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Abstract—By taking advantage of active sensing using radio
waves, radar sensors can offer several advantages over passive
sensors. Although much attention has been given to multistatic
and multiple-input–multiple-output (MIMO) radar concepts,
little has been paid to understanding radar networks (i.e., multiple
individual radars working in concert). In this context, we study
the coverage problem of a bistatic radar (BR) sensor network,
which is very challenging due to the Cassini oval sensing region
of a BR and the coupling of sensing regions across different BRs.
In particular, we consider the problem of deploying a network of
BRs in a region to maximize the worst-case intrusion detectability,
which amounts to minimizing the vulnerability of a barrier. We
show that it is optimal to place BRs on the shortest barrier if it is
the shortest line segment that connects the left and right boundary
of the region. Based on this, we study the optimal placement of
BRs on a line segment to minimize its vulnerability, which is a
nonconvex optimization problem. By exploiting certain specific
structural properties pertaining to the problem (particularly an
important structure of detectability), we characterize the optimal
placement order and the optimal placement spacing of the BR
nodes, both of which present elegant balanced structures. Our
findings provide valuable insights into the placement of BRs for
barrier coverage. To our best knowledge, this is the first work to
explore the barrier coverage of a network of BRs.
Index Terms—Barrier coverage, bistatic radar sensor network,

optimal placement, worst-case intrusion.

I. INTRODUCTION

W IRELESS sensor networks have received tremendous
attention over the past decade. Typically, it is assumed

that a sensor network is composed of passive sensors (e.g.,
thermal, acoustics, optic sensors) that detect radiation that is
emitted or reflected by an object. In contrast, active RAdio
Detection And Ranging (radar) purposefully emits radio waves
with the objective of collecting echoes. The ability to design
the structure and power of the transmitted radio signal imbues
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Fig. 1. Example of a bistatic radar network consisting of two radar transmitters
and four radar receivers . Each transmitter–receiver pair

operates as a bistatic radar.

active radars with performance advantages over passive sensors
in many application scenarios, though this is typically at the
expense of additional system complexity.
Thanks to recent technological advances, radars are be-

coming less expensive and more compact, making it feasible
to deploy a network of radars working in concert. Indeed, the
application scale and scope of networked radar sensors1 are ex-
pected to expand significantly. Due to the advantages of radars
over traditional passive sensors, radar networks have great
potential for many applications, such as border security [2]
and traffic monitoring [3]. Nevertheless, to fully exploit this
potential, radar networks should be judiciously designed.
Coverage, which defines how well the object of interest is

monitored, is a critical performance metric for sensor networks.
Barrier coverage has recently emerged as an efficient coverage
strategy for numerous sensor network applications centered
around intruder detection, such as border monitoring and drug
interdiction, and has drawn a surge of research interest [4]–[7].
Despite tremendous research efforts on coverage problems for
sensor networks [8], those pertaining to radar sensors remain
largely unexplored, and this is the main subject of this paper.
In this paper, we consider the problem of deploying a network

of bistatic radars (BRs) for intrusion detection (as illustrated in
Fig. 1). Due to the flexibility to deploy the radar transmitter and
receiver separately, a BR is more favorable than a monostatic
radar (MR) for coverage. Our goal is to build a fundamental
understanding of a bistatic radar network (BRN) for coverage.
In particular, a central question we ask here is the following:
Where should the BRs be placed to achieve the optimal coverage
quality?
The coverage problem of a BRN is dramatically different and

more challenging than that of a network of traditional passive
sensors because: 1) departing from the disk sensing region of a

1For brevity, we use “radar” and “radar sensor” interchangeably.
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Fig. 2. Bistatic radar SNR contours are Cassini ovals with foci at BR trans-
mitter and receiver for different distance products: .

passive sensor, the sensing region of a BR depends on the lo-
cations of both the transmitter and receiver and is characterized
by a Cassini oval. Formally, a Cassini oval is a locus of points
for which the distances to two fixed points (foci) have a con-
stant product (as illustrated in Fig. 2); 2) the sensing regions of
different BRs are coupled with each other since each BR trans-
mitter2 (or receiver) can potentially pair with different BR re-
ceivers (or transmitters, respectively) to formmultiple BRs such
that its location would impact multiple BRs.
Next, we summarize the main contributions of this paper.
• We consider the problem of deploying a network of
BRs in a region to maximize the worst-case intrusion
detectability, which is equivalent to minimizing the vul-
nerability of the optimal barrier in the region. We show
that it is optimal to place BRs on the shortest barrier if it
is the shortest line segment that connects the left and right
boundary of the region.

• The main thrust of this paper is devoted to characterizing
the optimal placement of BRs on a line segment to min-
imize its vulnerability, which is a highly nontrivial opti-
mization problem due to its nonconvexity. To tackle the
challenges herein, we recast the problem as finding the
optimal placement order of BR nodes with the optimal
placement spacing. Based on an important structure of de-
tectability, we characterize balanced placement spacing
and show that it is optimal. Using the optimal placement
spacing, we then characterize the optimal placement or-
ders, which also present balanced structures. These find-
ings provide valuable insights into the placement of BRs
for barrier coverage.

Although it is somewhat idealized, the Cassini oval sensing
model [see signal-to-noise ratio (SNR) equation (1)] used in this
paper can capture the essential feature of a BR, compared to a
passive sensor or MR. Furthermore, the coverage problem of
a BRN corresponding to the Cassini oval sensing model gives
rise to significant technical difficulties (as will be seen later).
Needless to say, future work is needed to generalize this study
to more complex and realistic situations. In short, we believe
that this paper will open a new door to explore radar sensor
networks.
The rest of this paper is organized as follows. Section II in-

troduces the model of bistatic radar network and the worst-

2For brevity, we use “transmitter” and “BR transmitter,” “receiver” and “BR
receiver” interchangeably, respectively.

case coverage and defines the optimal placement problem. In
Section III, we address the optimal placement problem based on
the barrier coverage strategy.We study the optimal placement of
BRs on a line segment in Section IV. Numerical results are pro-
vided in Section V, and related work is reviewed in Section VI.
Section VII concludes this paper and discusses future work.

II. MODEL AND PROBLEM DEFINITION

In this section, we first describe the model of bistatic radar
network and the worst-case coverage, and then define the op-
timal placement problem.

A. Bistatic Radar Network

The radar transmitter and receiver of a BR are at different
locations, whereas they are co-located for an MR. Intuitively,
a BR can achieve better coverage than an MR by appropriate
placement of the transmitter and receiver, such that the target
is more likely to be physically closer to either the transmitter
or receiver, and thus attains a high SNR. This advantage of BR
will be illustrated by an example in Section III.
One fundamental metric of target detection for a BR is its

received SNR: The strength of the received radar signal indi-
cates how likely the target is present. Let and denote
the (Euclidean) distance and the line segment between points
and , respectively. For convenience, we also use or to
denote the location (point) of a transmitter node or receiver
node , respectively. For a BR - , the received SNR from
the target located at a point is given by [9]

(1)

where denotes a bistatic radar constant that reflects physical
characteristics of the BR, such as transmit power, radar cross
section,3 and antenna power gains. The SNR contours of a BR
are characterized by the Cassini ovals with foci at the transmitter
and receiver of the BR.
For a network of BRs, we assume that all transmitters op-

erate on orthogonal radio resources (e.g., by using orthogonal
waveforms [10]–[13]) to avoid mutual interference at a receiver.
While multiple receivers can pair with the same transmitter to
form multiple BRs, a receiver can also pair with multiple trans-
mitters. Typically, a BRN has more receivers than transmitters,
mainly because that a transmitter incurs higher cost than a re-
ceiver (e.g., since signal transmission consumes more energy
than other sensor activities such as signal reception and pro-
cessing). In addition, the number of transmitters can also be lim-
ited by the available radio resources (e.g., the number of orthog-
onal waveforms).
We consider the deployment of a BRN consisting of trans-

mitters , and receivers
, . We assume that transmitters

and receivers, respectively, have homogeneous physical charac-
teristics such that all BRs have the same bistatic radar constant.
We assume that a receiver can potentially pair with all transmit-
ters to formmultiple BRs. However, in Section IV, we will show

3Radar cross section measures the amount of radar signal energy reflected by
an object depending on its physical characteristics (e.g., shape, material).
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Fig. 3. Examples of the region of interest . (a) is the shortcut barrier.
(b) is the shortest line segment that connects and but is not a bar-
rier, and thus the shortcut barrier does not exist; the shortest barrier is a line
segment but is not the shortcut barrier.

that it suffices for a receiver to pair with at most two transmitters.
We also assume that transmitters and receivers are omnidirec-
tional. We further assume that the radar signals reflected by the
target are omnidirectional.4

B. Worst-Case Coverage

The BRN is deployed in a 2-D geographical region of interest
to detect an intruder that traverses through the region. The

region is defined by an entrance side, a destination side, a left
boundary , and a right boundary (as illustrated in Fig. 3).
The intruder can choose any intrusion path in region that
connects the entrance to the destination.
Existing studies on sensor network coverage [15]–[17] use

the distance from a point to its closest sensor to measure the
coverage of the point (also known as the closest sensor observ-
ability). In the same spirit, we measure the coverage of a point
by the highest SNR received by a BR among all BRs, when the
target is present at the point. In Section IV-D, we will discuss
the case where data fusion is used such that the coverage de-
pends on the SNRs received by multiple BRs. Considering (1),
we have the following definition.
Definition 1 (Detectability): The detectability5 of a point ,

denoted by , is the minimum distance product of with
respect to a BR among all BRs

(2)

In other words, the detectability of a point is determined by
the closest BR to the point, which consists of its closest trans-
mitter and closest receiver. Similar to [15]–[17], we use the
worst-case intrusion to quantify the coverage of the intruder.
Definition 2 (Worst-Case Intrusion [15]): The worst-case in-

trusion path, denoted by , is the intrusion path with the min-
imum detectability among all possible intrusion paths

(3)

where denotes the set of all possible intrusion paths, and
denotes the detectability of intrusion path , which is

the maximum detectability of a point among all the points in

(4)

4The reflected radar signals may not be omnidirectional. For the sake of
tractability, most of the literature on bistatic radar (e.g., [2], [9], and [14])
assumes that they are omnidirectional.

5With a little abuse of notation, we use to denote the detectability of
, while the detectability of changes inversely with the value of .

C. Problem Definition
We are interested in finding the optimal placement of the BRN

(i.e., the optimal locations of transmitters and receivers) in
region that maximizes the worst-case intrusion detectability

(5)

Based on the notion of worst-case coverage, problem (5) is of
great interest for the intruder detection problem. In particular,
solving (5) provides the answer to an important question: How
many transmitters and receivers are needed, and where should
they be placed to provide the required coverage quality such
that at least one BR will receive an SNR above a predefined
threshold, regardless of the intruder's path?
Note that problem (5) is difficult to solve in general (even for

sensors with disk sensing regions). This is because the shape
of region can be arbitrary, and the feasible solution space
contains infinitely many placements in region .

III. PLACEMENT FOR BARRIER COVERAGE
In this section, we address problem (5) using the approach

of barrier coverage. We show that under certain conditions it
is optimal to place BRs on the shortest barrier in the region, in
which case it is a line segment. We also investigate the place-
ment on the shortest barrier that is an arbitrary curve. All the
proofs of this paper are relegated to the Appendix.

A. Optimality Condition for Shortest-Barrier-Based Placement
Similar to [4]–[7], we define a barrier as a curve in region

such that any intrusion path intersects with the curve. We use
the following concept as the coverage metric of a barrier.
Definition 3 (Vulnerability): The vulnerability of a bar-

rier is the minimum detectability of a point among all the
points in

(6)

The rationale of using vulnerability as the coverage metric is
that since a barrier intersects with any possible intrusion path,
the vulnerability of a barrier serves as an upper bound on the
worst-case intrusion detectability. Furthermore, this bound is
tight when all the barriers are taken into account, such that

(7)

where denotes the set of all the barriers in region .
Using (7), (5) boils down to finding the optimal barrier,

which is the optimal solution of the following problem:

(8)

where denotes the minimum vulnerability of , which
is the optimal value of the following problem:

(9)

It is plausible that the optimal barrier for (8) should be the
shortest barrier, denoted by , which is the barrier with the
minimum length among all the barriers. However, this strategy
is not optimal in general because can be greater than

for a barrier with a greater length than . We give an
illustrative example in Fig. 4. For line segment in Fig. 4(a),
it is clear that the optimal placement of a BR - that mini-
mizes is to set such that
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. For curve 6 in Fig. 4(b),
it has a greater length than , while we have

, where
denotes the vulnerability of when and are

placed at the midpoint of and , respectively. Therefore,
if is the shortest barrier in region while is another
barrier in (which is possible), the optimal barrier cannot be

.
Before proceeding further, we use a simple example to il-

lustrate the advantage of a BR over an MR for barrier cov-
erage. If we place an MR (which consists of a pair of co-located
radar transmitter and receiver) on in Fig. 4(a) to minimize

, the optimal placement location is clearly at the mid-
point of such that . This is
greater than which is achieved under the optimal
placement of a BR - .
Although it is in general not optimal to place BRs on the

shortest barrier , this strategy is optimal if is also the
shortcut barrier defined as follows.
Definition 4 (Shortcut Barrier): The shortcut barrier, denoted

by , exists and is the shortest barrier if and only if is the
shortest line segment that connects left boundary and right
boundary (i.e., the length of is the minimum distance
between a point in and a point in ).
Although the shortest line segment that connects and

always exists, it may not be in region , and therefore is not
a barrier [as illustrated in Fig. 3(b)]. The shortcut barrier exists
for a large class of shapes of region (e.g., any convex region).
Note that if the shortest barrier is also the shortcut barrier,
then must be a line segment; otherwise, may or may not
be a line segment [as illustrated in Fig. 3(b)]. We next show that
the existence of the shortcut barrier is the optimality condition.
Theorem 1: If the shortcut barrier exists, then is the

optimal barrier for (8). As a result, it suffices to solve (9) for
in order to solve (5).
Note that Theorem 1 provides a sufficient condition under

which the optimal barrier is the shortest barrier. With regard to
the optimal placement of BRs for a line segment, we have the
following result.
Proposition 1: For a line segment , the optimal placement

for problem (9) for is on , and the optimal value of (9)
for increases as its length increases.
The proof is based on a similar argument as in the proof of

Theorem 1 and is thus omitted. By Theorem 1 and Proposition 1,
as it is optimal to place BRs on the shortcut barrier , which
is a line segment. In Section IV, we will focus on finding the
optimal placement of BRs on a line segment that minimize its
vulnerability.

B. Placement on Curved Shortest Barrier

If the shortest barrier is not the shortcut barrier, it
can be an arbitrary curve and may not be the optimal bar-
rier for (8). Furthermore, it is in general difficult to find
the optimal placement for (9) for an arbitrary curve (even
for sensors with disk sensing regions). In this case, we can
find a placement on that imitates the optimal
placement for (9) for a line segment that has the

6We use to denote a curve with endpoints , and to denote its
length.

Fig. 4. Example where but under
the placement of a BR - . (a) ,

. (b) , , ,
. The placement on imitates the

placement on where . (c) ,
.

TABLE I
FREQUENTLY USED NOTATIONS

same length as , such that ,
and ,

, where ,
are the endpoints of and , are the endpoints . We
use an example in Fig. 4(a) and (c) to illustrate the imitation
placement. It has an appealing property as stated in the fol-
lowing result.
Proposition 2: For the optimal placement on the

line segment and the imitation placement on the
shortest barrier , we have .
The proof is based on a similar argument as in the proof of

Theorem 1 and is thus omitted. By Proposition 2, is
no less than under the imitation placement, and thus

serves as an upper bound for the worst-case intrusion
detectability , which is the objective that we aim to mini-
mize [i.e., the objective value of problem (5)]. Since the shortest
barrier has the minimum length among all the barriers, ac-
cording to Proposition 1, the imitation placement on gives
the minimum upper bound for among all the
barriers.

IV. OPTIMAL PLACEMENT ON A LINE SEGMENT

In this section, we study the optimal placement of BRs on
a line segment, say the shortcut barrier , to minimize its
vulnerability .
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A. Problem Recast
Let and be the left and right endpoint of , respec-

tively, and be the length of . For convenience, we list the
frequently used notations in Table I. Also let and

. Mathematically, our problem can be written as

subject to
(10)

where represents the de-
tectability of a point with , and

represents the vulner-
ability of . In general, we can show that (10) is nonconvex.
Therefore, standard optimization methods would not work well
here.
To gain useful insight into (10), we view the line-seg-

ment-based placement in an intuitive way as follows. First, we
treat and as two (virtual) nodes and relax the constraint

. Then, we place all the BR nodes and as
well as and on a horizontal line subject to the constraint
that and are the leftmost and rightmost nodes, respec-
tively. We can use the following concepts to characterize any
placement on a line.
Definition 5 (Placement Order and Spacing): A placement

order (referred to as “order” for brevity) is an order of all the
nodes on the line from left to right

where and is a permutation of the
BR nodes such that

. The placement spacing (referred to as “spacing” for
brevity) of a placement order consists of the distances
each between a pair of neighbor nodes in

A local placement order (referred to as “local order” for brevity)
is an order of a set of neighbor nodes in , and

its placement spacing is

We can see that any order with any spacing charac-
terize a unique placement of BRs on a line segment with length

; conversely, any placement of BRs on the line seg-
ment can be uniquely characterized by some order with
some spacing that satisfies . Therefore, our
problem (10) can be recast as

subject to (11)

It is clear that the optimal value of (11) increases as in-
creases. As a result, we can formulate a problem relevant to (11)
as \

subject to (12)

Let denote the optimal value of (12) under the constraint
. It is also clear that is increasing in and, in

particular, when and when .
Therefore, if we can solve (12) for any , we can also
solve (11) by a bisection search as described in Algorithm 1.

Specifically, Algorithm 1 keeps track of an interval that
must contain the optimal value of (11), and reduce the in-
terval by half at each step, until the interval is sufficiently small
such that the difference between and the endpoint or is
upper-bounded by a predefined precision threshold . Since the
initial interval is set to , the number of steps for running
Algorithm 1 is upper-bounded by .
We make two observations regarding any placement of BRs.

First, since all BRs are homogeneous, swapping the locations of
any pair of transmitters (or receivers, respectively) results in an
equivalent placement. Second, transmitters and receivers are re-
ciprocal in the sense that replacing all transmitters by receivers
while replacing all receivers by transmitters results in an equiv-
alent placement. As a result, for ease of exposition, in the rest
of this paper we assume that . All the analysis hereafter
can directly apply to the case by treating transmitters
as receivers while treating receivers as transmitters.

B. Optimal Placement Order and Spacing
In this section, our goal is to characterize the optimal order

and the optimal spacing for problem (12). We outline the major
steps to achieve this goal as follows.
1) We show an important structure of detectability for any

placement on a line (Lemma 1), based on which we define
balanced spacings and independent local orders.

2) We characterize the balanced local spacing for an indepen-
dent local order (Lemma 2) and show that it is optimal
(Lemma 3).

3) We show that the balanced spacing for a dividable order
consists of balanced local spacings for independent local
orders, and it is optimal (Theorem 2).

4) We show that there exist optimal orders in the class of di-
vidable orders (Lemma 4), based on which we characterize
the optimal orders (Theorem 3).

We start with the observation that the optimal order for
(12) is equivalent to the optimal order of the following problem:

(13)

where denotes the optimal value of the following problem
for order

subject to (14)
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Fig. 5. Local vulnerable values are (a) unequal under arbitrary placement
spacing and (b) equal under balanced placement spacing.

Therefore, the optimal spacing for (12) is equivalent to the
optimal spacing for (14) for the optimal order .
The following lemma presents an important structure of de-

tectability for any placement on a line. We use to denote
the midpoint of a line segment .
Lemma 1: For any order with any spacing , the de-

tectability on attains local maximums at the end nodes
and at the midpoint of each pair of neighbor BR nodes (as illus-
trated in Fig. 5)

Definition 6 (Local Vulnerable Point): A local vulnerable
point is a local maximum point of detectability on , and
a local vulnerable value is its detectability.
By Lemma 1, it suffices to examine the local vulnerable

values to determine the vulnerability of a line segment. Based
on Lemma 1, we define the following concept.
Definition 7 (Independent Local Order): A local order is

an independent local order if it has any of the following types:

where and denote consecutive transmitters and re-
ceivers, respectively. The independent local zone of an in-
dependent local order is the line segment between the two
end nodes in , with its length denoted by .
For any local placement with any independent local order
, the closest BR for any local vulnerable point on the in-

dependent local zone consists of the nodes in . For
example, for , the closest BR for is
- ; for , the closest BR for any

of , and , consists of transmitter
and some receiver among . Therefore, all the local
vulnerable values on , and hence the vulnerability ,
are determined by the spacing (i.e., independent of any
distance not in ). Based on this property, the following
concept is well defined for an independent local order.
Definition 8 (Balanced Spacing): The spacing (or local

spacing ) of an order (or an independent local order ,
respectively) is balanced if all the local vulnerable values on

(or the independent local zone , respectively) are
equal (as illustrated in Fig. 5).
The next lemma characterizes the balanced local spacing for

an independent local order.

TABLE II
VALUES OF BALANCED SPACING

Lemma 2: For any , define and let denote
the unique positive value of such that

(15)

for each . For any and any independent local
order , there exists a unique balanced local spacing such
that , and furthermore, it can be characterized by
, as follows: For with type or

for with type or

for with type or

for with type or , if is even

if is odd

By definition, given , the value of , can be found
iteratively using (15), which decreases as increases (as shown
in Table II).
Based on the independent property, we can cast a problem in

the same spirit as (14) but for an independent local order as

subject to (16)
The next lemma shows that the balanced local spacing is optimal
for (16).
Lemma 3: For any and any independent local order
, the balanced local spacing such that is the

optimal local spacing for (16).
The next definition presents a useful structure of a class of

orders.
Definition 9 (Dividable Order): An order is dividable if it

can be decomposed into independent local orders
such that: 1) each node in is included in some ; 2) the last
node of is the first node of for each .
Therefore, the spacing consists of disjoint independent local
spacings . For example, the following order is
dividable:

(17)

For any placement with any dividable order , the local
vulnerable points on consists of disjoint sets of local vul-
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Fig. 6. Optimal placement of transmitters (squares) and receivers (circles) for
(a) , ; (b) , ; (c) , .

nerable points on the independent local zones .
Therefore, problem (16) for can be decomposed into in-
dependent subproblems, each of which is an instance of
problem (16) for , with the optimal local spacing
given by Lemma 3. The next theorem follows from the above
observation.
Theorem 2: For any and any dividable order , where

can be decomposed into independent local orders ,
the balanced spacing such that exists and
consists of the balanced local spacings . Further-
more, it is the optimal spacing for (14) for .
Next, we show that there exist optimal orders in the class of

dividable orders. Since all transmitters are homogeneous, we
index the transmitters from left to right such that

. Define

where , , denote the number of receivers in be-
tween and for , between and ,
between and , respectively. Since all transmitters and
all receivers are homogeneous, respectively, any order can be
uniquely characterized by .
Lemma 4: There exists an optimal order that satisfies the

following conditions:

such that (18a)
(18b)

Furthermore, any order that satisfies the above conditions is
dividable.
We should note that a nonoptimal order [e.g., the order in

(17)] can also be dividable.
Based on Lemma 4, the following theorem provides a suffi-

cient condition for the optimal order.
Theorem 3: An order is optimal if it satisfies the following

conditions:

(19a)

(19b)
Using Theorem 3, we characterize the optimal order as

follows. Let two integers and be the quotient and remainder
of , respectively. If is even [e.g., as in Fig. 6(a) and (b)], we
have

if is odd and [e.g., as in Fig. 6(c)], we have

if is odd and , we have

In addition, for any , if we swap the values of and ,
or the values of and for , it also satisfies
(19a) and (19b), and hence is optimal.
Given the above optimal order for (13), which is divid-

able, we can characterize the optimal spacing for (14) using
Theorem 2.

C. Remarks

Regarding the analysis and results in Section IV-B, we have
the following remarks.
Remark 1: The detectability structure given in Lemma 1

plays a fundamental role in our analysis, based on which the
concepts of local vulnerable point, independent local order,
balanced spacing, and dividable order can be defined thereafter.
This structure is mainly due to that: 1) all BRs are homoge-
neous; and 2) for any BR, say - , the received SNR from a
point on the line segment achieves local minimum at the
midpoint .
Remark 2: The optimal spacings are balanced in the sense

that all the local vulnerable values are equal under the balanced
spacing. The optimality of this balanced structure is due to that
minimizing the vulnerability is equivalent to minimizing the
maximum local vulnerable value.
The balanced spacing is in general nonuniform in the sense

that the distance between each pair of neighbor BR nodes is not
the same. For the balanced spacing of an independent local order

with type , , or , the dis-
tance between two neighbor receivers decreases as the distance
to their closest transmitter increases (i.e., decreases as in-
creases). This nonuniform structure is essentially due to that the
detectability of a point is jointly determined by its closest trans-
mitter and closest receiver, while the number of transmitters is
unbalanced with that of receivers.
Remark 3: The optimal orders are also balanced, but in a

more subtle sense: For the optimal order that satisfies (19),
for are as equal as possible, while each
is as equal as possible to two times and , re-

spectively (as illustrated in Fig. 6). The optimality of this
balanced structure is mainly because that the optimal value of
(16) for an independent local order with type ,

, or increases as increases, while
the marginal increment decreases as increases. Therefore, to
maximize the sum of the optimal values of (16) for independent
local orders , ,

, the optimal order must have that balanced
structure.
Remark 4: We can gain useful insights by comparing the

placement of BRs on a line segment to that of sensors with
disk sensing regions (we assume that they are homogeneous and
refer them as “disk sensors” for brevity). For disk sensors, we
define the detectability of a point as the distance to its closest
sensor. Interestingly, for any placement of disk sensors on a line
segment, we can observe the same structure as in Lemma 1: The
detectability on the line segment also achieves local maximums
at the midpoint of each pair of neighbor disk sensors and the
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Fig. 7. Optimal placement of disk sensors (circles) has uniform spacing.

endpoints.While this detectability structure is clear for disk sen-
sors (which are homogeneous), it is not obvious for BRs.
Based on the detectability structure, we can show that the bal-

anced spacing is also optimal for disk sensors. However, as il-
lustrated in Fig. 7, the balanced spacing for disk sensors is uni-
form (i.e., each pair of neighbor disk sensors have the same dis-
tance), in contrast to that it is nonuniform in general for BRs.We
should also note that while the balanced spacing is an equivalent
condition for the optimal placement of disk sensors, it is only a
necessary condition for the optimal placement of BRs. This is
because different orders of BR nodes can be nonequivalent.
Remark 5: The optimal placement results imply that one as-

sumption made in Section II can be relaxed without losing the
optimality. Since the detectability of a point is determined by
its closest BR, it suffices for a receiver to pair with a transmitter
only if they form the closest BR for some point on the line seg-
ment. Therefore, for the optimal placement of a BRN consisting
of more receivers than transmitters (e.g., as in Fig. 6), we can see
that a receiver only needs to pair with its closest transmitter(s),
the number of which is one or two.

D. Discussions
In this paper, we assume that there is no data fusion among

different BRs for target detection. If data fusion is used, the
metric of target detection would depend on the SNRs received
by multiple BRs (e.g., the sum of the highest SNRs where

) rather than only the highest SNR. As a result, the de-
tectability of a point would depend on its distant product with
respect to multiple BRs rather than only the closest BR. As ex-
pected, it is very difficult to find the optimal placement of BRs
for problem (10) in this case. However, with data fusion, we can
show that all the results in Section III (including Theorem 1 and
Propositions 1 and 2) still hold via similar analysis, as long as
the data fusion model satisfies that target detection improves as
the SNR of any BR involved in the data fusion increases (which
is typically true). In addition, for the optimal placement on a
line segment under the model without data fusion, we can
analyze the coverage quality of this placement under a data fu-
sion model. Specifically, using the detectability of a point as a
function of its distances to certain BR nodes (which depends on
the data fusion model), we can find the local maximums of the
detectability on (as we do in Lemma 1), and thus the vulner-
ability of . Clearly, the vulnerability of without data fusion
serves as an upper bound for that with data fusion.

V. NUMERICAL RESULTS
In this section, we provide numerical results to illustrate the

advantage of the optimal placement of BRs on a line segment .

A. Comparison to Heuristic Placement
As no existing work has studied the placement of BRs for

barrier coverage, we compare the optimal placement strategy
(OPT) with two heuristic strategies. The heuristics are moti-
vated by the rationale of the optimal placement strategy for a
network of homogeneous disk sensors, which is to minimize the
maximum distance from a point to its closest sensor among all
the points on .

Fig. 8. Heuristic placement of transmitters (squares) and receivers (circles) for
, : (a) HEU-1; (b) HEU-2.

Fig. 9. Vulnerability for three BR transmitters.

Fig. 10. Vulnerability for five BR transmitters.

The first heuristic (HEU-1) is to place transmitters (or re-
ceivers, respectively) with uniform spacing such that the max-
imum distance from a point on to its closest transmitter (or
receiver, respectively) is minimized [as illustrated in Fig. 8(a)]:

Comparing Fig. 6(b) to Fig. 8(a) (under the same setting of
and ), we can see that neither the placement of

transmitters nor receivers in OPT is the same as that in HEU-1.
Compared to OPT, the main drawback of HEU-1 is that it places
transmitters and receivers independently.
The second heuristic (HEU-2) is to place transmitters and

receivers according to the optimal order , but with uniform
spacing such that the maximum distance from a point on to
its closest BR node (either transmitter or receiver) is minimized
[as illustrated in Fig. 8(b)]

Although HEU-2 follows the optimal order, its main drawback
is that it treats transmitters and receivers equivalently.
Figs. 9–11 depict the vulnerability of under OPT, HEU-1,

and HEU-2 for a varying number of receivers and three, five,
and 10 transmitters, respectively. We set the length of to
100 m. We observe that HEU-2 results in considerably lower
vulnerability than HEU-1, and OPT further outperforms HEU-2
significantly. This shows that OPT is highly advantageous for
improving the barrier coverage, which is essentially due to that
the design rationale for a BRN under the Cassini oval sensing
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Fig. 11. Vulnerability for 10 BR transmitters.

Fig. 12. Minimum vulnerability: BRN versus MRN.

model is quite different from that for a network of passive sen-
sors or MRs under the disk sensing model. Therefore, the op-
timal placement of a BRN requires judicious design of trans-
mitters and receivers as we do in this paper.

B. Comparison to Monostatic Radar Network
In Fig. 12, we compare the vulnerability of under the op-

timal placement of a BRN to that of a monostatic radar net-
work (MRN) for a varying number of transmitters and receivers.
The optimal placement strategy for an MRN is to minimize the
maximum distance from a point on to its closest MR. For fair
comparison, we set the number of transmitters in the BRN equal
to that of receivers, and also equal to the number of MRs in the
MRN. We observe that the advantage of a BRN is significant,
which demonstrates that the flexibility to place transmitters and
receivers separately is highly beneficial for barrier coverage.

VI. RELATED WORK

Radar has been extensively studied for decades [18]. How-
ever, radar sensor networks have garnered attention only in
the past few years, largely driven by the emergence of cheaper
and more compact radar sensors in place of conventionally
expensive and bulky radar systems. For example, in [19], a
platform has been successfully designed and built to integrate
ultrawideband radars with mote-class sensor devices. The ex-
isting literature has studied different problems for radar sensor
networks, including waveform design and diversity [20], radar
scheduling [21], and data management [22] for a variety of
objectives, such as target detection [23] and localization [14].
In particular, BRs have also been considered in [14]. However,
coverage problems of a radar sensor network have received
very little attention. Recently, a novel Doppler coverage model
has been introduced in [24] for a radar sensor network that
exploits the Doppler effect. To our best knowledge, this work
is the first to explore the barrier coverage of a network of BRs.
Numerous studies on sensor network coverage can be found

in the literature [8]. Worst-case intrusion was first introduced

in [15]. References [15], [16], and [25] have studied how to find
the worst-case intrusion path for arbitrarily deployed sensors.
References [26] and [27] have considered adding sensors to
improve the coverage of the worst-case intrusion path. Along
another avenue, barrier coverage was first introduced in [4] and
has attracted much research interests recently. References [4]
and [6] have studied the critical sensor density for barrier
coverage under random deployment. The coverage of a barrier
has been investigated using a quantitative metric in [5]. Barrier
coverage of sensors with mobility has been considered in [7]
and [28]. Barrier coverage for camera sensor networks has
also been studied recently based on a novel full-view coverage
model [29], [30].
While most aforementioned studies are concerned with how

to find the worst-case intrusion path or a barrier covered by sen-
sors (if such a barrier exists) under an existing deployment of
sensors, our work focuses on where to deploy sensors to cover
a barrier such that the worst-case intrusion detectability is max-
imized. More importantly, the existing sensing models (partic-
ularly the widely used disk sensing model) are quite different
from the Cassini oval sensing model of a BR, and the latter is
further complicated by the coupling of sensing regions across
multiple BRs.

VII. CONCLUSION AND FUTURE WORK

Radar sensor networks have great potential in many applica-
tions, such as border surveillance and traffic monitoring. In this
paper, we studied the problem of deploying a network of BRs in
a region for intruder detection. The optimal placement of BRs is
highly nontrivial since: 1) the coverage region of a BR is char-
acterized by a Cassini oval that presents complex geometry; 2)
the coverage regions of different BRs are coupled and the net-
work coverage is intimately related to the locations of all BR
nodes. We showed that it is optimal to place BRs on the shortest
barrier if it is also the shortest line segment that connects the left
and right boundary of the region. Furthermore, we characterized
the optimal placement order and spacing of BR nodes on a line
segment, both of which present elegant balanced structures.
Although the models are built upon some idealized assump-

tions, we believe that this work takes an initial step toward
understanding the coverage of networked BRs. There are still
many questions remaining open. For example, while the Cassini
oval sensing model used in this work is based on SNR, it would
be interesting to take into account the Doppler effect. As the
Doppler effect is intimately related to the motion of objects, it
would pose a number of challenges in the context of networked
radars. In addition, while in this paper we assume that all BRs
are homogeneous, a possible future direction is to consider het-
erogeneous BRs. It is also of interest to take into account the
synchronization issue among BR transmitters and BR receivers,
which is quite different from that of MRs.

APPENDIX

Proof of Theorem 1
For any barrier and the optimal placement that

minimizes , we can construct a placement for
by moving each and each to their re-

spective projections and on the line passing
through and , respectively, as illustrated in Fig. 13. Then,
for any point , there exists a point whose
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Fig. 13. Snapshot of the proof of Theorem 1.

Fig. 14. Snapshots of the proof of Lemma 1: (a) Case 1; (b) Case 2; (c) Case 3.

projection on is .We can observe that ,
and , . Then, it follows that

where we use to denote the detectability of under
placement . Hence, we have

(20)

where we use to denote the vulnerability of under
placement . Since for a line barrier increases
as the length of increases, and the shortcut barrier is not
longer than , using (20) we have

.

Proof of Lemma 1
The main idea of the proof is to divide the line segment be-

tween each pair of neighbor nodes into intervals such that all the
points on each interval have the same closest BR, and then we
examine the detectability on each interval. We consider three
possible cases of two neighbor nodes as follows.
Case 1: and (two nodes of different types).
As illustrated in Fig. 14(a), for any point , its

closest transmitter must be either or the leftmost transmitter
on , and its closest receiver must be either or

the rightmost receiver on . Suppose the closest BR
for a point on , , is - ,
- , - , respectively. Then, we observe that for

, increases as moves
closer to ; for ,
increases as moves closer to ; for ,

decreases as moves closer to .
Therefore, attains maximum on when .
Case 2: and (two nodes of the same type).
As illustrated in Fig. 14(b), for any point , its

closest transmitter must be either or , and its closest re-
ceiver must be either the rightmost receiver on , or
the leftmost receiver on . Suppose the closest BR for
a point on , , is - , - ,

Fig. 15. Snapshots of the proof of Lemma 2: (a) Case 2; (b) Case 3.

- , respectively. Then, we observe that for ,
increases as moves closer to ;

for , since is on the left side of ,
increases as moves closer to ;

for , decreases as
moves closer to . Therefore, attains maximum on
when .
Case 3: and (two nodes including an end node).
As illustrated in Fig. 14(c), for any point , its

closest transmitter must be , and its closest receiver must be
the leftmost receiver on . Hence, the closest BR for a
point on is - . Then, we observe that for ,

increases as moves closer to , and
hence attains maximum when .

Proof of Lemma 2
The main idea of the proof is to sequentially determine the

distance between each pair of neighbor nodes. In the following,
we consider all three cases of an independent local order with
balanced spacing such that .
Case 1: .
Since the closest BR for is - , we have

. Then, it follows that
.

Case 2: .
Similar to case 1, we can show that ,

as illustrated in Fig. 15(a). Since the closest BR for is
- or - , we have

(21)

Then, using (21) and , we obtain a unique value
. Following this argument recursively, using the

values of , , we can obtain a
unique value such that for

, and at last, using the values of ,
, we can obtain a unique value

such that .
Case 3:
Similar to Case 1, we can show that
, as illustrated in Fig. 15(b). Then, the closest BR for

must be - or - . Using the same argument
as in Case 2, we can obtain a unique value
such that . Then, the closest BR for
must be - or - . Following the above argument
recursively, we can obtain that , then that

until that when is even,

or when is odd.

Proof of Lemma 3
The proof is based on contradiction. Suppose there exists an-

other placement with spacing such that and
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Fig. 16. Snapshots of the proof of Lemma 3: (a) Case 2; (b) Case 3.

. We consider all three cases of an independent local
order as follows.
Case 1: .
Since

, we have , which is a
contradiction.
Case 2: .
Similar to Case 1, we can show that .

Using this and , we next show
that . Suppose , as illus-
trated in Fig. 16(a). Then, we can find a placement
such that and . We
observe that , and hence

and . We also observe
that . Using these ob-
servations, we have

(22)

where denotes the detectability of under place-
ment . Then, (22) contradicts that

. Thus, we show that .
Following the above argument recursively, using

and , we
can show that for , and at last,
we can show that , which is a contradiction.
Case 3: .
Similar to Case 1, we can show that

and , as illustrated in Fig. 16(b). If the
closest transmitter for is , similar to case 2, we can
show that . Next, we show that the closest
transmitter for cannot be . Suppose the closest trans-
mitter for is . Then, we have

. Following a similar argument as in Case
2, using and ,
we can show that . Then, it follows that

, which is a contradiction. Thus, we show that the closest
transmitter for cannot be , and hence must be .
Using the above argument, we can show that the closest trans-

mitter for must be , and then similar to Case 2, we
can show that . Following this argu-
ment recursively, we can show that , and
then that , until we can show that

Fig. 17. Snapshots of the proof of Lemma 4: (a) first part; (b) Case 2 of second
part.

and for
when is odd or when is even. Then we have

,
which is a contradiction.
Proof of Lemma 4
The main idea of this proof is as follows. For any placement
with an order that does not satisfy the condition, we can

find another placement with an order that satisfies the
condition, such that any local vulnerable value under placement
, and hence the vulnerability, must be no greater than that

under placement . This implies that order is at least as good
as order (i.e., , ).
First, we show that there exists an optimal order that satis-

fies (18a). Consider a placement with an order that does not
satisfy (18a). Then, we can always find some such that

, , and or . Without loss of
generality, in the following we assume that ,

, and , while the other possible cases can
be proved using a similar argument. Then, includes a local
order where and a local order

[as illustrated in Fig. 17(a)]. We can find another
placement with an order constructed from by moving

to being between and . We construct the spacing
from by setting ,

, , while keeping the distance
between each other two neighbor nodes unchanged, such that

. Then, we have ,
, and . Fur-

thermore, we can observe that any other local vulnerable value
under placement must be no greater than that under place-
ment . This implies that is at least as good as . Repeating
the above construction, we can always find a order that sat-
isfies (18a), which shows that there must exist an optimal order
that satisfies (18a).
Next, we show that among all the orders that satisfy (18a),

there exists an optimal order that also satisfies (18b), and it is
dividable. We consider two cases of an order that satisfies
(18a) as follows.
Case 1: .
Since satisfies (18a), we must have for each

, and hence (18b) is also satisfied. Then, can be
decomposed into independent local orders as

(23)
and hence is dividable.
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Case 2: .
Suppose order does not satisfy (18b). Then, we must have

and , , or and ,
. Suppose the former case holds without loss of generality.

Then, for any placement with order , we can find another
placement constructed from by swapping the locations of
node and node , such that has an order that satisfies
(18b) [as illustrated in Fig. 17(b)]. Then, we observe that any
local vulnerable value under placement must be no greater
than that under placement , which implies that order is at
least as good as order . Thus, there must exist an optimal order
that satisfies both (18a) and (18b).
For an order that satisfies (18), we consider two cases: 1)

if and , , then can be decomposed into
independent local orders as

(24)

and hence is dividable. Similarly, is also dividable if
and , ; 2) if where

and , , then can be decomposed into
independent local orders as in (25), and hence is dividable

(25)

Proof of Theorem 3
By Lemma 4, there exists an optimal order among all the

orders that satisfy (18), which are dividable.We observe that any
order that satisfies (19) also satisfies (18). Therefore, it suffices
to show that for any two orders and that satisfy (18): 1) if
satisfies (19) and does not satisfy (19), then ; 2) if
and both satisfy (19), then .
Let denote the optimal value of problem (16) for an

independent local order with type or
under the constraint . By Lemmas 2 and 3, we have

if is even

if is odd.

(26)

Then, it follows from (26) that
if is even
if is odd.

(27)

Next, we consider two cases of an order that satisfies (18).

Case 1: .
We have shown in the proof of Lemma 4 that can be decom-

posed into independent local orders as (23). Using Theorem 2
and (23), we have

(28)

Without loss of generality, suppose does not satisfy (19).
The case where does not satisfy (19b) can be proved using
a similar argument. Then, there exist such
that . We can find another order with

constructed from by setting ,
, and , . Using (28) and (27), we

have

if is even
if is odd

if is even

if is odd

which shows that is not optimal. Furthermore, for any two
orders and that both satisfy (19), we can show that

. Therefore, any order that satisfies (19) is optimal.
Case 2: .
Suppose does not satisfy (19). Then, we have where

and , . Using (25), we have
(29)

Suppose another order satisfies (19) with
such that and , . Using

(24), we have
(30)

It follows from (29) and (30) that
(31)

which shows that is not optimal. Furthermore, for any two
orders and that both satisfy (19), we can show that

. Therefore, any order that satisfies (19) is optimal.
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