
Automatic Source Code Summarization
of Context for Java Methods

Paul W. McBurney and Collin McMillan

Abstract—Source code summarization is the task of creating readable summaries that describe the functionality of software. Source

code summarization is a critical component of documentation generation, for example as Javadocs formed from short paragraphs

attached to each method in a Java program. At present, a majority of source code summarization is manual, in that the paragraphs are

written by human experts. However, new automated technologies are becoming feasible. These automated techniques have been

shown to be effective in select situations, though a key weakness is that they do not explain the source code’s context. That is, they can

describe the behavior of a Java method, but not why the method exists or what role it plays in the software. In this paper, we propose a

source code summarization technique that writes English descriptions of Java methods by analyzing how those methods are invoked.

We then performed two user studies to evaluate our approach. First, we compared our generated summaries to summaries written

manually by experts. Then, we compared our summaries to summaries written by a state-of-the-art automatic summarization tool. We

found that while our approach does not reach the quality of human-written summaries, we do improve over the state-of-the-art

summarization tool in several dimensions by a statistically-significant margin.

Index Terms—Source code summarization, automatic documentation, program comprehension

Ç

1 INTRODUCTION

PROGRAMMERS rely on good software documentation [11],
[22], [27], [48]. Unfortunately, manually-written docu-

mentation is notorious for being incomplete, either because
it is very time-consuming to create [6], [19], or because it
must constantly be updated [10], [17], [38]. One result has
been the invention of the documentation generator. A docu-
mentation generator is a programming tool that creates doc-
umentation for software by analyzing the statements and
comments in the software’s source code. The key advantage
is that they relieve programmers of many tedious taskswhile
writing documentation. They offer a valuable opportunity to
improve and standardize the quality of documentation.

Still, a majority of documentation generators are manual.
They need considerable human intervention. Prominent
examples include Doxygen [50] and Javadoc [23]. These tools
streamline the task of writing documentation by standardi-
zing its format and presentation. But, they rely on pro-
grammers towrite the documentation’s content (in particular,
a summary of each function or method) as specially-formatted
metadata in the source code comments. The tools cannot gen-
erate documentation without this metadata. The burden of
writing the documentation still lieswith the programmers.

Recent research has made inroads towards automatic
generation of natural language descriptions of software [2],
[29], [33], [42], [43], [44]. In particular, work by Sridhara et al.
can form natural language summaries of Java methods [42].

The summaries can then be aggregated to create the
software’s documentation. The technique works by first
selecting a method’s most important statements, and then
extracting keywords from the identifier names in those state-
ments. Next, a natural language generator stitches the key-
words into English sentences. Finally, these sentences are
used to make a method summary. The process is automatic;
so long as the source code contains meaningful identifiers,
the summaries will describe the main behaviors of a given
Java method.

What is missing from the method summaries is informa-
tion about the context which surrounds the method being
summarized. The context includes the dependencies of the
method, and any other methods which rely on the output of
the method [24]. A method’s context is important for pro-
grammers to know because it helps answer questions about
why a method exists and what role it plays in the soft-
ware [7], [39], [40]. Because they summarize only those
statements within a method, existing techniques will supply
only limited context about a method. Programmers explor-
ing a software system they are unfamiliar with can use sum-
maries with context to more quickly understand how a
given method in a project, at a high-level, fits in with the
rest of the project.

In this paper, we hypothesize that existing documenta-
tion generators would be more effective if they included
information from the context of the methods, in addition
to the data from within the methods. We define “more
effective” in terms of three criteria: programmers find the
documentation’s method summaries to be more helpful in
understanding 1) what the methods do internally, 2) why
the methods exist, and 3) how to use the methods. To test
our hypothesis, we introduce a novel technique to auto-
matically generate documentation that includes context.
We then perform two case studies. Our first case study
compares source summaries generated by our automatic

� P.W. McBurney is with the College of Computer Science and Engineering,
University Notre Dame, Notre Dame, IN. E-mail: pmcburne@nd.edu.

� C. McMillan is with Computer Science, University of Notre Dame, South
Bend, VA. E-mail: cmc@nd.edu.

Manuscript received 22 Oct. 2014; revised 2 Apr. 2015; accepted 31 May
2015. Date of publication 5 Aug. 2015; date of current version 19 Feb. 2016.
Recommended for acceptance by G.C. Murphy.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2465386

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016 103

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

approach to manually written source code summaries via
Javadocs. Our second study compares source code sum-
maries generated by our automatic approach to source
code summaries generated by a state-of-the-art automatic
approach.

Our tool works by collecting contextual data about Java
methods from the source code, namely method calls, and
then using the keywords from the context of a method to
describe how that method is used. We use related work, the
Software Word Usage Model (SWUM), to identify the parts
of speech for the different keywords. We choose the contex-
tual information to summarize using the algorithm Pag-
eRank, which we compute for the program’s call graph. We
then build a novel Natural Language Generation (NLG) sys-
tem to interpret the keywords and infer meaning from the
contextual information. Our system then generates a read-
able English description of the context for each method in a
Java program. We will describe typical Natural Language
Generation systems and supporting technologies for our
approach in Section 3, followed by our approach, our evalu-
ation, and our evaluation results. Specifically, we contribute
the following:

� A novel approach for generating natural language
descriptions of source code. Our approach is differ-
ent from previous approaches in that we summarize
context as readable English text.

� An expanded case study of our previous work [31].
This case study evaluates summaries generated by
our approach and compares these summaries against
manually written documentation via Javadocs.

� A case study evaluating our approach and compar-
ing it against documentation generated by a state-of-
the-art approach. Our case study shows that our
approach can improve existing documentation by
adding important contextual information.

� A complete implementation of our approach for
Java methods. For the purpose of reproducibility
of our results, we have released our implementa-
tion to the public as an open-source project via
our online appendix.1

2 THE PROBLEM

The long-term problem we target in this paper is that much
software documentation is incomplete [28], which costs pro-
grammers time and effort when trying to understand the
software [11]. In Java programs, a typical form of this docu-
mentation is a list of inputs, outputs, and text summaries
for every method in the software (e.g., JavaDocs). Only if
these summaries are incomplete, do the programmers resort
to reading the software’s source code [37]. What they must
look for are clues in the source code’s structure about how
the methods interact [16], [22], [47]. The term “structure”
refers to both the control flow relationships and the data
dependencies in source code. The structure is important
because it defines the behavior of the program: methods
invoke other methods, and the chain of these invocations
defines how the program acts. In this paper, we aim to

generate documentation that is more complete than previ-
ous approaches, in that our generated documentation con-
tains structural information in each method’s summary.

We include this structural information from the context
surrounding each method in the program. A method’s
“context” is the environment in which the method is
invoked [24]. It includes the statement which called the
method, the statements which supplied the method’s inputs,
and the statements which use the method’s output. Context-
sensitive program slicing has emerged as one effective tech-
nique for extracting context [24]. Given a method, these tech-
niques will return all statements in its context. However,
some statements in the context are more relevant to the
method than other statements. This issue of relevance is
important for this paper because we must limit the size of
the text summaries, and therefore select only a small num-
ber of statements for use in generating the summaries.

Consider the manually-written examples of method
summaries from NanoXML, a Java program for parsing
XML, below. Item 1 is an example method we selected. It
demonstrates how the default summary from documenta-
tion can be incomplete. In isolation, the method summary
leaves a programmer to guess: What is the purpose of read-
ing the character? For what is the character used? Why does
the method even exist?
Example method with default summary from JavaDocs

1) StdXMLReader.read() /Method Name
“Reads a character.” /Method Summary

Methods from context of example, with summaries
from JavaDocs
2) XMLUnit.skipWhitespace()

“Skips whitespace from the reader.”
3) XMLElement.addChild()

“Adds a child element.”
4) StdXMLBuilder.startElement()

“This method is called when a new XML element is
encountered.”

5) StdXMLBuilder.addAttribute()
“This method is called when a new attribute of an XML
element is encountered.”

These questions can be answered by reading the con-
text. The example method may be easier to understand
when we know that Items 2 through 5 are in the the exam-
ple’s context. These methods are in the context because
they all rely on the method read (e.g., they either call
read directly, or are called by read). We selected Items 2
through 5 above by hand to demonstrate this motivating
example. However, in the remainder of this paper we will
discuss how we automatically choose methods from the
context and generate natural language descriptions, such
as the one below in Item 6, for arbitrary Java methods. Our
summaries provide programmers with key clues about
how a method is used, and provides this information as
English readable sentences:

Example method with summary including the meth-
od’s contextual information

6) StdXMLReader.read()
“This method reads a character. That character is used in
methods that add child XML elements and attributes of
XML elements. Calls a method that skips whitespace.”1. http://www.nd.edu/�pmcburne/summaries/

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

3 BACKGROUND

This section describes three supporting technologies for our
work: the Software Word Usage Model [15], the design of
Natural Language Generation (NLG) systems [36], and the
algorithm PageRank [25]. These techniques were proposed
and evaluated elsewhere. We emphasize them here because
they are important concepts for our approach.

3.1 Software Word Usage Model

The Software Word Usage Model is a technique for repre-
senting program statements as sets of nouns, verbs, and
prepositional phrases. SWUM works by making assump-
tions about different Java naming conventions, and using
these assumptions to interpret different programs state-
ments. Consider a method from NanoXML which has
the signature static String scanPublicId(String-

Buffer, XMLReader, char, XMLEntityResolver).
SWUM first splits the identifier names using the typical
Java convention of camel case. Next, it reads verbs from the
method as the starting word from the method identifier
(e.g., “scan”). SWUM also extracts noun phrases, such as
“public id”, and deduces a relationship of the nouns to the
verbs. For example, “public id” is assumed to be the direct
object of “scan” because it follows “scan” in the method
identifier. Other nouns, such as “string” or “xml reader”,
are read from the return types and arguments, and are inter-
preted under different assumptions. We direct readers to
the relevant literature on SWUM for complete details [15].

One strategy for using SWUM for text generation is to
define templates of natural language sentences, and use the
output from SWUM to fill these templates [42]. For example,
a template for method call statements is “action theme
args and get return-type”. The template may be further proc-
essed so that items such as return-type actually display as
the variable name. Given amethod call statement systemID
= XMLUtil.scanPublicID(publicID, reader, ‘&’,

this.entityResolver);, a summary for the statement is
“scan public id and get system id”. To summarize an entire
method from these summaries of statements, Sridhara et al.
selected a subset of key statements by defining rules for
which statements are typically the most important (e.g.,
return or control-flow statements). A method summary was
a combination of the summaries of these key statements.

3.2 Natural Language Generation Systems

The design of a Natural Language Generation systems typi-
cally follows an architecture described by Reiter and
Dale [36]. Fig. 1 illustrates this architecture. Conceptually,
the architecture is not complicated: a “communicative goal”
is translated from a series of facts into readable natural lan-
guage sentences, known as “surface text.” The NLG system
has three main components, each of which is made up of
several individual steps.

The first main component is the Document Planner. The
input to this component is a list of facts that need to be com-
municated to a human reader. Through “content determi-
nation”, the document planner interprets the facts and creates
“messages.” Messages are an intermediate representation
between the communicative goal and readable text. For exam-
ple, in a weather forecast generator such as FOG [13], facts

about the temperature on given days result in amessage offer-
ing an interpretation of those facts, e.g., that it is colder today
than it was yesterday. After the messages are created,
“document structuring” takes place which sorts the messages
into a sequence that makes sense to a human reader. This
sequence ofmessages is known as the document plan.

The next main component, the Microplanner, decides
which words will be used to describe each message. In
“lexicalization”, the microplanner assigns specific words as
parts of speech in a “phrase” about each message. Typically,
the subject, verb, and object for a given message are identi-
fied. Additionally, any modifiers such as adjectives and
adverbs. Next, two steps smooth the phrases so that they are
more naturally read. “Reference generation” decides how
nouns will be referred to in the phrases, such as whether to
use a proper name or a pronoun. Finally, “aggregation” joins
phrases based on how they are related, e.g., causally (joined
by because) or via coordination (joined by and/or).

The final component of NLG is the Surface Realizer. The
surface realizer generates natural language sentences
from the phrases. Different grammar rules for the natural
language dictate how the sentences should be formed.
The surface realizer follows these rules to create senten-
ces that contain the parts of speech and words given by
the microplanner. These sentences are the surface text.
They are human-readable descriptions of the information
in the messages, interpreted from the facts given to the
document planner, and in the order defined in the docu-
ment plan.

3.3 PageRank

PageRank is an algorithm for approximating the importance
of the nodes in a graph [25]. While a complete discussion of
PageRank is beyond the scope of this paper, in general, Pag-
eRank calculates importance based on the number of edges
which point to a given node as well as the importance of the
nodes from which those edges originate. PageRank is well-
known for its usefulness in ranking web pages for web
search engines. However, PageRank has seen growing rele-
vance in its applications in software engineering. In particu-
lar, a body of work has shown how PageRank can highlight
important functions or methods in a software program [5],
[18], [32], [35]. A common and effective strategy is to model
a software program as a “call graph”: a graph in which the
nodes are functions or methods, and the edges are call rela-
tionships among the methods. Methods that are called

Fig. 1. The typical design of a natural language generation system as
described by Reiter and Dale [36]. We built our NLG system around
each of these seven steps.

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 105

many times or that are called by other important methods
are ranked as more important than methods which are
called rarely, and thus have few edges in the call graph. We
follow this model of using PageRank for this paper.

4 APPROACH

This section describes the details of our approach, including
each step of our Natural Language Generation system. Gen-
erally speaking, our approach creates a summary of a given
method in three steps: 1) use PageRank to discover the most
important methods in the given method’s context, 2) use
data from SWUM to extract keywords about the actions per-
formed by those most important methods, and 3) use a cus-
tom NLG system to generate English sentences describing
for what the given method is used.

The summaries our approach generates are designed to
communicate high-level summaries of a method and its
context. Our goal is to allow a programmer inexperienced
with a given system to be able to understand not just what a
method does, by why the method exists by examining its
interactions. Our summaries point to examples of a given
method being used. These examples are chosen to briefly
inform the user how a method can be used. The examples,
however, are designed to be simple and short as a summary
that is inconcise can be a limiting factor to programmer
comprehension. The examples do not describe all the nec-
cessary pre-conditions or the resulting post-conditions of
running a method, as the summaries would become incon-
cise as a result.

The architecture of our approach is shown in Fig. 2. In
theory our system could summarize functions in many lan-
guages, but in this paper we limit the scope to Java meth-
ods. The data we collect about these Java methods is our
“communicative goal” (see Section 3.2) and is the basis for
the information we convey via NLG.

4.1 Data Collection

The comment generator requires three external tools to
produce the necessary input data: SWUM, the call graph
generator, and PageRank. SWUM parses the grammatical
structure from the function and argument names in a
method declaration. This allows us to describe the method
based on the contents of its static features. Specifically,
SWUM outputs the keywords describing the methods, with
each keyword tagged with a part of speech (Fig. 2, area 3).
Next, we produce a call graph of the project for which we
are generating comments. Our call graph2 allows us to see

where a method is called so that we can determine the
method’s context (Fig. 2, area 2). Finally, we obtain a Pag-
eRank value for every method by executing the Page-Rank
algorithm with the procedure outlined in Section 3.3.

In addition to gleaning this information from the project
to produce our comments, we also use the source code of
the project itself. For every method call in the call graph, the
Data Organizer searches through the code to find the state-
ment that makes that call. The purpose of collecting these
statements is to provide a concrete usage example to the
programmer. The Data Organizer combines these example
statements with the call graph and SWUM keywords to cre-
ate the Project Metadata (Fig. 2, area 4).

4.2 Natural Language Generation

This section covers our NLG system. Our system processes
the Project Metadata as input (Fig. 2, area 5), following each
of the NLG steps shown in Table 1.

4.2.1 Content Determination

We create six different types of “messages” (see Section 3.2)
that represent information about a method’s context. These
messages are briefly described in Table 1.

First, a Quick Summary Message represents a brief, high-
level action summarizing a whole method. For example,
“skips whitespace in character streams.” We create these
messages from the noun/verb labeling of identifier names
extracted by SWUM from the method’s signature. Our sys-
tem makes a simplifying assumption that all methods per-
form some action on some input. If the keyword associated
with the input is labeled as a noun by SWUM, and the key-
word associated with the method name is a verb, we
assume that there is a verb/direct-object relationship
between the method name and the input name. This rela-
tionship is recorded as a Quick Summary Message.

The Return Message is a message created to reflect the
return type of the message. This method uses the return
type of a Java method signature. For primitive datatypes,
we use the natural language interpretations of Java data-
types. For example, int is interpreted as Integer. For meth-
ods that return objects, we use SWUM to generate a natural
language representation of the object name. This usually is
a noun phrase where the object name is split on camel-cas-
ing. The return message is often combined with the Quick
Summary Message (see Lexicalization below).

Fig. 2. Overview of our approach.

TABLE 1
A Quick Reference Guide for Types of Messages

Our Approach Creates

Message Type Explanation

Quick Summary Message Short sentence that describes method
ReturnMessage Notes the return type of the method
Importance Message States how important a method is based

on PageRank
Output UsedMessage Describe at most 2 methods that call

this method
Call Message Describe at most 2 methods that this

method calls
Use Message Gives an example of how the message

can be used.

2. Generated using java-callgraph, available via https://github.
com/gousiosg/java-callgraph, verified 9/12/2013

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

Another type of message is the Importance Message. The
idea behind an importance message is to give programmers
clues about how much time to spend reading a method. The
importance message is created by interpreting both the Pag-
eRank value of the method and the PageRank values of all
other methods. The importance message represents how
high this value is above or below average. At the same time,
an importance message will trigger our NLG system to
include more information in the method’s description if the
method is ranked highly (see Aggregation below). It should
be noted that the Importance Message was removed from
our summarization tool after an initial study comparing our
summaries to human written summaries. When we com-
pared to the automatic state of the art approach, this mes-
sage was omitted due to several programmers in our study
specifically saying that the Importance Message was unnec-
essary and did not provide useful understanding of the
method (see Section 8).

A third message type is the Output Usage Message. This
message conveys information about the method’s output,
such as “the character returned by this method is used to
skip whitespace in character streams.” Our system uses data
from quick summary messages, importance messages, and
the call graph to create output usage messages. Given a
method, our system creates an output usage message by first
finding the methods in the call graph which depend on the
given method. Then, it picks the two of those methods with
the highest PageRank. It uses the quick summary message
from those twomethods to describe how the output is used.

Very similar to the Output Usage Message, the Call Mes-
sage is used to say what methods a given method calls. Say-
ing what methods are called by a given method can help
illuminate how the method performs a particular action.
The call message, for example, could be “Calls a method
that loads a file.” This would illustrate to a programmer
that this method is reliant on some form of file input to com-
plete its task. Similar to how we handle the Output Usage
Message, we consider all the methods called by the method
being summarized, and select the two methods with the
highest PageRank. The Call Message also used the Quick
Summary Message from those selected methods.

The last message type we will examine in detail is theUse
Message. This message serves to illustrate how a program-
mer can use the message by highlighting a specific example
in the code. For example, one message we generated was
“the method can be used in an assignment statement; for
example: Date releaseDate=getReleaseDate();.”
Our system can also generate a Use Message classifying a
conditional statement. For example “The method can be
used in an assignment statement ; for example: if (getAd-

dedFigure() != null & & !getCreatedFigure().

isEmpty())”. Our system uses the call graph to find a line
of code that calls the method for which we are generating
the message. It then classifies, based on static features with
the line of code, whether the calling statement is a condi-
tional, iteration, assignment, or procedural statement.

4.2.2 Document Structuring

After generating the initial messages in the content determi-
nation phase, we organize all the messages into a single
document plan. We use a templated document plan where

messages occur in a pre-defined order: Quick Summary
Messages, Return Messages, Output Used Messages, Called
Messages, Importance Messages, and then Use Messages.
This ordering was decided based on internal exploratory
pilot studies. We decided on this order as we felt this order
was themost natural to read. This order puts the Quick Sum-
mary Message first, which we believe is the most important
piece of information. Due to Lexicalization (see below) the
Quick Summary Message was usually combined with the
Return Message. We believe the next most important piece
of information is the Output UsageMessage, which provides
summary readers with some understanding of context, and
can clarify the Quick SummaryMessage. TheUsageMessage
is last as we believe readers already need to have a high level
understanding of a method in order to understand a given
usage example from source code. Note that this order may
change during the Aggregation phase below.

4.2.3 Lexicalization

Each type of message needs a different type of phrase to
describe it. This section will describe how we decide on the
words to be used in each of those phrases, for the six mes-
sage types described under Content Determination. Note
that the phrases we generate are not complete sentences;
they will be grouped with other phrases during Aggrega-
tion and formed into sentences during realization.

The Quick Summary Message records a verb/direct-object
relationship between two words extracted by SWUM. The
conversion to a sentence is simple in this case: the verb
becomes the verb in the sentence, and likewise for the
direct-object. The subject is assumed to be “the method”,
but is left out for brevity. The message is then created as
“This method verb direct object.” In some cases, the article
“the” is added before the direct object.

The Importance Message holds both the method’s Pag-
eRank and an average PageRank. To create a phrase for this
type of message, we set the subject as “this method”, the
verb as “seems”, and the object as “important.” If the meth-
od’s PageRank is more than 150 percent of the average,
we add the modifier “far more.” If it is between 100 and
150 percent, we consider it “slightly more”, while if it is less
than 100 percent, we use the modifier “less”. We decided on
these thresholds during exploratory pilot studies, though
improving them is part of our future work (see Section 8).
As the Importance Message was removed in our second
study, we do not perform this lexicalization in the summa-
ries we compare to a state-of-the-art approach.

We create a phrase for anOutput Usage Message by setting
the object as the return type of the method, and the verb as
“is”. The subject is the phrase generated from the Quick
Summary Message. We set the voice of the phrase to be pas-
sive. We decided to use passive voice to emphasize how the
return data is used, rather than the contents of the Quick
Summary Message. An example of the phrase we output is
under the Content Determination section.

The Use Message is created with the subject “this meth-
od”, the verb phrase “can be used”, and appending the
prepositional phrase “as a statement type;”. Statement type is
pulled from the data structures populated in our content
determination step. Additionally, we append a second
dependent clause “for example: code”.

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 107

4.2.4 Reference Generation and Aggregation

During Aggregation, we create more complex and readable
phrases from the phrases generated during Lexicalization.
Our system works by looking for patterns of message types,
and then grouping the phrases of those messages into a sen-
tence. For example, if two Output Usage Messages are
together, and both refer to the same method, then the
phrases of those two messages are conjoined with an “and”
and the subject and verb for the second phrase is hidden. In
another case, if a Quick Summary Message follows a Quick
Summary Message for a different method, then it implies
that the messages are related, and we connect them using
the preposition “for”. The result is a phrase such as “skips
whitespace in character streams for a method that processes
xml”. Notice that Reference Generation occurs alongside
Aggregation. Rather than hiding the subject in the phrase
“processes xml”, we make it explicit as “method” and non-
specific using the article “a” rather than “the.” We direct
readers to our online appendix for a complete listing of the
Aggregation techniques we follow.

4.2.5 Surface Realization

We use an external library, simplenlg [12], to realize com-
plete sentences from the phrases formed during Aggrega-
tion. In the above steps, we set all words and parts of
speech and provided the structure of the sentences. The
external library follows English grammar rules to conjugate
verbs, and ensure that the word order, plurals, and articles
are correct. This step outputs an English summary of the
method (Fig. 2, area 6).

5 EXAMPLE

In this section, we explore an example of how we form a
summary for a specific method. We will elaborate on how
we use SWUM, call graph, PageRank, and source code to
form our messages. Note that in these examples, we do not
discuss the Importance Message, as the more recent version of
our approach in the second study left this off. To see how
the Importance Message is generated, see the Lexicalization
section in Section 4.2.

Consider getResult() from StdXMLBuilder.java in
Nano-XML. The method’s signature, public Object

getResult(), is parsed by SWUM which will tell us the
verb is “get”and the object is “result.” Additionally, it will
note the return type as “object.” This will be used to generate
theQuick Summary Message “This method gets the result and
returns an Object.” Then, using the call graph, we determine
that the top two methods (as scored by PageRank) that call
getResult() are scanData() and parse(). Initially, in
the document planning phase, we generate two separate
messages, one using the SWUM information for each func-
tion. However, these are combined in the aggregation step
with the conjunction “and”, and eventually produce theOut-
put UsageMessage “That Object is used bymethods that scans
the data and that parses the std XML parser.”

The last message we generate is the Use Message. We
search through the most important calling method, which
in this case is scanData(). We take a line of code that calls
getResult(), and determine based on its content whether
it is a conditional, iteration, assignment, or procedural

statement. Using this information, we generate the Use
Message “The method can be used in an iteration statement;
for example: while ((!this.reader.atEOF()) &&

(this.builder.getResult() == null)) {”. Each of
these messages are then appended together to make the
final summary.

As a second example, we consider an abstract method.
Abstract methods are not called directly, so when we gener-
ate messages, they will not have an Output Usage Message or
a Use Message. For example, when we look at the signature
public IXMLElement CreatePCDataElement(); in
IXMLElement.java, there will be no other methods con-
nected to it on the callgraph. We can, however, still generate
a Quick Summary Message. Doing so in the same way as we
showed previously in the section, we get the summary
“This method creates the PC data element and returns an
IXMLElement.” Similarly, API library methods, which are
designed to be called by a programmer in an external pro-
gram, may only be limited to a Quick Summary Message.

For a third example, we will look at the method read()

in StdXMLReader.java. This was the method we examined
in Section 2. To generate a Quick Summary Message, we
examine the method signature public char read(). The
method name, “read” is interpreted by SWUM to be a verb.
This means the direct object is the return type, “char”, or
“character.” This results the Quick Summary Message “This
method reads a character.” The Return Message, “This
method returns the character,” is then combined with the
Quick Summary Message in aggregation to produce “This
method reads a character and returns the character.”

To generate the Output Usage Message, we first find the
methods that call read() with the highest PageRank. In
this case, the most important methods, the two with the
highest PageRank, are XMLElement.addChild() and
StdXMLBuilder.addAttribute(). The Output Usage
Message is created by combining the Quick Summary Mes-
sages of those two methods. The Quick Summary Message of
XMLElement.addChild() is “add child XML elements”
and the Quick Summary Message of XMLElement.addAt-
tribute() is “add attribute of XML element.” These mes-
sages are combined with the Return Message to produce the
sentence “That character is used in methods that add child
XML elements and attributes of XML elements.” Note that
because both methods use the verb add, we do not repeat it.
We combine the two direct objects into a complex verb
phrase. The Called Message is generated by finding the most
important methods that read() calls. The only meethod
that read() calls is skipsWhitespace(), which is used
to generate the sentence “This method calls a method that
skips the whitespace.”

The Usage Message is created by finding a line of code in
one of the methods that calls read(). For example, we find
a line of code char ch = reader.read();. This meets the
definition of an assignment statement. Thus, we generate
the message, “This method can be used in an assignment
statement ; for example: char ch = reader.read();. Put-
ting all the messages together, the final summary we gener-
ate for read() is “This method reads a character and
returns the character. That character is used in methods that
add child XML elements and attributes of XML elements.
This method calls a method that skips the whitespace. This

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

method can be used in an assignment statement; for exam-
ple: char ch = reader.read();.” The fully combined
summary is shown in Fig. 3.

6 EVALUATION COMPARING TO MANUAL

SUMMARIES

Our first evaluation compared automatic summaries of our
approach to the summaries written by human experts
within the source code via Javadocs. The Javadocs for the
program were embedded within the source code written by
the developers. The goals of our evaluation were three-fold:
1) to assess the degree to which our summaries mimic the
high quality of summaries written by programmers, 2) to
assess whether the summaries provide useful contextual
information about the Java methods, and 3) to determine
whether the generated summaries can be used to improve,
rather than replace, existing documentation.

Assessing overall quality. We do not expect an automated
approach to outperform human experts in terms of the over-
all quality of the summaries. Nevertheless, one goal of our
evaluation is to quantify any difference in quality, and to
determine inwhat areas the quality of the automated summa-
ries can be most improved. We compare the summaries from
our approach to summaries extracted from the documenta-
tion (e.g., the Javadocs) for different Java programs. To assess
quality, we ask three different research questions (RQs):

RQ1 To what degree do the automated and manually-
written summaries differ in overall accuracy?

RQ2 To what degree do the automated and manually-
written summaries differ in terms of missing
important information?

RQ3 To what degree do the automated and manually-
written summaries differ in terms of including
unnecessary information?

These research questions are derived from two earlier
evaluations of source code summarization [33], [42], where
the “quality” of the generated comments was assessed in
terms of accuracy, content adequacy, and conciseness. Con-
tent adequacy referred to whether there was missing infor-
mation, while conciseness referred to the amount of
unnecessary information in a summary. This strategy for
evaluating generated comments is supported by a recent
study of source code comments [45] in which quality was
modeled as a combination of factors correlating to accuracy,
adequacy, and conciseness.

Assessing contextual information. Contextual information
about a method is meant to help programmers understand
the behavior of that method. But, rather than describe that
behavior directly from the internals of the method itself,
context explains how that method interacts with other
methods in a program. By reading the context, pro-
grammers then can understand what the method does, why
it exists, and how to use it (see Section 2). Therefore, we
study these three research questions:

RQ4 Do the summaries help programmers understand
what the methods do internally?

RQ5 Do the summaries help programmers understand
why the methods exist?

RQ6 Do the summaries help programmers understand
how to use the methods?

The rationale behind RQ4 is that a summary should pro-
vide programmers with just enough details to understand
the most important internals of the method—for example,
the type of algorithm the method implements—without
forcing them to read the method’s source code. Our summa-
ries aim to include this information solely from the context.
If our summaries help programmers understand the meth-
ods’ key internals, it means that this information came from
the context. For RQ5, a summary should help programmers
understand why the method is important to the behavior of
the program as a whole. For example, the programmers
should be able to know, from reading the summary, what
the consequences might be of altering or removing the
method. Likewise, for RQ6, the summary should explain
the key details about how a programmer may use the
method in his or her own code.

Orthogonality. While the ultimate goal of this research is
to generate documentation purely from data in the source
code, we also aim to improve existing documentation by
adding contextual information. In particular, we ask:

RQ7 Do the generated summaries contain orthogonal
information to the information already in the
manual summaries?

The idea behind this RQ is that to improve existing
summaries, the generated summaries should contribute
new information, not merely repeat what is already in the
summaries. We generate summaries by analyzing the
context of methods, so it is plausible that we add infor-
mation from this context, which does not exist in the
manually-written summaries.

6.1 Cross-Validation Study Methodology

To answer our research questions, we performed a cross-
validation study in which human Java programmers read
the source code of different Java methods, as well as
summaries of those methods, for three different rounds.
For each method and summary, the participants
answered eight questions that covered various details
about the summary. Table 3 lists these questions. The
first six correspond to each of the research questions
above, and were multiple choice. The final two were
open-ended questions; we study the responses to these
two questions in a qualitative evaluation in Section 11. If
a participant was unable to understand a method enough
to evaluate the given summary, they were encouraged to

Fig. 3. An example of a summary produced by our approach with the dif-
ferent message types highlighted. The Quick Summary Message is
highlighted blue. The Return Message is highlighted red. The Output
Usage Message is highlighted Green. The Call Message is highlighted
Yellow. The UseMessage is highlighted grey. The ImportanceMessage is
not shown, as it was not used in themost recent version of our approach.

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 109

not answer any questions about it and skip to the next
method. Additionally, participants could leave the study
at any point.

In the cross-validation study design, we rotated the sum-
maries and Java methods that the human evaluators read.
The purpose of this rotation was to ensure that all evalua-
tors would read summaries from each different approach
for several different Java programs, and to mitigate any bias
from the order in which the approaches and methods were
presented [30]. Table 2 shows our study design in detail.
Upon starting the study, each participant was randomly
assigned to one of three groups. Each of those groups was
then assigned to see one of three types of summary: summa-
ries from our approach, manually-generated summaries, or
both at the same time.

For an example of what a “both” summary contains, in
the case of XMLElement.findAttribute(), we combine
the human-written Javadocs summary with our approach’s
generated summary in the order. The human-written
Javadocs summary reads “Searches an attribute.” Our
approach’s summary reads “This method finds the attribute
and returns a XMLAttribute. That XMLAttribute is used by

methods that gets the attribute.” These are then combined
to read “Searches an attribute. This method finds the attri-
bute and returns a XMLAttribute. That XMLAttribute is
used by methods that gets the attribute.” This can result in
some redundancy when our Quick Summary Message is
similar to the Javadocs summary.

6.2 Subject Java Programs

The summaries in the study corresponded to Java meth-
ods from six different subject Java programs, listed in
Table 4. We selected these programs for a range of size (5
to 117 KLOC, 318 to 7,161 methods) and domain (includ-
ing text editing, multimedia, and XML parsing, among
others). During the study, participants were assigned to
see methods from four of these applications. During each
of three different rounds, we rotated one of the programs
that the groups saw, but retained the fourth program.
The reason is so that the group would evaluate different
types of summaries for different programs, but also eval-
uate different types of summaries from a single applica-
tion. From each application, we pre-selected (randomly) a
pool of 20 methods from each application. At the start of
each round, we randomly selected four methods from the
pool for the rotated application, and four from the fixed
application. Over three rounds, participants read a total
of 24 methods. Because the methods were selected ran-
domly from a pool, the participants did not all see the
same set of 24 methods. The programmers could always
read and navigate the source code for these applications,
though we removed all comments from this code to avoid
introducing a bias from these comments.

6.3 Participants

We had 13 participants in our study. Six were graduate stu-
dents and three were undergraduates from the Computer
Science and Engineering Department at the University of
Notre Dame. The remaining four were a mix of professio-
nals and graduate students from three different organiza-
tions, not listed due to our privacy policy. Two participants
failed to complete enough of the study and had their
responses thrown out. Both of these participants were stu-
dents at from the Computer Science and Engineering
Department at the University of Notre Dame. One was an
undergraduate student, and the other was a graduate
student. Another user only completed the answers on
two summaries before leaving the survey. The remaining
10 participants answered the questions on an average of
19 summaries, skipping on average 5.

TABLE 3
The Questions We Ask during the User Study

Q1-Accuracy Independent of other factors, I feel that the
summary is accurate.

Q2-Content The summary is missing important informa-
tion, and that can hinder the understanding
of the method.

Q3-Concise The summary contains a lot of unnecessary
information.

Q4-What The summary contains information that
helps me understand what the method does
(e.g., the internals of the method).

Q5-Why The summary contains information that
helps me understand why the method exists
in the project (e.g., the consequences of alter-
ing or removing the method).

Q6-How The summary contains information that
helps me understand how to use the method.

Q7-Summary In a sentence or two, please summarize the
method in your own words.

Q8-Comments Do you have any general comments about
the given summary?

The first six are answerable as “Strongly Agree”, “Agree”, “Disagree”, and
“Strongly Disagree.” The last two are open-ended.

TABLE 2
The Cross-Validation Design of Our User Study

Round Group Summary Program 1 Program 2

1 A Generated NanoXML Jajuk
B Manual Siena JEdit
C Both JTopas JHotdraw

2 A Both Siena Jajuk
B Generated JTopas JEdit
C Manual NanoXML JHotdraw

3 A Manual JTopas Jajuk
B Both NanoXML JEdit
C Generated Siena JHotdraw

Different participants read different summaries for different programs.

TABLE 4
The Six Java Programs Used in Our Evaluation

Methods KLOC Java Files

NanoXML 318 5.0 28
Siena 695 44 211
JTopas 613 9.3 64
Jajuk 5,921 70 544
JEdit 7,161 117 555
JHotdraw 5,263 31 466

KLOC reported with all comments removed. All projects are open-source.

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

6.4 Metrics and Statistical Tests

Each of the multiple choice questions could be answered as
“Strongly Agree”, “Somewhat Agree”, “Somewhat Dis-
agree”, or “Strongly Disagree.”We assigned a values to these
answers as 4 for “Strongly Agree”, 3 for “Somewhat Agree”,
2 for “Somewhat Disagree”, and 1 for “Strongly Disagree.”
For questions 1, 4, 5, and 6, higher values indicate stronger
performance. For questions 2 and 3, lower values are pre-
ferred. We aggregated the responses for each question by
approach. For example, all responses to question 1 for auto-
matically-generated summaries, and all responses to ques-
tion 1 for themanually-written summaries.

To determine statistical significance between these
groups, we use the lrm modeling function within the rms

3

package for the R scripting language.4 The rms:lrmmodel-
ling function represents the data as an ordinal logistical
regression model to account for difference in treatments.
Specifically, we use rms:lrm to account for differences
between individual participants, who may have their own
biases, and individual methods, which may be easier or
more difficult to summarize. As such, the inputs our logisti-
cal model consider are the summarization technique
applied, the participant who is performing the evaluation,
and the method the summary is generated to describe. We
use ANOVA within the R scripting language to determine
the p-values that the type of summary significantly affects
the quality of the summary with respect to our six ques-
tions. If the p-value is p < :05, we consider the two com-
pared populations to be significantly different.

6.5 Threats to Validity

As with any study, our evaluation carries threats to validity.
We identified two main sources of these threats. First, our
evaluation was conducted by human programmers, who
may be influenced by factors such as stress, fatigue, or varia-
tions in programming experience. Stress and fatigue could
make results later in the study less reliable, as programmers
attempt to finish quickly. Additionally, very large summa-
ries, such as those that can result from combining summaries
from our approach with existing summaries, may result in
the user not reading an entire summary. We attempted to
mitigate these threats through our cross-validation study
design, which altered the order in which the participants
viewed the Java methods and summaries. We also recruited
our participants from a diverse body of professionals and
students, and confirmed our results with accepted statistical
testing procedures. Still, we cannot guarantee that a different
group of participants would not produce a different result.

Another source for a threat to validity is the set of Java
programs we selected. We chose a variety of applications of
different sizes and from different domains. In total, we gen-
erated summaries for over 19,000 Java methods from six
projects, and randomly selected 20 of these methods from
each project to be included in the study (four to 12 of which
were ultimately shown to each participant). Even with this
large pool of methods, it is still possible that our results
would change with different projects. To help mitigate this
threat, we have released our tool implementation and all

evaluation data in an online appendix, so that other research-
ers may reproduce our work in independent studies.

A third threat to validity arises from the learning effect.
In our study, in order to mitigate the fatigue effect, we pres-
ent programmers with the same Program 2 in each round of
the study. This is because the subset of possible second pro-
grams (jEdit, jajuk, and jHotDraw) are, programmatically,
much larger than the other three programs in terms of num-
ber of methods. Our study relies on programmers looking
at a method source code in order to evaluate method qual-
ity. Programmers, therefore, need to explore the context of a
method within the source code itself in order to verify the
correctness of given summaries. With large programs, this
can create a large amount of fatigue. By using the same pro-
gram, the programmer can gain understanding of the pro-
gram in question to reduce the fatigue effect that would
arise from switching programs. To reduce the impact of the
learning effect, we change the order of summary type given
to each group, such that each order is represented.

One final threat to validity emerged in our statistical anal-
ysis. We ran into one error using the rms:lrm modelling tool
with R. One programmer responded to a combined sum-
mary (where a human summary was combined with our
approach’s generated summary) by saying they ”Somewhat
disagreed.” This individual data element prevented rms:lrm
from being able to fit a model to the data. When we removed
this individual piece of data, or modified which method it
referred to, the model was able to be fitted to the data. We
chose to remove this data element from the statistical tests.
As we will note in the results section, this could have an
effect on the p-value generated forH7. However, the p-value
for H7 was found to be .8917, which is substantially larger
than our decision point of p < :05. As such,we feel confident
that this single data element being removed would not
change our decision regarding that hypothesis.

6.6 Reproducibility

To ensure reproducibility, we have included all data col-
lected in an online appendix.5 The online appendix includes
our implementation of our approach as well as survey data.
Survey data includes user responses to both quantitative
and qualitative questions, as well as the methods in the
study, the summaries for each approach, and the location in
source code of each method.

7 EMPIRICAL RESULTS

This section reports the results of our evaluation. First, we
present our statistical process and evidence. Then, we
explain our interpretation of this evidence and answer our
research questions.

7.1 Statistical Analysis

The main independent variable was the type of summary
rated by the participants: summaries generated by our solu-
tion, summaries from Javadocs written by programmers, or
both presented together. The dependent variables were the
ratings for each question: 4 for “Strongly Agree” to 1 for
“Strongly Disagree”.

3. http://cran.r-project.org/web/packages/rms/rms.pdf
4. http://www.r-project.org/ 5. http://www.nd.edu/�pmcburne/summaries/

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 111

For each question, we compare the mean of the partic-
ipants’ ratings for our generated summaries to the man-
ual summaries. We also compare the ratings given when
both summaries were shown, versus only the manual
summaries. We compared these values using ANOVA on
the rms:lrm modelling function in the R scripting lan-
guage (see Section 6.4). Specifically, we posed 12 hypothe-
ses of the form:

Hn The difference in the reported ratings of the
responses for Qm is not statistically-significant.

where n ranges from 1 to 12, and m ranges from 1 to 6,
depending on which question is being tested. For exam-
ple, in H11, we compare the answers to Q5-Why for the
manual summaries to the answers to Q5-Why for the
combined summaries.

Table 5 shows the statistical analysis of our null hypothe-
ses and notes which ones were rejected (e.g., the means

with a statistically-significant difference). We made a deci-
sion to reject a hypothesis only when the calculated p-value
was less than .05.

7.2 Interpretation

Fig. 4 showcases the key evidence we study in this evalua-
tion. We use this evidence to answer our research questions
along the three areas highlighted in Section 9.

7.2.1 Overall Quality

Themanually-written summaries are superior in overall qual-
ity to the generated summaries. Fig. 4a shows the difference in
the means of the responses for survey questions. Questions
Q1-Accuracy through Q3-Concise refer to aspects of the sum-
maries related to overall quality, in particular to our research
questions RQ1 to RQ3. In short, participants rated the gener-
ated summaries as less accurate and as includingmore unnec-
essary information by a statistically-significant margin. While

TABLE 5
Statistical Summary of Results for the Participants’ Ratings for Each Questions

H Q Summary Samp. ~x m Vari. x2 d.f. p-value Decision

H1 Q1-Accuracy Our 63 3 2.635 0.558 5.19 1 0.023 Reject
Manual 63 3 3.032 0.676

H2 Q2-Content Our 63 3 2.714 0.691 0.02 1 0.882 Not Reject
Manual 63 3 2.587 0.956

H3 Q3-Concise Our 63 3 2.937 0.673 45.53 1 <.001 Reject
Manual 63 1 1.381 0.304

H4 Q4-What Our 63 3 2.413 0.633 6.01 1 0.014 Reject
Manual 63 3 2.714 0.917

H5 Q5-Why Our 63 3 2.524 0.512 7.14 1 0.008 Reject
Manual 63 2 2.175 0.921

H6 Q6-How Our 63 3 2.698 0.730 14.54 1 <.001 Reject
Manual 63 2 2.175 0.727

H7 Q1-Accuracy Combined 66 3 3.136 0.458 0.02 1 0.897 Not Reject
Manual 63 3 3.032 0.676

H8 Q2-Content Combined 67 2 2.149 0.371 15.02 1 <.001 Reject
Manual 63 3 2.587 0.956

H9 Q3-Concise Combined 67 3 2.597 0.547 39.54 1 <.001 Reject
Manual 63 1 1.381 0.304

H10 Q4-What Combined 67 3 3.119 0.470 7.75 1 0.005 Reject
Manual 63 3 2.714 0.917

H11 Q5-Why Combined 67 3 2.761 0.518 9.91 1 0.002 Reject
Manual 63 2 2.175 0.921

H12 Q6-How Combined 67 3 2.856 0.685 27.71 1 <.001 Reject
Manual 63 2 2.175 0.727

“Samp.” is the number of responses for that question for a given summary type, for all rounds. x2 is calculated by applying ANOVA to the rms:lrm generated
linear regression model and considering the difference caused by the type of summary. D.f. refers to the number of degrees of freedom within the type of summary.
If the p-value is less than .05, we reject the null hypothesis.

Fig. 4. Performance comparison of the summaries. The chart shows the difference in the means of the responses to each question. For example in
(a), the mean of Q5-Why for our approach is 0:349 higher than for the Manual summaries. The sign is reversed for Q2-Content and Q3-Concise
because lower scores, not higher scores, are better values for those questions. Solid bars indicate differences which are statistically-significant. In
general, the manual summaries were more accurate and contained less unnecessary information, but our generated summaries provided more
thorough contextual information.

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

these results may be expected when comparing computer-
generated text to text written by human experts, it neverthe-
less points to a need to improve in these areas. In particular, in
Section 8, we explore what information that the participants
felt was unnecessary in our summaries.

7.2.2 Contextual Information

The generated summaries included more contextual infor-
mation than the manual summaries. The differences in
responses for questions Q5-Why and Q6-How are signifi-
cantly higher for the generated summaries. These results
mean that, in comparison to the manual summaries, the
generated summaries helped the programmers understand
why the methods exist and how to use those methods. There-
fore, we answer RQ5 and RQ6 as a positive result. However,
we found RQ4 to be a negative result. That is, on average,
programmers disagreed our summaries explained what a
method does to a statistically signficant margin. However,
the answers to RQ5 and RQ6 point to an important niche
filled by our approach: the addition of contextual informa-
tion to software documentation.

7.2.3 Orthogonality

We found substantial evidence showing that our generated
summaries improve the manually-written summaries. When
participants read both types of summary for a given method,
the responses forQ5-Why andQ6-How improved by a signif-
icant margin, pointing to an increase in useful contextual
information in the documentation. Overall quality did not
decrease as sharply as when only the generated solutions
were given. Consider Fig. 4b: Accuracy was nearly identical,
with no statistical difference. The amount ofmissing informa-
tion dropped, as indicated by better responses toQ2-Content.
Additionally, the responses toQ4-What increased by a statis-
tically significant margin. While the combined summaries
did show a marked increase in unnecessary information, we
still find evidence to positively answer RQ7: the information
added to manual summaries by our generated summaries is
orthogonal. This answer suggests that our approach can be
used to improve existing documentation.

8 QUALITATIVE RESULTS

Participants in the evaluation study had the opportunity to
write an opinion about each summary (see Q8-Comments in
Table 3). In this section, we explore these opinions for feed-
back on our approach and directions for future work.

One result from the survey was the substantial amount of
information in the generated summaries that participants
rated as unnecessary (see Q3-Concise in Fig. 3). Several of
these complaints centered around the Importance Message.
One source of confusion seems to be that the structure
implies that the number of calling functions is the primary
determinant of importance, when in fact importance is
derived from PageRank. Still, several users found the Impor-
tance Message altogether unnecessary. The following com-
ments about our summaries or the combination of our
summaries and the manual summaries illustrate this:

� “It doesn’t seem meaningful to say that the method
has less importance than average by counting the
number of calls. Maybe the method is very important

for external users of the library. If so, then it should
be annotated as part of the external API.”

� “The name of the method alone is about all the
description it needs, and I also don’t think being
called by 1 method merits the ”far more important
than average” description.”

� “’IsKeyword() seems far more important than aver-
age because it is called by 1 method’ is unnecessary.”

� “First three sentences have a very good summary.
Fourth sentence [Importance Method] seems unneces-
sary. Fifth sentence [Use Message] is a good example”

As a result of this feedback paired with our approaches
poor performance in Q3-Concise, we removed the Impor-
tance Message from our summaries in the study comparing
our approach to the state-of-the-art automatic summariza-
tion approach.

One positive result is the dramatic increase in the scores
for Q5-Why and Q6-How, which deal with how a program-
mer can use the method within the system. This appears to
be drawn primarily from theUse Message—several users cite
it either directly or indirectly in their comments. For exam-
ple, the last comment in the list above refers to the Use Mes-
sage as a good example. Some additional examples follow:

� “I like that the comment describes how to use the
method.”

� “...The information about how it is used is useful.”
� “I think an example of how to use the method is not

really needed, though it might be useful for
convenience.”

Additionally, in a method that did not generate a Use
Message, one user noted “...it would be nice to have an
example of how it is used like others have.”

Along with our empirical results, these comments show
that our approach improves programmer understanding of
why a method exists and how a method is used. We
believe that this fills our target niche of improving context
in software documentation. Typically, programmers try to
understand a system so that they can use the system effec-
tively. By providing contextual information, we help
improve a programmers understanding of the structure of
the source code.

Several of our generated summaries had grammar issues
that distracted users. These complaints seemed less com-
mon in the combined summaries than when the user was
just given our summary, possibly because the user was
given a human-written sentence that explains the code
alongside our generated comment. However, poor gram-
mar can be a hindrance to effectively conveying a message.
These grammar errors usually result from incorrect inter-
pretation of part-of-speech by SWUM or by selecting
incorrect articles or subject-verb agreement within the
framework of our Natural Language Generation tool. In
some method signatures, the direct object of the verb phrase
is misidentified, such as using the object name as the direct
object when the argument name should be the direct object,
or vice versa. We aim to correct these issues in future work
with refinement of our NLG tool.

It is worth noting that several users, when commenting
on the manually-generated comments alone (without our
generated summary as a supplement) said that many of the

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 113

comments were insufficient. The following comments were
pulled from sections where the programmer was only given
the manually-generated comment:

� “Should be a little more clear about what the wrap-
ping process is, I think.”

� “More information would be appreciated for this
one.”

� “Why is this method important?”

9 EVALUATION COMPARING TO AUTOMATIC

SUMMARIES

Our second evaluation compares our approach to the state-
of-the-art approach described by Sridhara et al. [42]. The
objective of our evaluation is three-fold: 1) to assess the
degree to which our summaries meet the quality of summa-
ries generated by a state-of-the-art solution, 2) to assess
whether the summaries provide useful contextual informa-
tion about the Java methods, and 3) to determine whether
the generated summaries can be used to improve, rather
than replace, existing documentation.

Our study design is very similar to the study design for our
previous approach. In this section, we will only include
changes to our evaluation, such as the number of participants
in our second study and changes in the research questions.
For information on how the study is conducted, see Section 6.

9.1 Approach Modification

For this evaluation, we removed the Importance Message
from our approach’s summaries. Our rationale for this
decision is that in our first study, participants found our
approach’s summaries to contain a large amount of unnec-
cesary information. The qualitative results (Section 8) sug-
gest that the Importance Message is to blame. No other
modifications to our approach are made.

9.2 Research Questions

This section defines the research questions for our second
evaluation. These research questions are very similar to
those in Section 6.

9.2.1 Assessing Overall Quality

In this evaluation, we seek to quantify the difference in sum-
mary quality between our approach and the existing state-
of-the-art approach. To assess quality, we propose the three
following research questions:

RQ8 To what degree do the summaries from our
approach and the state-of-the-art approach differ
in overall accuracy?

RQ9 To what degree do the summaries from our
approach and the state-of-the-art approach differ
in terms of missing important information?

RQ10 To what degree do the summaries from our
approach and the state-of-the-art approach differ
in terms of including unnecessary information?

As in our first study, these research questions are derived
from work by Moreno et al. [33] and Sridhara et al. [42]. The
questions address, respectively, a summary’s accuracy, con-
tent adequacy, and conciseness.

9.2.2 Assessing Contextual Information

In the evaluation, we want to examine which automatic
summarization approach better provides programmers with
contextual information. Our questions are designed to deter-
mine if summaries generated by our approach are better
than the state-of-the-art approach in helping programmers
understand what a method does, why the method exists,
and how to use it. We evaluate the following research
questions:

RQ11 Do the summaries help programmers under-
stand what the methods do internally?

RQ12 Do the summaries help programmers under-
stand why the methods exist?

RQ13 Do the summaries help programmers under-
stand how to use the methods?

The rationale for these questions is the same as in our
first study (see Section 6).

9.2.3 Orthogonality

While the ultimate goal of this research is to generate docu-
mentation purely from data in the source code, we also aim
to improve upon the state-of-the-art approach by adding
contextual information. In particular, we ask:

RQ14 Do the summaries generated by our solution
contain orthogonal information to the informa-
tion already in the summaries from the state-of-
the-art solution?

The idea behind this RQ is that to improve existing sum-
maries, the generated summaries should contribute new
information, not merely repeat what is already in the sum-
maries. We generate summaries by analyzing the context of
methods, so it is plausible that we add information from
this context, which does not exist in the summaries from the
state-of-the-art solution.

9.3 Cross-Validation Study Methodology

To answer our Research Questions, we performed a cross-
validation study in which human experts (e.g., Java pro-
grammers) read the source code of different Java meth-
ods, as well as summaries of those methods, for three
different rounds. The structure of this study is the same
as our first study (see Section 6.1). Again in our cross-
validation study, we rotate the projects programmers saw
summaries from in order to avoid bias. Table 6 shows the
ordering of our study.

TABLE 6
The Cross-Validation Design of Our User Study

Round Group Summary Program 1 Program 2

1 A Our NanoXML Jajuk
B S.O.T.A. Siena JEdit
C Combined JTopas JHotdraw

2 A Combined Siena Jajuk
B Our JTopas JEdit
C S.O.T.A. NanoXML JHotdraw

3 A S.O.T.A. JTopas Jajuk
B Combined NanoXML JEdit
C Our Siena JHotdraw

Different participants read different summaries for different programs.

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

9.4 Subject Java Programs

In our second evaluation, we use the same subject Java pro-
grams as our first evaluation. Information about these sub-
ject Java programs can be found in Section 6.2 and in
Table 4. Our approach to selecting method summaries is the
same as in Section 6.2

9.5 Participants

We had 12 participants in our study. Nine were graduate
students and from the Computer Science and Engineering
Department at the University of Notre Dame. The remain-
ing three were professional programmers from two differ-
ent organizations, not listed due to our privacy policy.
Of our 12 participants, three did not complete enough of
the study and had their results thrown out. One of these
students was a graduate student at from the Computer
Science and Engineering Department at the University
of Notre Dame. The remaining two were among our
professional programmers from different organizations.
On average, the participants answered questions on 20.2
summaries, skipping an average of 3.8. Additionally,
some participants occasionally failed to answer one of
the six questions. Given the sporadic nature of when an
individual question was not answered, we assume it was
unintentional.

9.6 Metrics and Statistical Tests

We define the metrics identically as in the first study. See
Section 6.4 for our statistical analysis, including information
on statistiscal tests used.

9.7 Threats to Validity

This study shares the same threats to validity as our first
study. We address these threats in Section 6.5, as well as
discuss how we mitigate their effect.

10 EMPIRICAL RESULTS

This section reports the results of our evaluation. First,
we present our statistical process and evidence. Then, we
explain our interpretation of this evidence and answer our
research questions.

10.1 Statistical Analysis

We perform our statistical analysis in this study identically
to the analysis in our first study (see Section 7.1). We again
define our null hypotheses as follows:

Hn The difference in the reported ratings of the
responses for Qm is not statistically-significant.

where n ranges from 1 to 12, and m ranges from 1 to 6,
depending on which question is being tested. For example,
in H11, we compare the answers to Q5-Why for the state-of-
the-art summaries to the answers to Q5-Why for the com-
bined summaries. Table 7 shows the the result of our statis-
tical analysis.

10.2 Interpretation

Fig. 5 showcases the key evidence we study in this eval-
uation. We use this evidence to answer our Research
Questions along the three areas highlighted in Section 9.

TABLE 7
Statistical Summary of Results for the Participants’ Ratings for Each Questions

H Q Summary Samp. ~x m Vari. x2 d.f. p-value Decision

H1 Q1-Accuracy Our 65 3 3.015 0.863 13.90 1 <.001 Reject
S.O.T.A. 59 3 2.390 0.863

H2 Q2-Content Our 65 3 2.492 0.973 7.08 1 0.008 Reject
S.O.T.A. 58 3 2.862 1.139

H3 Q3-Concise Our 65 2 1.815 0.497 0.15 1 0.702 Not Reject
S.O.T.A. 59 2 1.983 0.982

H4 Q4-What Our 65 3 2.877 0.641 15.11 1 <.001 Reject
S.O.T.A. 59 3 2.407 0.832

H5 Q5-Why Our 65 3 2.585 0.809 16.58 1 <.001 Reject
S.O.T.A. 58 3 1.983 0.930

H6 Q6-How Our 65 3 2.769 0.649 31.92 1 <.001 Reject
S.O.T.A. 58 3 1.776 0.773

H7 Q1-Accuracy Combined 59 3 2.847 0.580 2.96 1 0.085 Not Reject
S.O.T.A. 59 3 2.390 0.863

H8 Q2-Content Combined 59 2 2.322 0.843 13.36 1 <.001 Reject
S.O.T.A. 58 3 2.862 1.139

H9 Q3-Concise Combined 59 2 2.542 1.149 4.73 1 0.030 Reject
S.O.T.A. 59 2 1.983 0.982

H10 Q4-What Combined 58 3 2.879 0.564 7.85 1 0.005 Reject
S.O.T.A. 59 3 2.407 0.832

H11 Q5-Why Combined 59 3 2.508 0.634 10.32 1 0.001 Reject
S.O.T.A. 58 2 1.983 0.930

H12 Q6-How Combined 59 3 2.746 0.503 26.63 1 <.001 Reject
S.O.T.A. 58 2 1.776 0.773

“Samp.” is the number of responses for that question for a given summary type, for all rounds. x2 is calculated by applying ANOVA to the rms:lrm generated
linear regression model and considering the difference caused by the type of summary. D.f. refers to the number of degrees of freedom within the type of summary.
If the p-value is less than .05, we reject the null hypothesis.

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 115

Overall Quality. The summaries from our approach are
superior in overall quality to the summaries from the state-
of-the-art approach. Fig. 5a shows the difference in the
means of the responses for survey questions. Questions
Q1-Accuracy through Q3-Concise refer to aspects of the
summaries related to overall quality, in particular to our
Research Questions RQ8 to RQ10. In short, participants
rated our summaries as more accurate and as missing less
required information by a statistically-significant margin.
While these results are encouraging progress, they never-
theless still point to a need to improve. In Section 11, we
explore what information that the participants felt was
unnecessary in our summaries.

Contextual Information. The summaries from our app-
roach included more contextual information than the state-
of-the-art summaries. The differences in responses for ques-
tions Q4-What, Q5-Why, and Q6-How are higher for our
summaries by a statistically-significant margin. These
results mean that, in comparison to the state-of-the-art sum-
maries, our summaries helped the programmers under-
stand why the methods exist and how to use those methods.
Therefore, we answer RQ11, RQ12, and RQ13 as a positive
result. The answers to these research questions point to an
important niche filled by our approach: the addition of con-
textual information to software documentation.

Orthogonality. We found substantial evidence showing
that our summaries improve the state-of-the-art summaries.
When participants read both types of summary for a given
method, the responses for Q4-What, Q5-Why, and Q6-How
improved by a significant margin, pointing to an increase in
useful contextual information in the documentation. Overall
quality did not decrease by a significant margin compared
to when only our solutions were given, except in terms of
unnecessary information added. Consider Fig. 5b: Accuracy
and missing information scores showed similar improve-
ment. While the combined summaries did show a marked
increase in unnecessary information, we still find evidence
to positively answer RQ14: the information added to state-
of-the-art summaries by our approach is orthogonal. This
answer suggests that our approach can be used, after future
work to reduce unnecessary information, to improve exist-
ing documentation.

11 QUALITATIVE RESULTS

Participants in the evaluation study had the opportunity to
write an opinion about each summary (see Q8-Comments in
Table 3). In this section, we explore these opinions for feed-
back on our approach and directions for future work.

One of the results in our study was the significantly
worse performance of Q3-Concise in the combined com-
ments, suggesting an increase in the amount of unneces-
sary information. Several user comments from our survey
note concerns of repetitious information, as well as diffi-
culties in processing the longer comments that result of
the combination.

� “The description is too verbose and contains too
many details.”

� “The summary contains too much information and
confuses the purpose of the method...”

� “The summary seems accurate but too verbose.”
� “Too much information, I cannot understand the

comment.”
Another result is the increase in the scores for Q5-Why

and Q6-How, which deal with how a programmer can use
the method within the system. This increase appears to be
due to the Use Message. Several users noted a lack of
any form of usage message in the state-of-the-art approach.
A selection of these comments follows.

� “Nice and concise, but lacking information on
uses...”

� “The summary is clear. An example is expected.”
� “The summary...does not tell me where the method

is called or how it is used.”
Additionally, in a method summary from our

approach that did not generate a Use Message, a partici-
pant noted “I feel that an example should be provided.”
However, one participant in our study had a largely neg-
ative opinion of the Use Message. This participant repeat-
edly referred to the “last sentence” (the Use Message) as
“unnecessary”, even stating “Assume every one of these
boxes comments about removing the last line of the pro-
vided comment.”

Participants often felt the state-of-the-art approach
lacked critical information about the function. Comments

Fig. 5. Performance comparison of the summaries. The chart shows the difference in the means of the responses to each question.
For example in (a), the mean of Q5-Why for our approach is 0:602 higher than for the state-of-the-art summaries. The sign is reversed
for Q2-Content and Q3-Concise because lower scores, not higher scores, are better values for those questions. Solid bars indicate differ-
ences which are statistically-significant. In general, the our summaries were more accurate and provided more thorough contextual
information.

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

indicating a lack of information appeared consistently from
many participants. The following comments (each from
a different participant) support this criticism:

� “A bit sparse and missing a lot of information.”
� “Comment details the inner workings but provides

no big picture summary.”
� “Only provides a detail for one of the possible

branches.”
� “It seems the summary is generated only based on

the last line of the method.”
These comments occur more frequently with the state-

of-the-art compared to our approach. A possible reason for
this is our approach focuses much more on method interac-
tions (e.g., method calls), and avoids the internal details
of the function. By contrast, the state-of-the-art approach
focuses on a method’s internal execution, selecting a small
subset of statements to use in the summary. Participants felt
this selection often leaves out error checking and alternate
branches, focusing too narrowly on particular internal oper-
ations while ignoring others. We believe that these com-
ments point to the contextual information we add in our
summaries as being the key improvement over the state-of-
the-art approach.

Several of our generated summaries and the state-of-the-
art generated summaries had grammar issues that dis-
tracted users. Additionally, the state-of-the-art approach
often selected lines of source code, but did not generate
English summaries for those lines. Several users commented
on these issues, noting that it made the summaries either
impossible or difficult to understand. Our aim is to correct
these issues going forward with refinement of our NLG tool.

Another common theme of participant comments in both
our approach and the state-of-the-art centered on function
input parameters. Many participants felt an explanation of
input parameters was lacking in both approaches, as well as
the combination approach. A selection of these comments
follows. These comments were selected from our approach,
the state-of-the-art, and the combined approach respectively:

� “The input parameters publicID and systemID are
not defined—what are they exactly?”

� “The summary could mention the input required is
the path for the URL”

� “...It would be better if the summary described the
types of the inputs...”

12 RELATED WORK

The related work closest to our approach is detailed in a
recent thesis by Sridhara [41]. In Section 3, we summarized
certain elements of this work that inspired our approach.
Two aspects we did not discuss are as follows. First, one
approach creates summaries of the “high level actions” in a
method [43]. A high level action is defined as a behavior at a
level of abstraction higher than the method. The approach
works by identifying which statements in a method imple-
ment that behavior, and summarizing only those statements.
A second approach summarizes the role of the parameters to
a method. This approach creates a description of key state-
ments related to the parameter inside the method. Our
approach is different from both of these approaches in that

we create summaries from the context of the method—that
is, where the method is invoked. We help programmers
understand the role themethod plays in the software.

There are a number of other approaches that create natu-
ral language summaries of different software artifacts and
behaviors. Moreno et al. describe a summarization technique
for Java classes that match one of 13 “stereotypes.” The tech-
nique selects statements from the class based on this stereo-
type, and then uses the approach by Sridhara [42] to
summarize those statements. Work by Buse and Weimer
focuses on Java exceptions [3]. Their technique is capable of
identifying the conditions under which an exception will be
thrown, and producing brief descriptions of those condi-
tions. Recent work by Zhang et al. performs a similar func-
tion by explaining failed tests [51]. That approach modifies a
failed test by swapping different expressions into the test to
find the failure conditions. Summary comments of those con-
ditions are added to the test. Another area of focus has been
software changes. One approach is to improve change log
messages [4]. Alternatively, work by Kim et al. infers change
rules, as opposed to individual changes, that explain the
software’s evolution [21]. The technique can summarize the
high-level differences between two versions of a program.

The key difference between our approach and these
existing approaches is that we summarize the context of
the source code, such as how the code is called or the out-
put is used. Structural information has been summarized
before, in particular by Murphy [34], in order to help pro-
grammers understand and evolve software. Murphy’s
approach, the software reflexion model, notes the connec-
tions between low-level software artifacts in order to point
out connections between higher-level artifacts. There are
techniques which give programmers some contextual
information by listing the important keywords from code.
For example, Haiduc et al. use a Vector Space Model to
rank keywords from the source code, and present those
keywords to programmers [14]. The approach is based on
the idea that programmers read source code cursorily by
reading these keywords, and use that information to
deduce the context behind the code. Follow-up studies
have supported the conclusions that keyword-list summa-
rization is useful to programmers [1], and that VSM is an
effective strategy for extracting these keywords [8].

Tools such as Jadeite [47], Apatite [9], and Mica [46] are
related to our approach in that they add API usage infor-
mation to documentation of those APIs. These tools visual-
ize the usage information as part of the interface for
exploring or locating the documentation. We take a differ-
ent strategy by summarizing the information as natural
language text. What is similar is that this work demon-
strates a need for documentation to include the usage data,
as confirmed by studies of programmers during software
maintenance [20], [26], [49].

13 CONCLUSION

We have presented a novel approach for automatically gen-
erating summaries of Java methods. Our approach differs
from previous approaches in that we summarize the context
surrounding a method, rather than details from the inter-
nals of the method. We use PageRank to locate the most

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 117

important methods in that context, and SWUM to gather
relevant keywords describing the behavior of those meth-
ods. Then, we designed a custom NLG system to create nat-
ural language text about this context. The output is a set of
English sentences describing why the method exists in the
program, and how to use the method. We performed two
cross-validation studies to evaluate the quality of summa-
ries generated by our approach. In the first cross-validation
study, we compared the summaries generated from our
approach to summaries written by human experts. We
found our approach provided better contextual information
than manually written summaries. However, the human
written summaries were significantly more accurate and
concise. In the second cross-validation study, we compared
the summaries from our approach to summaries written by
a state-of-the-art solution. We found that our summaries
were superior in quality and that our generated summaries
fill a key niche by providing contextual information. That
context is missing from the state-of-the-art summaries.
Moreover, we found that by combining our summaries with
the state-of-the-art summaries, we can improve existing
software documentation. Finally, the source code for our
tool’s implementation and evaluation data are publicly
available for future researchers.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Emily Hill for provid-
ing key assistance with the SWUM tool. They also thank
and acknowledge the Software Analysis and Compilation
Lab at the University of Delaware for important help with
the state-of-the-art summarization tool. Finally, they thank
the 25 participants who spent time and effort completing
our first evaluation. Additionally, they would like to thank
Dr. James Delaney, who provided assistance in improving
the statistical model we use to evaluate our approach.

REFERENCES

[1] J. Aponte and A. Marcus, “Improving traceability link recovery
methods through software artifact summarization,” in Proc. 6th
Int. Workshop Traceability Emerging Forms Softw. Eng., New York,
NY, USA, 2011, pp. 46–49.

[2] H. Burden and R. Heldal, “Natural language generation from
class diagrams,” in Proc. 8th Int. Workshop Model-Driven Eng.
Verification Validation, 2011, pp. 8:1–8:8.

[3] R. P. Buse and W. R. Weimer, “Automatic documentation infer-
ence for exceptions,” in Proc. Int. Symp. Softw. Testing Anal., New
York, NY, USA, 2008, pp. 273–282.

[4] R. P. Buse and W. R. Weimer, “Automatically documenting pro-
gram changes,” in Proc. IEEE/ACM Int. Conf. Automated Softw.
Eng., ACM, 2010, pp. 33–42.

[5] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected API sub-
graph via text phrases,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., New York, NY, USA, 2012, pp. 10:1–10:11.

[6] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proc.
23rd Annu. Int. Conf. Design Commun.: Documenting Des. Pervasive
Inf., New York, NY, USA, 2005, pp. 68–75.

[7] E. Duala-Ekoko and M. P. Robillard, “Asking and answering
questions about unfamiliar APIs: An exploratory study,” in Proc.
Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2012 pp. 266–276.

[8] B. Eddy, J. Robinson, N. Kraft, and J. Carver, “Evaluating source
code summarization techniques: Replication and expansion,” in
Proc. 21st Int. Conf. Program Comprehension, 2013, pp. 13–22.

[9] D. S. Eisenberg, J. Stylos, and B. A. Myers, “Apatite: A new inter-
face for exploring APIs,” in Proc. SIGCHI Conf. Human Factors
Comput. Syst., New York, NY, USA, 2010 pp. 1331–1334.

[10] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? On the relation between source code and comment
changes,” in Proc. 14th Working Conf. Reverse Eng., Washington,
DC, USA, 2007, pp. 70–79.

[11] A. Forward and T. C. Lethbridge, “The relevance of software doc-
umentation, tools and technologies: A survey,” in Proc. ACM
Symp. Document Eng., New York, NY, USA, 2002 pp. 26–33.

[12] A. Gatt and E. Reiter, “Simplenlg: A realisation engine for practi-
cal applications,” in Proc. 12th Eur. Workshop Natural Language
Gener., Stroudsburg, PA, USA, 2009, pp. 90–93.

[13] E. Goldberg, N. Driedger, and R. Kittredge, “Using natural-
language processing to produce weather forecasts,” IEEE Expert,
vol. 9, no. 2, pp. 45–53, Apr. 1994.

[14] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing
source code,” in Proc. 17th Working Conf. Reverse Eng., Washing-
ton, DC, USA, 2010, pp. 35–44.

[15] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically captur-
ing source code context of NL-queries for software maintenance
and reuse,” in Proc. 31st Int. Conf. Soft. Eng., Washington, DC,
USA, 2009 pp. 232–242.

[16] R. Holmes and G. C. Murphy, “Using structural context to recom-
mend source code examples,” in Proc. 27th Int. Conf. Softw. Eng.,
New York, NY, USA, 2005 pp. 117–125.

[17] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan,
“Controversy corner: On the relationship between comment
update practices and software bugs,” J. Syst. Softw., vol. 85, no. 10,
pp. 2293–2304, Oct. 2012.

[18] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita,
and S. Kusumoto, “Component rank: Relative significance rank
for software component search,” in Proc. 25th Int. Conf. Softw.
Eng., Washington, DC, USA, 2003 pp. 14–24.

[19] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empirical Softw. Engg., vol. 10, no. 1,
pp. 31–55, Jan. 2005.

[20] T. Karrer, J.-P. Kr€amer, J. Diehl, B. Hartmann, and J. Borchers,
“Stacksplorer: Call graph navigation helps increasing code main-
tenance efficiency,” in Proc. 24th Annu. ACM Symp. User Interface
Softw. Technol., New York, NY, USA, 2011 pp. 217–224.

[21] M. Kim, D. Notkin, D. Grossman, and G. Wilson, “Identifying and
summarizing systematic code changes via rule inference,” IEEE
Trans. Softw. Eng., vol. 39, no. 1, pp. 45–62, Jan. 2013.

[22] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in
end-user programming systems,” in Proc. IEEE Symp. Visual Lan-
guages - Human Centric Comput., Washington, DC, USA, 2004
pp. 199–206.

[23] D. Kramer, “Api documentation from source code comments:
A case study of javadoc,” in Proc. 17th Annu. Int. Conf. Comput.
Documentation, New York, NY, USA, 1999 pp. 147–153.

[24] J. Krinke, “Effects of context on program slicing,” J. Syst. Softw.,
vol. 79, no. 9, pp. 1249–1260, Sep. 2006.

[25] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond:
The Science of Search Engine Rankings. Princeton, NJ, USA: Prince-
ton Univ. Press, 2006.

[26] T. D. LaToza and B. A. Myers, “Developers ask reachability ques-
tions,” in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., New York,
NY, USA, 2010, vol. 1 pp. 185–194.

[27] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a
name? A study of identifiers,” in Proc. 14th Int. Conf. Program
Comprehension, 2006, pp. 3–12.

[28] T. C. Lethbridge, J. Singer, and A. Forward, “How software engi-
neers use documentation: The state of the practice,” IEEE Softw.,
vol. 20, no. 6, pp. 35–39, Nov./Dec. 2003.

[29] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum:
Approach for unsupervised bug report summarization,” in Proc.
ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., New York, NY,
USA, 2012, pp. 11:1–11:11.

[30] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to
Information Retrieval. New York, USA: Cambridge Univ. Press,
2008.

[31] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,” in
Proc. 22nd Int. Conf. Program Comprehension, New York, NY, USA,
2014 pp. 279–290.

[32] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” in Proc.
33rd Int. Conf. Softw. Eng., New York, NY, USA, 2011 pp. 111–120.

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 2, FEBRUARY 2016

[33] L. Moreno, J. Aponte, S. Giriprasad, A. Marcus, L. Pollock, and K.
Vijay-Shanker, “Automatic generation of natural language sum-
maries for Java classes,” in Proc. 21st Int. Conf. Program Comprehen-
sion, 2013, pp. 23–32.

[34] G. C. Murphy, “Lightweight structural summarization as an aid to
software evolution,” Ph.D. thesis, Univ. Washington, Seattle, WA,
USA, Jul. 1996.

[35] D. Puppin and F. Silvestri, “The social network of Java classes,”
in Proc. ACM Symp. Appl. Comput., New York, NY, USA, 2006
pp. 1409–1413.

[36] E. Reiter and R. Dale, Building Natural Language Generation Sys-
tems. New York, USA: Cambridge Univ. Press, 2000.

[37] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-
sional developers comprehend software?” in Proc. Int. Conf. Softw.
Eng., Piscataway, NJ, USA, 2012, pp. 255–265.

[38] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolu-
tion of API documentation,“in Proc. 14th Int. Conf. Fundam.
Approaches Softw. Eng.: Part Joint Eur. Conf. Theory Practice Softw.,
Berlin, Heidelberg,, 2011, pp. 416–431.

[39] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Trans. Softw.
Eng., vol. 34, no. 4, pp. 434–451, Jul./Aug. 2008.

[40] S. E. Sim, C. L. A. Clarke, and R. C. Holt, “Archetypal source code
searches: A survey of software developers and maintainers,” in
Proc. 6th Int. Workshop Program Comprehension, Washington, DC,
USA, 1998 pp. 180–187.

[41] G. Sridhara, “Automatic generation of descriptive summary com-
ments for methods in object-oriented programs,” Ph.D. thesis,
Univ. Delaware, Newark, DE, USA, Jan. 2012.

[42] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments
for java methods,” in Proc. IEEE/ACM Int. Conf. Automated Softw.
Eng., New York, NY, USA, 2010, pp. 43–52.

[43] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in
Proc. 33rd Int. Conf. Softw. Eng., New York, NY, USA, 2011
pp. 101–110.

[44] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating param-
eter comments and integrating with method summaries,” in Proc.
IEEE 19th Int. Conf. Program Comprehension, Washington, DC,
USA, 2011, pp. 71–80.

[45] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,“ in Proc. 21st Int. Conf. Program Comprehension,
2013, pp. 83–92.

[46] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding
API components and examples,” in Proc. IEEE Symp. Visual Lan-
guages Human-Centric Comput., 2006, pp. 195–202.

[47] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: Improving API docu-
mentation using usage information,” in Proc. Extended Abstracts
Human Factors Comput. Syst., 2009, pp. 4429–4434.

[48] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility:
An experimental study,” J. Program. Languages, vol. 4, no. 3,
pp. 143–167, 1996.

[49] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in
industry,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., New York, NY, USA, 2012, pp. 51:1–51:11.

[50] D. van Heesch, Doxygen website, 2013.
[51] S. Zhang, C. Zhang, and M. D. Ernst, “Automated documentation

inference to explain failed tests,” in Proc. 26th IEEE/ACM Int. Conf.
Automated Softw. Eng., Washington, DC, USA, 2011, pp. 63–72.

Paul W. McBurney received the master’s degree
from West Virginia University in 2012. He is
currently working toward the PhD degree in the
Department of Computer Science and Engineer-
ing, University of Notre Dame. His focus is on
automatic documentation and program compre-
hension. He received the Best Paper Award at
ICPC 2014. He is a GAANN fellow.

Collin McMillan received the PhD degree in
2012 from the College of William & Mary, focus-
ing on source code search and traceability tech-
nologies for program reuse and comprehension.
He is an assistant professor at the University of
Notre Dame. Since joining Notre Dame, his work
has focused on source code summarization
and efficient reuse of executable code. His work
has been recognized with the National Science
Foundation’s CAREER Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MCBURNEY AND MCMILLAN: AUTOMATIC SOURCE CODE SUMMARIZATION OF CONTEXT FOR JAVA METHODS 119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

