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a b s t r a c t

For the seismic analysis of complex or nonlinear extended structures, it is useful to generate a set of
properly correlated earthquake accelerograms that are consistent with a specified seismic hazard. A new
simulation approach is presented in this paper for the generation of ensembles of spatially correlated
accelerograms such that the simulated motions are consistent with (i) a parent accelerogram in the sense
of temporal variations in frequency content, (ii) a design spectrum in the mean sense, and (iii) with a
given instantaneous coherency structure. The formulation is based on the extension of stochastic de-
composition technique to wavelet domain via the method of spectral factorization. A complex variant of
the modified Littlewood-Paley wavelet function is proposed for the wavelet-based representation of
earthquake accelerograms, such that this explicitly brings out the phase information of the signal, be-
sides being able to decompose it into component time-histories having energy in non-overlapping fre-
quency bands. The proposed approach is illustrated by generating ensembles of accelerograms at four
stations.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The primary concern in the analysis and design of structures for
the effects of strong earthquakes is the proper definition and re-
presentation of the design ground motion. Among different ap-
proaches used to this end, those via response spectrum or power
spectral density function (PSDF) are most common. However, in
several applications, such as performance evaluation of mathe-
matical models of structures for design level motions, experi-
mental verification of new design concepts, and statistical analyses
of complex and nonlinear structures, it is required to have a time-
description of the desired ground motion. In most cases, the
available recorded ground motions may not meet the necessary
design specifications for a given site. Therefore, there remains a
need for the simulation of artificial ground motions compatible
with the design requirements.

For the analyses of spatially extended structures, such as long-
span bridges, pipelines or even a simple building system with raft
foundation, it is required to account for possible variations in the
earthquake ground motion at different points in space. Spatial
variability in seismic ground motions can result from a number of
causes, such as, wave passage effect, incoherence effect, extended
source effect, attenuation effect etc. The spatial variability of
ground motions has been estimated and modeled stochastically by
using the strong motions recorded at dense instrument arrays.
Ground motions at different stations are typically considered to be
the realizations of space-time random fields. Spatial variability is
characterized by the coherency function, which is defined for any
two homogeneous random processes in terms of their smoothed
cross-PSDF and individual PSDFs. Based on the regression analyses
of the data available from the dense instrument arrays (SMART-1
array, LSST array, etc.), a number of empirical and semi-empirical
models have been proposed for the coherency function [1–13].

Generation of spatially correlated accelerograms has been at-
tempted by several researchers. The techniques used for this
purpose include spectral factorization [7,14–17], covariance matrix
decomposition [18], auto-regressive moving average (ARMA) ap-
proximation [19], sinusoid superposition [20,21], fast Fourier
transform and digital filtering-based methods [22,23], and condi-
tional simulation [24–27]. The main objective in these simulation
schemes was that the statistical properties of the simulated mo-
tions matched with those of the target random field. Some of these
schemes have used the method of stochastic decomposition sug-
gested by Shinozuka [28]. Hao et al. [7] generated a set of corre-
lated time histories by using the summation of trigonometric
series. Li and Kareem [22] used time-dependent weighing func-
tions in the stochastic decomposition, while the target ground
motion characteristics were specified in terms of an evolutionary
spectral matrix. Shrikhande and Gupta [17] generated spatially
correlated time histories by using the nonstationary characteristics
of a given accelerogram. Zerva [29] has reviewed various schemes
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of simulation of ground motions in detail.
In most of the above simulation procedures, except for those

proposed by Li and Kareem [22] and Shrikhande and Gupta [17],
generated time histories were modulated with the help of a de-
terministic envelope function. However, the envelope function and
phase spectrum of a time-history are known to be closely related
[30,31], and therefore, such modulation may change the phase
properties arbitrarily, thus disturbing the coherency structure.
Also, it is unrealistic to model a complex phenomenon like
earthquake ground motion via a deterministic modulating func-
tion. The scheme proposed by Shrikhande and Gupta [17] in-
corporates nonstationarity in the simulation procedure itself by
using the phase and duration spectra of a recorded time-history,
thus requiring no post-processing of the simulated motions and
keeping the coherency structure intact. However, this scheme does
not account for temporal variations in the coherency structure.
Also, the energy distributions in the target spectrum and the
parent accelerogram need to be “not too different”.

There have been several attempts in the recent years that have
focused on simulating more realistic spatially correlated accel-
erograms. Bi and Hao [32] approximately simulated the spatially
varying ground motions at an uneven site with nonuniform soil
conditions. Konakli and Der Kiureghian [33] simulated nonsta-
tionary ground motions considering the effects of incoherence,
wave passage and differential site response. Cacciola and Deodatis
[34] illustrated the simulation of ground motions at stations with
different soil conditions and separated by 30–50 m of distance.
Zhang et al. [35] simulated tri-directional nonstationary accel-
erograms at varying site conditions by considering power spectra
at the bed rock and the site amplification of P-, SV- and SH-waves.
In a more recent publication, Shields [36] simulated spectrum-
compatible, uniformly modulated nonstationary accelerograms by
upgrading the evolutionary power spectral density function with
random pulse-like perturbations.

Considering that nonstationarity is directly linked to temporal
variations in the characteristics of a signal, a time-frequency
transformation tool is needed to simulate realistic accelerograms.
For example, Wen and Gu [37] simulated nonstationary processes
based on Hilbert spectra. The development of wavelet transform
technique has however made it possible to represent the temporal
variations in the frequency content of a signal more elegantly. The
wavelet transform technique is more versatile than the other time-
frequency localizing techniques, like Gabor transform, short-time
Fourier transform, etc., due to its flexible time-frequency win-
dowing feature [38]. Besides several important engineering ap-
plications [39–45], this technique has already been used by [46,47]
for the characterization of design ground motions. Zeldin and
Spanos [48] synthesized random fields using wavelets. Spanos and
Failla [49] and Huang and Chen [50] estimated the evolutionary
spectra using wavelet transforms. Iyama and Kuwamura [51] and
Gurley and Kareem [52] simulated ground motions using wavelet
transforms. Cecini and Palmeri [53] and Giaralis and Spanos [54]
simulated spectrum-compatible accelerograms using harmonic
wavelets. Huang [55] simulated nonlinear spatially variable
ground motions using wavelets and spectral representation
method.

In this study based on the thesis of the first author [56], a
wavelet-based procedure is formulated for simulating the en-
sembles of spatially correlated accelerograms, such that those are
compatible with a given response spectrum and an assumed co-
herency model. An analytic function is considered as the mother
wavelet function and the popular stochastic decomposition tech-
nique is extended to the wavelet domain for this purpose. The
proposed approach is illustrated by generating a set of ensembles
of correlated accelerograms for the stations 100, 200 and 300 m
apart.
2. Wavelet transform

2.1. Brief review

If ( )f t is a function belonging to ( )L R2 space, the continuous
wavelet transformation of ( )f t with respect to a mother wavelet
function ψ ( )t is defined as [38,57]

∫ ψ( ) = ( ) * ( ) ( )ψ
−∞

∞
W f a b f t t t, d 1a b,
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where a and b are real-valued scale and shift parameters, re-
spectively, and the asterisk denotes complex conjugation. The
transient nature and finite energy content of the earthquake sig-
nals make it possible to have their wavelet domain representation.
It is possible to reconstruct the original signal ( )f t from its wavelet
coefficients ( )ψW f a b, as
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denoting the Fourier transform of ψ ( )t .

2.2. Mother wavelet

The choice of mother wavelet depends on the type of appli-
cation and the type of function being analyzed. The most common
transformation technique, that is Fourier transformation, uses a
complex basis function, ωei t . This function consists of a real (cosine)
function added in quadrature to its Hilbert transform (i.e., sine
function). Due to this, ωei t belongs to a special class of complex
functions, called analytic functions, which have non-zero spectra
only for positive frequencies [58]. The use of an analytic function
as the basis function entails it to reveal the phase information of a
signal, and therefore, Fourier transform is considered to be useful
for deriving the phase properties of stationary signals. Unlike the
Fourier transformation, a wavelet transformation uses a time-lo-
calized oscillatory function as the analyzing or mother wavelet,
which can be either real or complex. Both real and complex mo-
ther wavelets perform a complete and reversible transformation of
a signal from time domain to wavelet domain with no information
loss, but in the case of real wavelets, the phase-related information
of the signal cannot be separated out from the transformed signal.
It is therefore necessary that whenever instantaneous phase
properties of a signal are explicitly required, a complex mother
wavelet, which is also an analytic function, is used [58].

Another important characteristic of the mother wavelet func-
tion is its resolution. In this respect, the mother wavelet proposed
by Basu and Gupta [41] is well suited to deal with earthquake
signals. This function is basically a modified version of the Little-
wood-Paley (L-P) wavelet function, with improved resolution in
frequency domain. The advantage of the L-P basis function is that
its Fourier spectrum is constant over a specific band of frequencies
and zero for all other frequencies. However, with the original
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parameters of the L-P basis function, this band was found to be too
large for accurately representing the energy distribution of re-
corded earthquake ground motions. The modified function has the
same band-limited feature, but here the width of each band is
reduced significantly. Though this function is adequate for an in-
put-output stochastic formulation for structural systems, this,
being a real function, cannot reveal the phase characteristics of a
signal. Therefore, a variant of the modified function is considered
in this study.

The mother wavelet proposed by Basu and Gupta [41] is de-
fined as

ψ σπ π
π σ

( ) = ( ) − ( )
− ( )

t
t t
t

sin sin
1 6

with σ taken as 21/4 in the case of earthquake accelerograms. On
shifting the phase of this function by π/2, the Hilbert transform of
the function is obtained as

ψ π σπ
π σ

¯ ( ) = ( ) − ( )
− ( )

t
t t
t

cos cos
1 7

On adding Eq. (7) to Eq. (6) in quadrature, the analytic equivalent
of modified L-P wavelet is obtained as

ψ
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This (complex) function is proposed to be used as the mother
wavelet in this study (with σ ¼ 21/4).

Fig. 1 shows the real and imaginary parts of the mother wavelet
used. The Fourier transform of this function is

ψ ω
σ π

π ω σπ^( ) =
( − )

< <

= ( )

2
2 1

;
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which is twice as much as the Fourier transform of the modified
L-P wavelet. The mother wavelet considered here may also be seen
as a modification of the harmonic wavelet basis [39], just as the
L-P basis was modified by Basu and Gupta [41]. The real part of
this mother wavelet is the modified L-P wavelet itself, and there-
fore this inherits the advantages of the modified L-P wavelet and is
as much relevant to the seismic applications as is the modified L-P
wavelet. Hence, different scale parameters would correspond to
different non-overlapping frequency bands with the use of the
mother wavelet considered, and a given signal can be expressed as
a linear combination of several signals having energy in non-
overlapping frequency bands. Further, the widths of these bands
being sufficiently small (due to the use of σ ¼ 21/4), the mid-
Fig. 1. Real and imaginary parts of the mother wavelet used.
frequency of a band can be treated as the representative frequency
for that band. The temporal information in each of the band-lim-
ited signals can be obtained by changing the shift parameter.

To evaluate the integrals in Eqs. (6) and (7), a discretization
scheme used by Basu and Gupta [41] is adopted here. Most of the
modern accelerograms are recorded as discrete time ordinates
separated by a constant time interval, and hence, it is useful to
have discretized versions of the integrals. According to the dis-
cretization scheme of Basu and Gupta [41], σ=aj

j and

( )= − Δb i b1i , where Δb is the sampling time-interval of the ac-
celerogram (taken as 0.02 s in this study). Hence,
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Also, a and b are now parameterized with the help of two other
variables, i and j. Using the above two relations, the discretized
versions of Eqs. (1) and (3) may be obtained as [41]
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2.3. Synthetic accelerogram with the mother wavelet considered

As mentioned above, the mother wavelet considered is a gen-
eralized version of the modified L-P wavelet proposed by Basu and
Gupta [41]. Consequently, all the existing formulations with the
modified L-P wavelet [41,43,46,47] will hold good for the mother
wavelet considered also. In particular, the decomposition of a
signal into the constituent ‘band-limited’ signals and reconstruc-
tion of the original signal from those with the help of the mother
wavelet considered would give exactly the same results as ob-
tained by the modified L-P wavelet. In view of this, the metho-
dology proposed by Mukherjee and Gupta [46] to generate spec-
trum-compatible accelerograms in modification of a given accel-
erogram may be used, as it is, in the case of the mother wavelet
considered also. This methodology is briefly summarized in Ap-
pendix A and will be used in this paper. For illustration, the ac-
celerogram recorded at Los Angeles fire station, California, USA
during the 1994 Northridge Earthquake is made spectrum-com-
patible by using the mother wavelet considered. The target spec-
trum considered for this purpose is 5% USNRC design spectrum
with the peak ground acceleration of g0.25 . Figs. 2 and 3 show the
recorded and modified time-histories respectively. Fig. 4 shows
the comparison of the target (pseudo-spectral acceleration) spec-
trum with the spectrum for the modified accelerogram after
8 iterations.
3. Simulation of spatially correlated accelerograms

In the case of several related processes observed simulta-
neously, it is convenient to group those together in the form of a



Fig. 2. Real original (recorded) accelerogram.

Fig. 3. Modified (spectrum-compatible) accelerogram.

Fig. 4. Comparison of the response spectrum for the modified accelerogram with
the target spectrum.
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vector. This group is collectively called as vector or multivariate
process. The problem of simulation of spatially correlated time-
histories is thus a multivariate simulation problem, as each of the
ground motion records at different stations is basically a realiza-
tion of the same event. The most widely used technique for such a
simulation is the stochastic decomposition technique, which was
originally proposed by Shinozuka [28]. This technique works by
decomposing the elements of a parent random process into its
constituent sub-processes, either by eigensystem decomposition
[59] or by spectral factorization [7,14,17,22]. In this study, the
method of spectral factorization is considered to extend the sto-
chastic decomposition technique to the wavelet domain. The main
idea of the spectral decomposition technique lies in the factor-
ization of the original spectral matrix of the vector process by
Cholesky decomposition into upper and lower triangular matrices.
Shinozuka [60] has shown that the spectral matrices of seismic
ground motions are usually Hermitian and positive definite within
a range of frequencies, and hence the existence of Cholesky factors
is ensured. Next, from these Cholesky factors, each of the sub-
processes of the elements is simulated sequentially.

Let ( )tF denote the random multivariate process of spatially
correlated time-histories at n stations. When ( )tF is stationary, the
spectral matrix for this process is defined as
⎡
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where, the ith diagonal term denotes the PSDF of the ith element
of ( )tF (corresponding to the ground motion process at the ith
station) and the ( )i j, th off-diagonal term refers to the cross-PSDF
between the ith and jth elements of ( )tF . The cross-PSDFs between
the motions at different pairs of stations reflect the ground-motion
variability in a quantitative way. While it is popular to obtain the
PSDFs simply by considering the spectrum-compatible PSDFs at
the stations under consideration, each of the cross-PSDFs is ob-
tained via the desired correlation between the motions at the
corresponding pair of stations. This correlation is characterized by
a coherency function which is normalized cross-PSDF with respect
to the PSDFs for motions at the corresponding pair of stations (see
Appendix B for details).

In order to consider the inherent nonstationarity in the seismic
ground motions, the spectral matrix ω( )SF of the target process is
proposed to be estimated instantaneously in the form of a series of
instantaneous spectral matrices. The target instantaneous matrices
will be estimated through a wavelet-based characterization of ( )tF ,
due to the time-localization property of wavelets, and by the use of
a suitable coherency function along with the spectrum-compatible
instantaneous PSDFs. This aspect will be discussed next, followed
by an extension of the stochastic decomposition technique to the
wavelet domain, in order to simulate the realizations of different
elements of the vector process, ( )tF .

3.1. Estimation of Instantaneous Spectral Matrices

It is an accepted practice to characterize the seismic hazard at a
site by specifying a single set of smooth design spectra for differ-
ent damping ratios. Therefore, the ground motions to be simulated
at different stations should conform to the same (specified)
spectra, particularly when the site is not very large and thus the
local (spatial) variations in the design spectra may be neglected. It
is proposed to first generate an accelerogram compatible with one
of the design spectrum (corresponding to the damping ratio of the
structural system) and then to obtain the instantaneous PSDFs
from the wavelet coefficients of the generated accelerogram.

It is proposed to generate the spectrum-compatible accel-
erogram following the procedure of Mukherjee and Gupta [46],
even though any of the methods available for synthesizing fully
nonstationary, spectrum-compatible ground motions [for ex-
ample, [34,46,53,61–63]] may be used. For this purpose, it is as-
sumed that a suitable (parent) accelerogram conforming to the
local source and site conditions is available. It may be noted that
during the modification of the parent accelerogram, the temporal
variation of frequency content would remain undisturbed, and
hence, the generated (spectrum-compatible) accelerogram would
contain the same nonstationary characteristics as in the parent
accelerogram.

The instantaneous PSDFs are proposed to be estimated from
the generated accelerogram by using the expression given by Basu
and Gupta [41] (also see Eq. (22) in the following). In the absence
of a number of realizations, ensemble averaging will be carried out
through the smoothing of various PSDFs. As discussed above, these
instantaneous PSDFs will be applicable for the motions at all sta-
tions, and thus, all diagonal terms of the instantaneous spectral
matrix will be identical. To estimate the off-diagonal terms of the
spectral matrix, say the instantaneous cross-PSDF between the
motions at stations m and n, the instantaneous PSDF needs to be
multiplied with the corresponding instantaneous coherency
function, γ ω( )r t, ,mn . This function is invariant of time in the case of
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stationary processes, and several functional forms exist for the
time-invariant function. However, no functional model is available
yet for the instantaneous coherency function. Hence, it will be
assumed in this study for the purpose of illustration that the co-
herency function is time-invariant and thus the coherency models
available at present may be used to describe the correlations at all
time-instants. Though any of the available (time-independent)
coherency model could be chosen, the more popular coherency
model proposed by Harichandran and Vanmarcke [2] will be used
in this study. A brief description of this coherency function is given
in Appendix B.
3.2. Proposed formulation

Before we extend the method of stochastic decomposition to
simulate accelerograms conforming to the (target) instantaneous
spectral matrices of previous sub-section, it is desirable that the
expression for (instantaneous) cross-PSDF is formulated in terms
of the wavelet coefficients of the realizations of two different
elements of ( )tF . The expression for the (instantaneous) PSDF of a
single element has been already obtained by Basu and Gupta [41]
(see Eq. (22)).

For any two time-histories, ( )X t and ( )Y t that belong to the ( )L R2

space, the resolution of identity proposition states that [38]
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For these two time-histories, the Parseval’s theorem also gives
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provided both ( )X t and ( )Y t belong to the ( )L R1 and ( )L R2 spaces.
This condition is satisfied in the case of earthquake accelerograms.
Thus, on comparing Eqs. (15) and (16), one gets
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On using the discretization scheme mentioned earlier, Eq. (17)
becomes
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Now, on using the property of the wavelet basis function, i.e.,
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feature of the mother wavelet considered, Eq. (18) may be ex-
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∫ ∫ ∑ω ω ω

ψ ω ω

( ) *( ) = Δ ( ) *( )

^ ( )
( )

π

σπ

π

σπ

ψ ψX Y
K b

a
W X a b W Y a bd , ,

d
19

a

a

a

a

i j
j i j i

a b

/

/

/

/

,

2

j

j

j

j

j i

for a particular frequency band corresponding to the scale para-
meter j. Next, the frequency band π σπ( )a a/ , /j j being small enough,
the integration in this equation is performed in a very small range,
and hence the integrands on both sides can be assumed to be
equal without much error. Therefore, Eq. (19) gives
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On taking expectation of both sides and on using the time lo-
calization property of the wavelets, the instantaneous cross-PSDF
for the two processes ( )tX and ( )tY may be expressed as

ω ψ ω( )| = [ ( ) *( )]| ^ ( )|
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E W X a b W Y a b, ,
21

XY j t b
j

j i j i a b j,
2

i j i

where ωj is a frequency (between π a/ j and σπ a/ j) corresponding to
the jth scale parameter. For ( )tY ¼ ( )tX , when both processes are
same, the expression for the PSDF of either of the two processes
comes out to be
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22
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which is the same as obtained earlier by Basu and Gupta [41].
Now, we extend the spectral decomposition method to the

wavelet domain and decompose each of the elements of the
multivariate process ( )tF into the constituent sub-processes.
Without any loss of generality, the mth element of ( )tF can be
assumed to be composed of m number of random sub-processes
[7,17]. This leads to

∑( ) = ( )
( )=

F t F t
23

m
r

m

mr
1

where ( )F tmr is a realization of the rth sub-process at the station m.
On taking the wavelet transform of both sides, Eq. (23) may be
expressed as

∑( ) = ( )
( )

ψ
ϕ ϕ α

=

( ( )+ ( )+ )W F a b A a b e, ,
24

m j i
r

m

mr j i
i a b a b

1

, ,mr j i j i rinitial

where ( )ψW F a b,m j i is the wavelet coefficient of ( )F tm , and ( )A a b,mr j i

and ϕ ϕ α( ( ) + ( ) + )a b a b, ,mr j i j i rinitial are respectively the amplitude
and argument of the wavelet coefficient of ( )F tmr corresponding to
the jth scale and ith instant. Here, αr is a random phase angle,
varying with the sub-process r and being uniformly distributed
over the range 0– π2 ; ϕ ( )a b,j iinitial is the phase angle of the gener-
ated spectrum-compatible accelerogram (corresponding to the jth
scale and ith instant) and is obtained as the argument of the
wavelet coefficients of this motion (see Eq. (11)); and ( )A a b,mr j i

and ϕ ( )a b,mr j i are the deterministic quantities to be obtained from
the instantaneous spectral matrix of ( )tF , as will be shown below.

Eq. (24) may be used to express ( ) *( )ψ ψW F a b W F a b, ,m j i n j i in terms of the
amplitudes and arguments of the wavelet coefficients of the realiza-
tions of ( )tFm and ( )tFn . On taking the expectation of both sides, one
gets
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Assuming that the constituting sub-processes of a particular element
are statistically independent of each other, i.e., the random phase an-
gles αr and αs are statistically independent for all ≠r s [14,17], Eq. (25)
may be simplified to
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Fig. 5. Instantaneous PSDFs at different instants for the example motion.
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for ≤m n. On considering the instantaneous cross-PSDF for ( )tFm and
( )tFn , as in Eq. (21), and on substituting Eq. (26), one gets
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As discussed earlier, the simulated accelerograms should con-
form to the target spectral matrix. On Cholesky decomposition,
this matrix may be expressed as

ω ω ω( )| = ( )| · ( )| ( )= = =L LS 28t b t b
H

t bF i i i

where ω( )| =L t bi
denotes the (complex) lower triangular factor of the

spectral matrix at the time instant =t bi, and ω( )| =LH
t bi

is the
transpose of the complex conjugate of ω( )| =L t bi

. Eq. (28) leads to
the ( )m n, th element of the target spectral matrix in terms of
Cholesky factors as [17]
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for ≤m n, where ω( )| =Lmr j t bi
denotes the ( )m r, th element of

ω( )| =L t bi
(at a frequency ωj of the jth frequency band), and

ω* ( )| =Lnr j t bi
is the complex conjugate of the ( )n r, th element of the

same matrix. A term-by-term comparison of the right-hand side
expressions of Eqs. (27) and (29) gives
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where Im(.) and Re(.) respectively denote the imaginary and real
parts of the complex element inside the parenthesis.

It may be observed that the simulation of the elements of the
(multivariate) ground motion process primarily involves the esti-
mation of the wavelet coefficients of the constituting sub-pro-
cesses of each of the elements from the Cholesky factors of the
(instantaneous) target spectral matrix. Once these quantities are
obtained from Eqs. (30a) and (30b), those are used in Eq. (24)
along with the statistically independent random phase angles to
generate the wavelet coefficients of the realizations of the in-
dividual elements of ( )tF . These coefficients are then inverse-
transformed (see Eq. (12)) to obtain the corresponding time-his-
tories. The use of different sets of random phase angles leads to
the generation of ensembles.
Fig. 6. Simulated ground motions at different stations with example motion
characteristics.
4. Illustration of the proposed procedure

The proposed approach is illustrated by synthesizing accel-
erograms at four stations, 100 m apart, such that those have the
nonstationary characteristics of the recorded motion during the
1994 Northridge earthquake as in Fig. 2. The example motion is
first made spectrum-compatible, so as to be consistent with the 5%
USNRC design spectrum of g0.25 peak ground acceleration [46],
and then the instantaneous PSDFs are estimated from these mo-
tions. For this, wavelet coefficients of the motion are computed
with the help of Eq. (11), and then Eq. (22) is used along with the
smoothing operation (to take care of the expectation operator).
Fig. 5 shows the instantaneous PSDFs at three arbitrarily chosen
instants for the example motion. The parameters of the coherency
function (see Appendix B) are considered as: A¼0.736, α¼0.147,
k¼5210 m, f0 ¼1.09 Hz, and b¼2.78, as suggested by Harichan-
dran and Vanmarcke [2] for Event # 20 at the SMART-1 array. As
regards the apparent velocity vapp, values ranging from 2400 to
4500 m/s have been estimated during different events recorded at
this array. However, for the present study, vapp is assumed to be
2500 m/s in order to emphasize the effects of spatial variability on
the simulated motions.

At each of the four stations, an ensemble of 20 records is si-
mulated. Fig. 6 shows the synthesized accelerograms corre-
sponding to rij¼0, 100, 200, and 300 m for Stations 1–4. It may be
seen that the simulated time histories look very similar to the
original motion (see Fig. 2) in terms of temporal development.

The 5% damping (ensemble-averaged) response spectra for the
simulated motions at each station are compared with the target
spectrum in Fig. 7(a). The coefficient of variation (COV) spectra for
the pseudo spectral acceleration ordinates of these motions are



Fig. 7. Comparison of (a) mean response spectra for ensembles of simulated ac-
celerograms at different stations with the target spectrum and (b) COV spectra for
ensembles of simulated accelerograms at different stations.

Fig. 8. Comparison of instantaneous lagged coherences for the ensemble of ac-
celerograms at stations separated by 100 m with the target lagged coherence.

Fig. 9. Comparison of instantaneous lagged coherences for the ensemble of ac-
celerograms at stations separated by 200 m with the target lagged coherence.

Fig. 10. Comparison of instantaneous lagged coherences for the ensemble of ac-
celerograms at stations separated by 300 m with the target lagged coherence.
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shown in Fig. 7(b). All the four response spectra appear to be in
reasonably good agreement with the target spectrum, particularly
for the periods between 0.1 and 1 s There is a little overestimation
at shorter periods and underestimation at longer periods, possibly
due to a large separation of 100–400 m between the four stations.
Further, the three spectra for Stations 2–4 seem to be associated
with significantly larger scatter, possibly as a manifestation of the
interference of different wave components. The scatter is so pro-
minent in Fig. 7(b) due to a low value of vapp, chosen intentionally
to emphasize the effect of interference and wave propagation.

The instantaneous coherencies are also computed for each of
the (six) pairs of stations by considering the ensembles of 20 ac-
celerograms each. Figs. 8–10 show the comparisons for the abso-
lute value of the instantaneous coherency function (which is same
at all time instants) with the target lagged coherence (see Eqs. (36)
and (37)). Fig. 8 is for the stations 100 m apart (Stations 1 and 2,
Stations 2 and 3, Stations 3 and 4); Fig. 9 is for the stations 200 m
apart (Stations 1 and 3, Stations 2 and 4); and Fig. 10 is for the
stations 300 m apart (Stations 1 and 4). It may be observed that
the computed instantaneous coherences are broadly in agreement
with the target coherences.
5. Conclusions

A new method has been proposed to generate the ensembles of
spatially correlated accelerograms at a given number of stations.
The generated accelerograms at any station are consistent with a
given response spectrum in the mean sense and incorporate
nonstationary characteristics of a given accelerogram. The en-
sembles at any two stations are also made to satisfy a given co-
herency structure. It is assumed in the proposed formulation that
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the same set of response spectra characterize the seismic hazard at
all the stations.

The proposed method is based on the method of stochastic
decomposition and spectral factorization technique, and the si-
mulation is carried out through the estimation of wavelet coeffi-
cients. For this, a complex analytic mother wavelet has been ob-
tained by generalizing the modified L-P wavelet function. This
wavelet function is used to decouple the amplitude and phase
information of a signal, and this is able to decompose a signal into
component time-histories having energy in non-overlapping fre-
quency bands. An expression for the instantaneous cross-PSDF has
also been derived for the wavelet-based formulation.

The proposed formulation has been illustrated by generating
the ensembles of accelerograms at four stations 100 m apart cor-
responding to the USNRC design spectrum and the nonstationary
characteristics of a 1994 Northridge earthquake motion. It has
been assumed for the numerical study that there are no temporal
variations in the coherency structure between any two stations. It
is observed that the simulated motions preserve the nonstationary
characteristics of the example processes and the specified coher-
ency structure at different instants of time. Also, the ensemble of
generated motions at each of the stations is broadly compatible
with the target design spectrum in the mean sense.

The proposed formulation takes care of the frequency non-
stationarity without putting any limitation on the target process to
be used for this purpose, and any recorded accelerogram may be
used irrespective of the nature of the target response spectrum.
The simulated motions can be easily made compatible with dif-
ferent design spectra at different stations in the case of large sites.
Additionally, the proposed formulation has the flexibility of in-
cluding temporal variations in the correlation structure as and
when those become available and are considered to be important
for application.
Appendix A. Methodology of Mukherjee and Gupta [46]

The main idea of the method of Mukherjee and Gupta [46] is to
decompose a given earthquake accelerogram into sufficient
number of time-histories having energy in non-overlapping fre-
quency bands and then to scale those component time-histories
iteratively for matching with a given response spectrum. The re-
corded accelerogram ( )f t is thus decomposed into N number of
time-histories, i.e.,
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31j
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where ( )f tj is the jth time-history given as
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and N is such that ( )f t1 , ( )f t2 , …, ( )f tN cover the entire frequency
range of significant energy in ( )f t . Further, various constants in Eq.
(32) are same as explained in Section 2, and ψ ( )t is the modified L-
P wavelet as in Eq. (6).

The time-history ( )f tj is iteratively scaled as
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where [ ( )]TPSA target is the ordinate of the target response spectrum

at the period T , and [ ( )]( ) TPSA n
calculated is the ordinate of the re-

sponse spectrum calculated from ( )f n (¼ ∑ )=
( )fj

N
j
n

1 at the same T
after n iterations. The iterative process is continued for all N
component time-histories till the error in the calculated response
spectrum, as averaged over the chosen control time-periods, falls
below a specified tolerance level.
Appendix B. Coherency function

Spatial variability is usually characterized by a (frequency-de-
pendent) coherency function, which is in turn defined in terms of
the cross-spectral density function and power spectral density
functions of the processes involved. If ω( )Sxy denotes the cross-
spectral density function of ( )tx and ( )ty , and ω( )Sx and ω( )Sy

denote the power spectral density functions of these processes
respectively, the coherency function is defined as

γ ω
ω

ω ω
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( ) ( ) ( )
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S S 34
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xy

x y

γ ω( )xy

2
describes the extent of correlation between ( )tx and ( )ty

with 0 ≤ γ ω( )xy

2
≤1. In the case of ( )tx and ( )ty representing the

ground acceleration processes at two stations, the (complex) co-
herency function can be either derived based on the theoretical
considerations or obtained empirically from the ground motion
data recorded by a dense array of accelerograph stations. This
function is usually modeled as
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where vapp is the apparent velocity of propagation of seismic waves

at the site under consideration, f ¼ ω π/2 is the wave frequency in
Hz, and ρ( )r f,xy is the frequency-dependent coherence. The ex-
ponential term in the above equation describes the wave-passage
effect, i.e., the delay in the arrival of the waveforms at a station rxy

distance away due to their propagation. The other part, ρ( )r f,xy , is
a measure of the “similarity” in the seismic motions at the two
stations and indicates the degree to which the two processes are
related by means of linear transformation. It is expected that at
low frequencies and short separation distances, the two processes
will be almost similar, and therefore, ρ( )r f,xy will tend to unity as
ω →0 and rxy →0. On the other hand, at large frequencies or at large
separation distances, the motions are expected to be uncorrelated,
and hence ρ( )r f,xy will tend to be zero. The value of correlation in
between the two extreme cases will decay with frequency and
separation distance. This observation has been validated by several
analyses of recorded data, and different functional forms have
been proposed in the recent years to describe the spatial varia-
bility empirically.

One of the popular coherence models has been proposed by
Harichandran and Vanmarcke [2]. This model is based on the
analyses of the SMART-1 array strong motion data and has the
following form:
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represents the frequency-dependent spatial scale of fluctuations;
and A, α, k, f0, and b are the parameters estimated by the re-
gression analyses of the recorded data.
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