate Classifiers
A classifier is one of the most commonly used modules in a

physical-layer identification system. A classifier tool works as
follows. It takes a collection of fingerprint entries as the input,
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Fig. 10. Classification accuracy of combined fingerprint (Cov, PSD) when im-
plementing different classifiers to both of the Accuracy Group and Robustness
Group data sets.

each belonging to one class. These entries are described by their
fixed size of attributes. The output is a predicted class to which
an entry belongs.
We choose seven different candidate classifiers: C4.5,

RIPPER, k-NN, KStar, Naïve Bayes, ANN, and SVM based on
three main considerations: The classifier should be: 1) typical
and commonly used; 2) easy to implement; and 3) covering
most categories of classification approaches. Details about the
classifiers are listed in [21].
In the context of marching learning, all the classifiers we

choose are based on supervised learning. Simply using one of
the above classifiers may be not good enough. Other techniques,
such as feature selection and ensemble methods, may be also
required. These issues are beyond the scope of this paper. In
our experiment, we simply utilize each classifier to classify fin-
gerprint entries and present the classification accuracy for each
classifier.

B. Classifier Selection Experiments
In this set of experiments, we use two small groups of data:

Accuracy Group and Robustness Group. The Accuracy Group
contains fingerprints from 15 tags captured in the same location.
For each tag, we record 80 preamble signals and generate their
fingerprints. Tag populations are randomly selected from three
different tag models that are described in Section V-A. On the
other hand, the Robustness Group is composed of fingerprints
captured from 35 different locations with the distance varying
from 0.3 to 1 m and angle changing from 60 to 60 (def-
initions of and are detailed in Section V-C.2). Ten tags are
used in this data set, and for each tag, we also calculate 80 fin-
gerprints in each location.
We first test the performance of different classifiers for the

combined fingerprint (Cov, PSD). As shown in Fig. 10, the clas-
sification accuracy of Accuracy Group is better than that of the
Robustness Group. This is because longer distance and greater
angle between the reader antenna and the tag will lead to a lower
signal-to-noise ratio (SNR), introducingmuchmore outliers and
errors to the fingerprints. Among all the classifiers, the KStar has
the best performance, i.e., a classification accuracy of 97.58%
and 97.5% for Accuracy Group and Robustness Group. Another
observation from Fig. 10 is that the Naïve Bayes classifier has
the greatest variations in classification performance. This in-
spires us to further explore the performances of two individual
fingerprints when applying different classifiers.
In Fig. 11, we compare the performance of seven classifiers

when processing different single fingerprints. For the first four

Fig. 11. Classification accuracy of different classifiers for Cov-based finger-
print and PSD-based fingerprint in Accuracy Group and Robustness Group data
sets.

classifiers, PSD-based fingerprint can achieve a higher accu-
racy compared to the Cov-based fingerprint, but this strength
is not significant in the Robustness Group data set. The Naïve
Bayes learner has the greatest variations in classification perfor-
mance, indicating that the PSD-based fingerprint is more likely
to be unsuitable for this classifier. Especially, Naïve Bayes only
achieves an accuracy of 34.08% for the Robustness Group-PSD
data set.

C. Classifier Selection Analysis
We find that we can categorize the features into two cate-

gories, one-dimensional (e.g., [10], [11]) and multidimen-
sional (e.g., Cov and PSD of GenePrint) features. In particular,
we analyze the experimental results using different classifiers
on the (Cov and PSD) feature, as shown in Figs. 10 and 11.
First, we find the Naïve Bayes classifier has the biggest limi-

tation when classifying both Cov-based and PSD-based finger-
prints. This is mainly because the performance of Naïve Bayes
classifier will be degraded in terms of the correlated attribute.
Serving as a kind of distribution (Cov) and spectrum (PSD) in-
formation, both fingerprints cannot hold the conditional inde-
pendence assumption for their attributes.
Since fingerprints in GenePrint are multidimensional, they

are more likely to bring noises for classifiers. We find that ANN
and SVM classifiers are not qualified for GenePrint. This is be-
cause both ANN and SVM classifiers suffer from high compu-
tational complexity in building up their models, which tends to
overfit the training set during the learning phase. In contrast,
some simple classifiers, such as the C4.5, RIPPER, and two in-
stance-based methods are more appropriate for GenePrint's fin-
gerprints. A more elegant strategy to classify GenePrint's fin-
gerprints is to implement a dimensionality deduction approach.
For the high-dimensional fingerprints used in GenePrint, this
can not only reduce the computational complexity, but also im-
prove the classified accuracy by removing redundant attributes.
On the other hand, in the domain of physical-layer identifi-

cation for wireless devices, many one-dimensional features are
utilized to distinguish different devices, e.g., , [10], and
frame frequency offset [9]. With fewer dimensions, these fea-
tures require less computational resource and fewer restrictions
on classifiers. They are more adaptable to different classifiers,
such as k-NN [10] and SVM [9].

V. EXPERIMENTS AND EVALUATION
In this section, we present the implementation and the per-

formance evaluation of the GenePrint system. We describe the
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Fig. 12. Experiment equipment.

TABLE II
TAG MODELS INVOLVED IN THE EXPERIMENT

experiment setup in Section V-A and the accuracy metrics used
to evaluate classification and identification in Section V-B.
The experiment results will be presented and analyzed in
Section V-B.

A. Experiment Setup
We implement and evaluate our system in an indoor environ-

ment with the existence of RF noises including WiFi, AM/FM,
and Bluetooth signals. The testbed consists of a commercial
RFID system with an Impinj R220 reader and 150 off-the-shelf
RFID UHF passive tags from three different models. For the
low-cost and generic monitor, we use a USRP N210 plus an
SBX daughterboard that has been introduced in Section III. An-
tennas used by both the reader and the monitor are circularly
polarized with a gain of 8 dBi (Laird S9028PCL). Fig. 12 shows
the testbed.
To show the GenePrint system is universally applicable, we

test tags in different design models. The 150 tags for evaluation
are in three different models from two manufactures. They are
Impinj E41-C, Impinj H47, and Alien 9640. To better evaluate
the system's accuracy and robustness, we purposely use those
tags with different designs as shown in Table II.
We conducted three main sets of experiments to evaluate

the performance of our system. For each set of experiments,
different models of tags are used, and 80 RN16 preambles
are collected for each tag. The communication channel be-
tween reader and tag is fixed, which has a center frequency
of 912.75 MHz. The first set of experiments aims to evaluate
the classification and identification accuracy of the GenePrint
system. In the second set of experiments, we vary the distance
between the reader and tags from 30 cm to 1 m. This leads
to a variation of the averaged baseband power of the signals,
which introduces a negative impact due to the environment
noise increase [22]. In the last set of experiments, we perform
an antenna-orientation-aware experiment to further study the
robustness of identification.

B. Metrics and Methodology
We evaluate the performance of both classification and iden-

tification. For classification, we test whether features extracted

from different RN16 preamble signals of one tag can be classi-
fied to a same feature class. For identification, we use reference
features in the database to identify each tag.
1) Classification: We employ a Correctly Classified

Rate (CCR) to evaluate the classification capability of extracted
features. Each individual tag is viewed as one class. For each
tag, we use its 80 signals as the classifier instances. The CCR
is measured by the result of the classifier, which is the average
percentage of correctly classified instances using the cross-val-
idation mechanism. The classifier we use is an instance-based
classifier, KStar algorithm, based on the entropic distance
measurement.
2) Identification: For evaluating the identification perfor-

mance, we implement a threshold-based identification system
and calculate the Equal Error Rate (EER) as our performance
metric. The system is built as follows. Assuming after the
training process, we have already obtained the reference finger-
print of each tag. For each candidate fingerprint to be identified,
we first measure its matching scores to all reference fingerprints
stored in the database. Here, the higher the matching score is,
the more similar the two fingerprints are. We define twometrics,
False Accept Rate (FAR) and False Reject Rate (FRR). For a
given threshold, FRR is the percentage of scores corresponding
to the same tag but lower than the threshold, and FAR is the
percentage of scores higher than the threshold but that locate
tags to wrong reference entries. We select a fixed value as the
threshold with which FRR is equal to FAR. The error rate at
this threshold is the EER.

C. Experiment Results

1) Recognition Results: In this section, we discuss the accu-
racy of our system for classification and identification. We used
12 000 RN16 preambles (80 signals 150 tags) as our data set.
A 5-fold cross validation is used to calculate the error rates. In
each fold, 60 signals are used as the training set, and the rest of
the 20 signals are used to evaluate the testing accuracy for each
tag.
Note that as explained in Section III-C.1, in order to build

the Cov-based feature, we use a histogram method to estimate
the distribution of the covariances vector. To our knowledge,
there is no feasible approach to estimate the optimal number of
bins, denoted as , which is used for containing covariances
values of pulses, if the shape of the distribution is unknown.
However, different settings on the number of bins can reveal
different features of the data. In order to best estimate the distri-
bution of the pulse-inter covariances vector, we use a subset of
our tag population to evaluate the feature classification accuracy
with different numbers of bins. Fig. 13 shows the experiment re-
sults of 150 tags. We collect 80 RN16 preambles from each tag
in this experiment. We perform 13 groups of experiments with
the number of bins varying from 10 to 200 and evaluate the ac-
curacy with the metric CCR. As shown in Fig. 13, in general
the identification accuracy is robust even if varies signifi-
cantly. If is too small, i.e., less than 10, the classification ac-
curacy becomes relatively low. This is because the feature is not
fine-grained enough to represent sufficient difference between
the tag and other tags. On the other hand, under a large number
of bins, for instance 150 or 200, the feature may be sparsely dis-
tributed to many bins. Therefore, there might be some bins
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Fig. 13. Classification accuracy of Cov distribution feature for different set-
tings of the number of bins in the distribution estimation approach. This classi-
fication is performed on 150 RFID UHF tags (80 samples for each tag), and the
classifier is a 5-fold KStar.

TABLE III
CLASSIFICATION ACCURACY

containing no covariances, resulting in a decrease of classifi-
cation accuracy. We recommend to set an ranging from 50
to 100, where the system can yield highly correct classification
rate in average. In the following experiments, we set as 80.
Table III shows the Cov-based Pulse Inter Feature classifi-

cation accuracy on a population of 150 tags, when equals
to 80. In our evaluation, we focused on classifying RFID tags
with the same model, which is a very challenging task. It is ob-
vious that classifying tags with different models will be much
easier because their hardware models are fundamentally dif-
ferent. Table III shows the results for each of the three models.
We also compare our experiment results to the work in [10].
Limited by the lack of hardware, we are not able to get the pur-
pose-built reader. The sampling rate of our USRP is only 10
MS/s, while that of their purpose-built oscilloscope can be as
high as 100 MS/s 1 GS/s. Therefore, we use the classifica-
tion accuracy claimed in [10] directly as the benchmark. Note
that, in [10], five signals are required to compose a single finger-
print. However, for the evaluation of classification, we treat each
signal received as a valid sample and the feature extracted as an
individual fingerprint for the classifier. As a result, our solution
is much more efficient. As shown in Table III, the three models
of tags have an average accuracy of 78.79%, which is higher
than that of feature and . However, Cov-based feature
is multidimensional, indicating that it needs more storage space
and computational overhead. On the other hand, the Spectral
feature [10] is more accurate than Cov-based feature, but it suf-
fers from lower robustness and requires specific signal acquisi-
tion device.
We implement the threshold-based identification mechanism

described in Section V-B. In this experiment, we establish
the fingerprints for 150 tags by using the fingerprint set (Cov,
PSD). Both of them are multidimensional features, and we
simply group them into one big vector that has 100 attributes
(Cov: 80, PSD: 20). The matching score in this system is
measured as the distance defined in the KStar algorithm, which
is the complexity of transforming one instance into another. To

Fig. 14. Identification accuracy of the feature set (Cov, PSD) for different
number of samples. (The accuracy of feature is from [10].)

Fig. 15. Experimental deployment.

improve the identification accuracy, the sample-combination
method is adopted. Let be the number of samples acquired
to produce one fingerprint. Fig. 14 indicates the experiment
results when . We compare our results
to the identification accuracy of the feature-based
method presented in [10]. Note we mainly focus on the Alien
9640 tags for the comparison, as the work in [10] mainly tests
Alien 9549 tags. As shown in Fig. 14, our GenePrint system
achieves a very high accuracy ( 99%) as long as the number
of samples is greater than 1, which is better than that of the

-based approach. In our case, when , the
identification accuracy is 99.68%, and when , our system
can achieve an accuracy of 100%. In practice, the setting of

is determined based on the accuracy requirement of real
applications. We set the default value of as 3 in the rest of
the experiments.
2) Feature Extraction Robustness: In this section, we ana-

lyze the robustness of the extracted feature set (Cov, PSD). We
vary the distance and the angle between the reader's antenna and
the tags, as illustrated in Fig. 15. The is defined as the distance
between the centroid of reader antenna and the tag. We conduct
eight different experiments with cm to cm.
In the experiment with changed orientations, we vary the value
of : , , and . We use 30 different tags (10 tags
for each model) for both of the distance and orientation experi-
ments. For each different position, 80 RN16 preambles are col-
lected for each tag. That means the distance and the orientation
experiments have used (distance:

; orientation: )
signals altogether.
We first show the classification accuracy in Fig. 16. We used

the KStar classifier with 5-fold cross validation to evaluate the
classified accuracy, and the number of signals to generate a fin-
gerprint is 1. The average classification accuracy of dis-
tance and orientation tests are 94.87% and 92.45%, respectively.
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Fig. 16. Feature extraction robustness by varying the distance and angle.

Fig. 17. GenePrint's EER of different distance ranges.

The beamwidth of a regular UHF RFID antenna is 70 . Consid-
ering real-world aspects, we set the maximum orientation angle
as to ensure normal reading of RFID reader. The distances
used in the experiment are relatively short compared to those
in [10]. This is mainly because USRP has a much lower sam-
pling rate than that of the purpose-built reader in [10]. If the
tag's response transmits a longer distance, the signal we col-
lected will suffer from lower signal-to-noise ratio. Using a low
sampling rate on the signal with strong noise, it is difficult to
obtain enough information to extract a good fingerprint. This
problem is part of our future work, and we will try to enlarge
the distance of identification.
To investigate the GenePrint's robustness, we group the same

tags' fingerprints from different locations. In the distance ex-
periment, we define different range zones between the reader
antenna and the target tag, which are from 30 to 120 cm. For
example, in the 30-cm range zone test, we combine the fin-
gerprint sets of 15 and 30 cm used in the previous experiment
(Fig. 16). This means for each tag, it has 160 fingerprints gen-
erated from two locations. The orientation experiment is essen-
tially the same. We then vary the angle ranges from 60 to 120 .
The purpose of this experiment is to find out GenePrint's fea-
sible service range. The threshold-based identification mech-
anism that uses is implemented in this experiment.
Figs. 17 and 18 show the experiment results under different set-
tings of distance and angle range. In both experiments, the EER
of the worse situation is about 0.05, which is higher than the
fixed location experiment results in Fig. 14. This may be caused
by the indoor multipath effect, which introduces uncontrollable
environment noises. However, this negative influence is not se-
rious, and we can reduce this effect by increasing the number of
signals to build a more unbiased fingerprint.
Considering all the locations in our experiment, we fur-

ther calculate the True Accept Rate (TAR), defined as the

Fig. 18. GenePrint's EER of different angle ranges.

Fig. 19. True accept rate under small settings of FAR.

percentage of the tags that are correctly identified/classified,
with various values of FAR. The results shown in Fig. 19 reflect
that GenePrint can achieve very high TAR even if the FAR is
very small.
We also investigate the benefit from the combination of Cov

and PSD. We regenerate the fingerprints under the same experi-
ment settings, e.g., range zones, as shown in Fig. 17. Each newly
generated fingerprint is only composed of 100 PSD attributes.
We then compare it to the combined fingerprint (Cov, PSD),
which has the same size of attributes but in the form of (Cov: 80,
PSD: 20). Fig. 20 shows the average EERs of the two types of
fingerprints for three types of tags. As shown in the figure, the
combined fingerprint (Cov, PSD) significantly reduces the EER
from the PSD only fingerprint. This is because PSD is sensi-
tive to the location of tags, like other spectral fingerprints. It is
known that the received signal and its PSD are determined by
the channel distortion, including the attenuation and delay. Ac-
cording to the spatial selectivity theory [23], the channel distor-
tion will change significantly even if the communicating party
moves a distance as short as the wavelength of wireless signals,
e.g., 32.5 cm for the 924.38-MHz UHF RF used by the com-
mercial RFID reader in our system. In other words, the PSD of
a tag is highly correlated to its location. The result reveals that
the proposed Cov feature well complements the PSD feature.
The combination of them can effectively amend the influence
from location changes, and hence improve the identification ac-
curacy for Geneprint.

VI. SECURITY ANALYSIS

Existing attacks targeting RFID systems can be categorized
into active and passive attacks.
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Fig. 20. GenePrint's EER for three types of tags.

Active Attack: The ultimate goal of active attacks to an identi-
fication mechanism is to successfully impersonate a victim. For
example, in an access control system, an adversary can use spe-
cific equipment or the same device as GenePrint's monitor, e.g.,
spectrum analyzer and USRP, to generate forged fingerprints for
cheating the system or impersonating some valid users. As dis-
cussed in [24], there are two major active attacks that potentially
threaten the physical-layer identification, feature replay-based
and signal replay-based impersonations.
Impersonation by Feature Replay: This attack attempts to

partially or fully simulate the features of genuine tags for
impersonation. We assume the attacker knows the types of
features used by the tag, as well as the identification mech-
anisms, including the feature extraction, classification, and
matching methods. However, he does not know the exact value
of the features. To our knowledge, the major features used
for physical-layer identification are extracted from distinctive
signal properties, such as the Frame frequency offset (F1),
Frame SYNC correlation (F2), Frame I/Q origin offset (F3),
Frame magnitude error (F4), Frame phase error (F5) [9], Time
Interval Error (TIE), and Average Baseband Power (PB) [10]. If
the feature extracted is related to a value, for example TIE, the
attacker can adjust the signals of attacking device to approach
the value, and hence simulate the feature. The adjustment
is usually achieved by linearly tuning the analog circuit of
attacking devices or digitally shrinking or expanding the ideal
constellation symbols' position in the I/Q plane [24].
GenePrint is very robust against the feature replay attack. It

utilizes the internal similarity of pulses as the physical-layer fea-
ture, which involves all preamble signals in the feature extrac-
tion. To impersonate a targeted tag, the attacker should generate
the signals with the same feature using his own devices. This
impersonation requires the attacker repeatedly generating dif-
ferent 64 preamble pulses until one try can be accepted to a
valid entry, which is extremely time/resource-consuming. Even
if we assume that the attacker knows the exact values of fea-
tures, i.e., the distribution of covariances of pulses, GenePrint
is still hard to be broken. Note that with such an assumption,
most other physical-layer identification approaches are easily
broken because the feature can be directly generated. To break
GenePrint, the attacker has to perform brute-force search by
the following steps for impersonating a victim tag, which in-
creases the overhead or difficulty of attacks: 1) generating 64
preamble pulses; 2) calculating the covariance for each pair of
pulses; 3) obtaining the distribution of these covariances; and

4) verifying whether this result matches the known feature of
the targeted tag. The attacker may shrink the scope of pulse gen-
eration to improve the attacking efficiency. However, the scope
size depends on the number of fingerprints accumulated by the
attacker.
Impersonation by Signal Replay: The attacker can record

signals from a targeted tag, and later retransmit an identical
signal to the reader for impersonation. The reader cannot
distinguish the retransmitted signals from the genuine ones
if the attacker can successfully make them identical. To our
knowledge, no existing work can effectively defend against
such an attack, including our work. Nevertheless, performing
such an attack usually requires very sophisticated and costly
equipment, such as the oscilloscope, signal generator, etc. The
oscilloscope in [10] has a 100 MS/s–1 GS/s sampling rate
for data collection. Recording/forging signals may require
equipment whose sampling rates are higher than those values.
Low-cost equipment used to record RF signals like USRP can
only reach a maximum 100 MS/s sampling rate. The bandwidth
of the Ethernet cable between the USRP and PC is even lower,
only 50 MS/s. All these facts make the signal replay-based
impersonation extremely difficult. Note that impersonation is
still possible in practice, e.g., the work in [24] successfully
implemented a device impersonation attack by signal replay
with an arbitrary waveform generator. The use of GenePrint
can effectively mitigate the impact of impersonation attacks.
Passive Attack: Passive attacks are mainly conducted by

“overhearing” the communication between the reader and tag.
For example, in the access control example aforementioned, a
passive adversary can use the off-the-shelf reader or monitoring
devices, e.g., USRP, to perform the overhearing. We discuss the
passive attack whose objective is to obtain the application data,
i.e., IDs of tags, from the RFID system. Passive attacks targeted
on the application data do not work for GenePrint due to the
data-independence of GenePrint. In our protocol, the entire
communication between the reader and tag does not involve
the tag ID or any other application information. Therefore,
those attackers can obtain nothing from the system. Even if
the attacker owns the same capability as our system that can
analyze RN16 signals, it gets no information of the tags as it
has no authorization to access the reference database.
In fact, our protocol includes two kinds of trustworthy identi-

fication approaches. The basic protocol could skip all operations
related to the tag IDs, such as the selecting and acknowledging
in the standard inventory round defined in EPCglobal C1G2
specification [5]. In order to achieve a stronger privacy-pre-
serving protocol, GenePrint could use an incomplete inventory
round, which implies the inventory will be ended by receiving
the tag's RN16 response. We propose two approaches: 1) calling
the corresponding interfaces provided by the manufactures of
commercial readers, and 2) implementing an RFID reader using
USRP-like devices and making changes in the communication
mode of readers by software radio. Buettner et al. [25] have
shown the implementation of an RFID reader by USRP. The ad-
vanced protocol could cooperate the ID information and phys-
ical-layer fingerprints. In this protocol, one tag is verified only
if its ID and the fingerprint extracted are matching. This can
achieve a high-level trustworthy identification.
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Privacy: For physical-layer identification protocols, privacy
is also an important concern. GenePrint provides strong privacy
protection for application information. This means the protocol
is ID-free, which leaves less opportunities to attackers to com-
promise user privacy. However, it is still possible for a very
powerful attacker to track a tag using physical-layer informa-
tion. An attacker with the capability of signal replaying can
record the signals of targeted tags. Using the similar feature ex-
traction mechanism to our protocol, or other feature extraction,
the attacker can track the movement and appearance of a tag
without knowing the tag ID. In fact, signal recording is able
to effectively break the privacy of RFID tags as well as other
wireless devices. Preventing unauthorized physical-layer iden-
tifications remains an open issue.We will address it in our future
work.

VII. RELATED WORK

Physical-layer identification mechanism has been proposed
in variant platforms [9]. The feasibility of these approaches is
the fact that hardware imperfections in the transmitter circuitry
are introduced during the manufacturing process. Such imper-
fections are transmitter-specific and affect the communication
signal, which makes the device fingerprint measurable. Some
systems were implemented to distinguish HF tags [26], and
some others focus on UHF tags, such as [10] and [15]. The
authors in [15] proposed a Minimum Power Response feature
extraction method to distinguish different tags. To the best of
our knowledge, [15] is the first work on feature extraction of
RFID UHF tags. The authors in [10] propose three different
features. Compared to those features, fingerprints of GenePrint
are based on the extraction of signal internal similarity that can
reflect the hardware feature and is more resilient to environment
noise. However, the multidimensional feature set (Cov, PSD)
also requires more storage space and increases the system's
computational complexity.
For other purposes, Zheng and Li [27] propose to identify

missing tags by using the aggregated physical signals from con-
current tag responses. Hekimian-Williams et al. [28] propose an
RFID tag-based localization method by using phase difference.
Although these works are not for physical-layer identification,
they are based on the analysis of physical feature to some extent.
For RFID tags, throughput optimization and cardinality

estimation are also important topics. Instead of using traditional
anti-collision methods, some works took the collision responses
from tags as useful information. In the work proposed by
Wang et al. [29], collisions were regarded as transmitted code,
and the decoding was proceeded with the compressive sensing
algorithm. Blink [30] exploits characteristics of backscatter
link layer and achieved the mobility detection and rate adap-
tation designs. On the other hand, efforts on the cardinality
estimation, such as [31], focus on designing fast and accurate
estimators by counting the numbers of slots in different types.
In the literature of RFID-oriented privacy preserving, re-

searchers focus on the security of IDs as well as the search
efficiency of an optional key. Later, researchers attempted to
develop the security-related applications. Halevi et al. [32]
propose a novel posture-sensing approach based on wisp tags
to defend the unauthorized reading and replay attack. Other

approaches study the design of anti-counterfeiting protocols by
using efficient batch authentication techniques [4].

VIII. CONCLUSION

In this paper, we propose a physical-layer identification
system, GenePrint, for UHF passive tags. Being fully com-
patible with existing industrial-standard EPCglobal C1G2,
GenePrint can be implemented by a commercial reader, a
USRP-based monitor, and off-the-shelf UHF passive tags.
Therefore, it is a generic solution. We propose a novel internal
similarity-based feature extraction method and theoretically
prove its feasibility. The accuracy of GenePrint to identify
passive tags can be higher than 99.68%. In addition, GenePrint
can effectively defend against the severe feature replay attack.
We conduct extensive experiments on over 10 000 RN16 pre-
amble signals from 150 off-the-shelf RFID tags. The results
demonstrate GenePrint identification is highly accurate and
robust.
Our future work will be conducted on the extension of

GenePrint to support identification in the existence of signal
collisions. We are also trying to design a general physical-layer
identification solution for a variety of wireless devices.
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