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Abstract
For aerospace application of structural health monitoring (SHM) technology, the problem of
reliable damage monitoring under time-varying conditions must be addressed and the SHM
technology has to be fully validated on real aircraft structures under realistic load conditions on
ground before it can reach the status of flight test. In this paper, the guided wave (GW) based
SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test
status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model
(GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by
time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the
crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM
migration during on-line damage monitoring process. A best match based Kullback–Leibler
divergence is proposed to measure the GW-GMM migration degree to reveal the crack
propagation. The method is validated in the full-scale aircraft fatigue test. The validation results
indicate that the reliable crack propagation monitoring of the left landing gear spar and the right
wing panel under realistic load conditions are achieved.

Keywords: structural health monitoring, full-scale aircraft fatigue test, crack propagation
monitoring, time-varying condition, guided wave, Gaussian mixture model

(Some figures may appear in colour only in the online journal)

1. Introduction

Prognostics and health management (PHM) is an important
technology to ensure the safety and to reduce the maintenance
costs of aerospace vehicles [1, 2]. Structural health monitor-
ing (SHM) is regarded to be a key technology of PHM and it
has gradually developed from theoretic and fundamental
research to real-world engineering application in recent dec-
ade. However, the following two key issues must be
addressed for aerospace application [3–6].

The first key issue is the problem of reliable damage
evaluation under aircraft in-service conditions because there
are a lot of time-varying factors such as environmental
temperature and humidity, random dynamic load and vibra-
tion, changing structural boundary condition, aerodynamic

noise, engine noise, etc. These time-varying factors can
introduce serious uncertain influence to SHM sensor signals
to lead to the difficulty of reliable damage evaluation [3, 7, 8].
Several literatures have been published to deal with this issue,
such as the method of environmental parameter compensation
[9, 10], the method of baseline dependency reduction
[11, 12], data normalization method [13], cointegration
method [14], etc. However, these methods presented still
cannot fully address the time-varying problem. In recent
years, Gaussian mixture model (GMM) has been introduced
to fault diagnosis of mechanical system [15–17] because it is
an effective probability and statistics tool for characterizing
uncertainties of sensor signals. Several initial researches
began to introduce the GMM to the field of SHM. Tschöpe
et al [18] reported the validation of using GMM for damage
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degree classification on plate-like structure. Banerjee et al
[19] adopted GMM to classify crack length of a plate-like
repaired composite specimen. The sudden change of the
environmental temperature was considered as a time-varying
factor in the validation of this method but it is a simple
situation. Yuan et al [20] proposed a GMM method to
monitor a progressive damage on-line without using any
mechanics model. The method was validated on a wing spar
of a real aircraft under changing structural boundary condition
in laboratory. Chakraborty et al [21] proposed a Dirichlet
process GMM method combined with a mechanics model of
crack to realize crack propagation monitoring of aluminum
specimen under tensile fatigue load. However, the accurate
mechanics model is difficult to be obtained and the load
conditions are much more complicated in aerospace applica-
tion. All these researches have proved the potential to apply
the GMM to deal with the time-varying problem. However,
deep research still needs to be performed with respect to the
GMM for damage evaluation and their validation under real
application situation.

The second key issue is that the SHM technology has to
be fully validated on real aircraft structures under realistic
load conditions on ground before it can finally reach the status
of flight test, especially for the aerospace application which
has strict limitation on new technology [3, 5, 6]. Nevertheless
most of the SHM methods were only validated on small-scale
structures in laboratory conditions. The full-scale aircraft
fatigue test is one of the most similar test status to the flight
test. The monitored structure is a real full-scale structure with
complex geometry and connection. The dynamic fatigue load
is complicated and it is obtained by using in-service flight
data to simulate different flight modes of the aircraft such as
takeoff, level flight, overloading, landing, on-ground etc.
Hence, the damage evaluation is much more complicated than
those validations performed on small-scale structures.
Recently, Airbus reported their SHM validation in a full-scale
aircraft fatigue test of A380 [3]. However there was few
report on the validation process and results. In the validation
carried out by Dragan et al [22] in a full-scale fatigue test of a
military trainer aircraft, the crack states defined as 0–20 mm,
20–60 mm and >60 mm crack length were classified. How-
ever time-varying conditions were not taken into account and
the sensor signals were acquired when the structure was in the
static state. In addition, the crack monitoring sensitivity
was low.

In this paper, the Guided Wave (GW) based SHM
method [23–36] which has been studied widely due to high
damage sensitivity, long detection range and on-line mon-
itoring capability, is applied to a full-scale aircraft fatigue test
to monitor the crack propagation under realistic load condi-
tions. As mentioned above, the GW signals can be greatly
influenced by time-varying conditions existed in aerospace
application. To enhance the reliability of crack propagation
monitoring under time-vary conditions, especially at the early
stage of the crack propagation, a GW-GMM is proposed. The
weak cumulative variation trend of the crack propagation
mixed in time-varying influence can be tracked through GW-
GMM modeling and on-line GW-GMM migration.

Combining with a best match based Kullback–Leibler (KL)
divergence, the migration degree of the GW-GMM can be
quantified to reveal and evaluate the crack propagation. Based
on this method, the crack propagations of the right landing
gear spar and the left wing panel in the full-scale aircraft
fatigue test are monitored reliably under realistic load
conditions.

This paper is organized as follows. Section 2 proposes
the GW-GMM including the damage monitoring principle,
the on-line migration method and the migration measuring
method. The implementation process of the GW-GMM is
summarized as well. In section 3, the full-scale aircraft fatigue
test is introduced and the GW signals acquired under fatigue
load conditions are given and discussed. In section 4, the
reliable crack propagation monitoring is realized by the GW-
GMM. The GW-GMM construction and migration, and the
crack propagation monitoring results are given. Finally, the
conclusion is made in section 5.

2. guided wave-Gaussian mixture model

In this section, the damage evaluation principle of the GW-
GMM is described first. Then, an on-line migration mech-
anism of the GW-GMM is proposed. After that, a GW-GMM
migration index (MI) is defined to evaluate damage. Finally,
the implementation process of the GW-GMM is summarized.

2.1. Damage monitoring principle of the GW-GMM

The GW signals acquired under time-varying conditions can
be considered as a mixture of uncertain changes. Conse-
quently, a GW feature can be considered as a random vari-
able. Let F={F1,K, Fr,K, FK} be a GW feature sample set
composed by K independent features which are obtained from
K GW signals. Fr denotes a d-dimensional feature in the
sample set, where Fr=[DI1, DI2,.., DId]

T and r=1, 2,K, K.
When a monitored structure is in the healthy state, the GW
feature sample set only contains the uncertain influence
introduced by time-varying conditions. Under this situation,
the feature sample set can be regarded as a GW baseline
feature sample set.

Generally speaking, the sample set follows a joint
probability density function (PDF) Φ which is unknown
beforehand because of the complicated influence introduced
by time-varying conditions. However, it still can be decom-
posed to be a mixture probability structure, just like that a
signal can be decomposed to be a finite sum of signal com-
ponents by using Fourier transform and wavelet transform.
Therefore, the joint PDF of the GW feature sample set can be
approximately modeled by a GMM which is considered as a
finite weighted sum of Gaussian components Φi. The GMM is
expressed as equation (1)

( | ) ( | ) ( )åm mS SF = F
=

F Fw, , , 1r
i

C

i i r i i
1

where C is the number of Gaussian components, I=1, 2,K,
C. μi, ∑i and wi are the mean, the covariance matrix and the
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mixture weight of the ith Gaussian component. The PDF of
each Gaussian component is a d-dimensional Gaussian
function which is expressed as equation (2)
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The value of μi, ∑i and wi can be obtained based on the
sample set by using expectation maximization (E–M) algo-
rithm [37, 38], in which, the initial value of μi, ∑i and wi are
acquired by using k-means clustering algorithm, and then a E-
step and a M-step are performed iteratively to get the opti-
mized value of μi, ∑i and wi.

An example of a two-dimensional baseline GW-GMM
composed of two Gaussian components is shown in figure 1,
in which the GW-GMM is represented as a Nebula image.
Each Nebula stands for a Gaussian component and the color
stands for the two-dimensional probability density. The
probability density of each Gaussian component is normal-
ized independently.

When a new GW feature is obtained during an on-line
damage monitoring process under time-varying conditions, a
migration method can be adopted to rebuild the GW-GMM.
Once the on-line migrated GW-GMM is obtained as shown in
figure 1, some measuring methods of probability distribution
difference can be adopted to quantify the migration between
the on-line migrated GW-GMM and the baseline GW-GMM.
This on-line migrating process can be performed continuously
accompanying with the damage monitoring process. If the
monitored structure keeps healthy, the result of migration
measuring will be random and it will be maintained at lower
level. If damage occurs in the structure and propagates con-
tinuously, a cumulative migration trend will be appeared in
both the GW-GMM and the migration measuring result.
Based on the result of migration measuring, the reliable
damage monitoring can be realized.

2.2. On-line migration method of the GW-GMM

Based on the principle given above, the on-line migrating of
the GW-GMM includes two steps. The first step is to update
the GW feature sample set and the second step is to migrate
the GW-GMM based on the updated feature sample set.

Ordinarily speaking, damage propagation such as crack is
a slow and cumulative process. The damage induced variation
on GW feature should be small when the damage is at early
stage and the migration trend of the GW-GMM is weak.
However, the GW feature which contains damage influence
can be accumulated to enhance the migration trend of the
GW-GMM. Therefore, to increase the on-line migration
efficiency, the GW feature sample set is considered to be a
queue sample set which means that it is updated based on the
rule of first-in/first-out. An on-line MI is denoted as n
(n�1). When a new feature F n is obtained, it is added to the
sample set as the newest element. Meanwhile, the oldest
element is moved out. The length of the sample set Fn is
maintained to be K.

To increase the on-line migration efficiency of the GW-
GMM, an improved E–M algorithm is proposed considering
the slow cumulative property of the damage. As mentioned
before, the baseline GW-GMM denoted as Φ0 is constructed
by the ordinary E–M algorithm and the initiation method is k-
means clustering algorithm. However, in the improved E–M
algorithm for on-line migration of the GW-GMM Φn, the PDF
of the previous GW-GMM Φn−1 is considered as the initial
PDF of Φn. Then the E-step and an improved M-step are
performed iteratively.

In E-step, the posteriori probability of a GW feature in
each Gaussian component is calculated based on equation (3).

In M-step, wi and μi are updated based on equations (4)
and (5) respectively. Then ∑i is updated. Considering that the
likelihood value of the GW-GMM is a key to iteration stop
criterion and the global maximum of the likelihood is corre-
sponded to singular solutions with zero covariance [39], the
E–M iteration step may converge to the singular solutions. To
avoid this situation and keep the migration stably, ∑i is
updated based on equation (6), in which, Id is a d-dimensional
unit matrix and α is a correction factor which is determined
according to the scale of the GW feature
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Figure 1. An example of the guided wave-Gaussian mixture model
(GW-GMM).
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For stop determination of the E–M iteration, the log-
likelihood value of the GW-GMM is used and the value is
calculated based on equation (7). Supposing that the log-
likelihood value at previous iteration step is L0 and the log-
likelihood value at current step is L1, the E–M iteration is
stopped if the convergence criterion shown in equation (8) is
satisfied. If not, the iteration is performed continuously when
the maximum iteration steps is reached. The value of ε is set
to be 1×10−10

( | ) ( | ) ( )å å m SF = F
= =

⎡
⎣⎢

⎤
⎦⎥FL wF log , , 7

r

K

i

C

i i r i i
1 1

| | ( )e- <L L 1 . 81 0

2.3. Migration measuring of the GW-GMM

The migration measuring result between the on-line migrated
GW-GMM and the baseline GW-GMM is defined as MI. As
mentioned before, the slow cumulative property of the
damage will make the two GW-GMMs be overlapped toge-
ther at the early stage of the crack propagation. However,
accompanying with the damage propagation, the two GW-
GMMs will be separated gradually. Considering the two
conditions, a best match Gaussian component based KL
divergence is proposed to calculate the MI and it is described
as follows.

The KL divergence between two Gaussian components
denoted as F i

0 and Fn
j can be calculated based on

equation (9) [40]
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where m ,i
0 S i

0 and w i
0 are the mean, the covariance matrix

and the mixture weight of the ith Gaussian component of Φ0.
m ,n

j Sn
j and wn

j are that of the jth Gaussian component of
Φn. tr is the matrix trace and det is the determinant value.

As shown in figure 2, for each Gaussian component F i
0

in Φ0, the KL divergence between it and all the Gaussian

components in Φn is calculated first based on equation (9). If
the smallest KL divergence happens between F i

0 and F .n
j It

can be said that the best match Gaussian component of F i
0 in

Φn is F .n
j Based on this point, the best match Gaussian

component in Φn of each Gaussian component of Φ0 can be
found. Finally, the best match based KL divergence is cal-
culated based on equation (10)
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2.4. Implementation process of the GW-GMM

The implementation process of the GW-GMM is summarized
as figure 3 which includes two parts. The first part is the
baseline GW-GMM construction. At this part, GW signals are
acquired under time-varying conditions when the structure is
in the healthy state, and GW features are extracted to con-
struct a GW baseline sample set. After that, a baseline GW-
GMM is constructed by the E–M algorithm with the initi-
alization method of k-means clustering algorithm. The GW
feature used in this paper are the time domain cross-correla-
tion and the spectrum magnitude difference which will be
given in the next section. The second part is the on-line GW-
GMM for damage monitoring. At this part when a new GW
signal is acquired, its feature is extracted first. Then the GW-
GMM is migrated based on the queue sample rule and the
improved E–M algorithm. When the PDF of the migrated
GW-GMM is obtained, the MI is calculated. Finally, damage
evaluation can be achieved according to the variation trend of
the MI.

3. The full-scale aircraft fatigue test and GW signals

In this section, the full-scale fatigue test is introduced first.
Then the uncertain influence of the time-varying conditions is
discussed. After that, the crack propagation monitoring results
based on damage index (DI) are given and discussed.

3.1. The full-scale aircraft fatigue test

The full-scale aircraft fatigue test was performed on an air-
craft that had accumulated thousands of flight hours in China.
One object of the fatigue test was to validate the GW based
SHM system including the reliability of the PZT layer [41]
under high fatigue strain level, the stability of the GW multi-
channel scanning system [42] under on-line continuous
working status and the capability of crack monitoring. The
fatigue load was introduced by a series of force-controlled
hydraulic loading devices and lever systems. The random
dynamic fatigue load spectrum was generated by using the in-
service flight data to simulate different flight modes of the
aircraft. Prior to the start of the fatigue test, a set of com-
missioning load cases were applied to verify the correct
functioning of the fatigue test setup, and an non-destructive
test (NDT) was performed and there was no crack.

Figure 2. Illustration of the best match Gaussian components.
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The fatigue test was divided into two phases. Phase 1 was
hotspot crack monitoring and phase 2 was crack propagation
monitoring. The duration time of phase 1 was totally 125
effective test days and nearly 1000 flight hours were simu-
lated through the fatigue test but there was no crack. At the
end of phase 1, a crack was detected at the right landing gear
spar by using visual NDT based on an endoscope. This area
was not monitored in phase 1. Therefore, phase 2 was decided
to be performed to monitor the crack propagation. This area
was defined as hotspot 1 and it is shown in figure 4. The
fatigue load at hotspot 1 was complicated and the strain level
was around −1200 to 1500με. The crack length was
33.5 mm when it was detected. Thus two PZT layers were
placed on both sides of the crack to construct a GW pitch-
catch channel. Though there was a crack, the structure was
still supposed to be in the healthy state after the PZT layers
were placed on it. In the following fatigue test, the crack
propagation must be monitored reliably. In addition, another
crack of length 35.1 mm was discovered at the left wing panel
in the middle of phase 2. Thus the crack propagation mon-
itoring of this crack area defined as hotspot 2 was also
decided to be performed. It is also shown in figure 4. The
strain level of hotspot 2 was around −700 to 400με. Two
PZT layers were placed on both sides of the crack.

The material of the two hotspots is 7B04 super-hardness
aluminum alloy and the thickness of the two hotspots is all
around 10 mm. The sensor element of the PZT layer is pie-
zoceramic and the type is PZT-5A. The diameter and thick-
ness of the piezoceramic are 8 mm and 0.48 mm respectively.
These PZT layers were placed on the structure by using an

adhesive of two component epoxy paste. The adhesive type is
Araldite® AW 113 with HV 953 K. The adhesive was cured
by using a hot air gun for 45 min and the curing temperature
was around 60 °C. The distance between the two PZT layers
in one hotspot was around 60 mm.

The scanning system was used to control the two GW
channels to excite and acquire GW signals. A five-cycle sine
burst modulated by Hanning window was adopt to be GW
excitation signal [28]. The sampling frequency and excitation
amplitude were set to be 10MSamples s−1 and ±70 V
respectively. In order to reduce signal noise, 100 sampling
average was adopted.

It should be noted that the excitation frequency of GW
signal is an important parameter for the GW based SHM
method. Thus, a frequency scanning process, which was from
25 to 500 kHz (10 kHz interval), was performed first to select
a proper excitation frequency. To monitor crack propagation,
high frequency of GW signal is preferred because of short
wavelength. In addition, there was large white noise and low
frequency interference in the GW signal. To promise a rela-
tive high signal to noise ratio, the GW signal of higher
amplitude is preferred. The GW signal is also complicated
due to the complex structure. The direct wave of less signal
aliasing is preferred to be the signal segment for crack pro-
pagation monitoring. Based on these reasons, the GW signal
of excitation frequency of 250 kHz is relatively better
than that of the other frequencies. Thus 250 kHz is selected
to be the excitation frequency of the GW signal in the
fatigue test.

Figure 3. Implementation process of the GW-GMM.
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The duration time of the fatigue test for hotspots 1 and 2
were 24 and 11 effect test days respectively. In each test day,
the two hotspots were scanned by using the scanning system
in a fixed time interval automatically and 50 GW signals were
acquired correspondingly. It should be noted that the acqui-
sition of the GW signals was performed under the fatigue load
condition. Totally 1200 GW signals numbered from Signal
No. 1 to 1200 were acquired at hotspot 1 and 550 GW signals
numbered from Signal No. 1 to 550 were acquired at hot-
spot 2.

When the fatigue load was unloaded in each test day, the
endoscope was used to detect the crack length. The results
indicate that the crack propagated 0.35 mm d−1

approximately.

3.2. GW signal and time-varying conditions

Due to the large white noise and low frequency interference in
the GW signal, a wavelet transform based de-nosing method
[28] was adopted to reduce the noise of all the GW sig-
nals first.

Two de-noised GW signals acquired at hotspots 1 and 2
are shown in figures 5(a) and (b) respectively. The direct
wave of the signal can be distinguished clearly and the peak
value of the direct wave is the maximum value of the whole
signal. Considering that the crack propagation path was on or
near the direct propagation path of the GW, the direct wave
and the signal segment of boundary reflections next to the
direct wave are emphasized to be the main signal segment for
crack propagation monitoring. Thus, the length of the signal
segment which is adopted to monitor the crack propagation is
from 1.101×10−4 to 1.550×10−4 s for hotspot 1 and is
from 1.051×10−4 to 1.500×10−4 s for hotspot 2. The
crosstalk signal shown in the GW signal was introduced by
the scanning system. It can be eliminated by using signal
interception.

Environmental temperature is an important time-varying
factor for GW [9, 10]. However, as shown in figure 6, the
temperature influence can be ignored in the short duration
time of the fatigue test of phase 2 because the temperature
measuring results show that the average temperature differ-
ence in a test day was about 3.5 °C and the average

Figure 4. Layout of hotspots for crack propagation monitoring in phase 2.
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temperature difference between different test days was only
about 1.7 °C.

Figure 7 gives the Signal No. 5–7 acquired at hotspot 1 in
the first test day under the fatigue load condition. The crack
propagation influence can be ignored because the three sig-
nals were acquired continuously. It can be noted that the
fatigue load introduced large variation to the amplitude of
these signals and the fatigue load can also affect the time-of-
flight (ToF). The method of ToF measurement is an envelope
detection method which is based on complex wavelet

transform [28]. The repeatability error of the peak value of the
three signals is up to 17%. The fatigue load influence at
hotspot 2 was lower than that at hotspot 1. The repeatability
error of the peak value of hotspot 2 is around 8%. It should be
noted that the strain level of hotspot 1 was higher than that of
hotspot 2, which means that the uncertainty influence intro-
duced by the fatigue load of hotspot 1 should be higher than
that of hotspot 2.

Figure 8 displays all the GW signals acquired at hotspot
1 under the fatigue load condition. It can be seen that the
attenuation of the peak value caused by the crack propagation
is mixed into the fatigue load influence. The cumulative
variation trend of the peak and the TOF can only be noted
weakly when the crack propagation length was longer than
4 mm. The crack propagation length of hotspot 2 was shorter
than that of hotspot 1. Thus the crack propagation induced
cumulative variation trend is hard to be noted, as shown in
figure 9.

According to the signal variations shown in figures 8 and
9, it can be said that the main time-varying factors were the
fatigue load condition and the corresponding structural
boundary changing condition. The fatigue load which was
applied to the full-scale structure was based on a fatigue load
spectrum of random and dynamic. The fatigue load spectrum
was generated by using the in-service flight data to simulate
different flight modes of the aircraft such as takeoff, level
flight, overloading, landing, on-ground etc. In each test day,
the GW signals were acquired in a fixed time interval auto-
matically under fatigue loading condition. Thus the GW
signals should cover a wide range of different fatigue load
states and different crack states such as open crack and closed
crack, etc. The aim of the GW-GMM is to realize the crack
propagation monitoring under these situations.

Figure 5. Illustration of the signal segment for crack propagation monitoring.

Figure 6. Environmental temperature measured in phase 2.

Figure 7. Typical GW signals acquired at hotspot 1 under the fatigue
load condition.
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3.3. GW feature extraction and the time-varying influence

For crack propagation monitoring by using only one GW
channel, DI [26] is often used. In this paper, the following two
DI, but not limited, are adopted to extract GW feature.

(1) DI1 is the time domain cross-correlation shown in
equation (11). The motivation of using this DI is that it is
mainly affected by the changes of signal waveform shape
or signal ToF
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where, b(t) and m(t) represent baseline signal and monitoring
signal respectively. t0 and t1 are the start and stop time
corresponding to the selected signal segment. The scale of DI1
is [0, 1].

(2) DI2 is the magnitude difference of frequency response
shown in equation (12). This DI is mainly affected by the
changes of signal amplitude or signal energy
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|·| denotes the modules value of the frequency response. ω0

and ω1 are the start and stop frequency corresponding to the
selected frequency spectrum window. The start and stop of
the frequency spectrum window are selected to be 150 kHz
and 350 kHz respectively. The variation range of DI2 is also
[0, 1].

For hotspot 1, DI1 and DI2 calculated by using the
Signal No. 1 as the baseline signal and all the 1200 GW
signals as the monitoring signals are given in figure 10. They
appear a cumulative increasing trend when the crack pro-
pagation length was longer than 4 mm. However, the early
stage of the crack propagation is hard to be recognized
because of the random variations introduced by time-varying
conditions.

For hotspot 2, DI1 and DI2 are shown in figure 11. In this
hotspot, the crack propagation was at the early stage. Com-
paring figure 11 with 10, the influence of time-varying con-
ditions was lower in hotspot 2. Therefore, a cumulative
increasing trend was appeared weakly in figure 11.

In conventional DI based damage monitoring methods, a
DI threshold is often predefined. When the value of the DI
exceeds the threshold, the damage occurrence can be deter-
mined. However, the threshold is hard to be determined based
on the results and the crack propagation monitoring is also
difficult to be realized, especially at the early stage of the
crack propagation.

4. Crack propagation monitoring based on the
GW-GMM

In this section, the GW feature sample set is discussed first.
Then, the baseline GW-GMM and the migration process of

Figure 8. GW signals acquired at hotspot 1.

Figure 9. GW signals acquired at hotspot 2.
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the on-line GW-GMM is given. After that, the crack propa-
gation monitoring results by using the GW-GMM are given
and discussed.

4.1. GW feature sample set

To improve the reliability of crack propagation monitoring in
the full-scale aircraft fatigue test, the GW-GMM is applied to
the GW signals mentioned above. For hotspot 1, the GW
signals numbered from Signal No. 1 to 600 which belongs to
the early stage of the crack propagation are adopted. Totally
600 GW features are obtained by using the Signal No. 1 to be
the baseline signal and all the 600 signals to be monitoring
signals. For hotspot 2, all the GW signals are used and totally
550 GW features are obtained. All the GW features are shown
in figure 12. It can be noted from figure 12(a) that the GW
features of hotspot 1 of different crack propagation length are
overlapped seriously and appear a weak cumulative variation
trend. Different from hotspot 1, the GW features of hotspot 2
shown in figure 12(b) appear a slow cumulative variation
trend.

4.2. GW-GMM construction and migration

For hotspot 1, the first 50 GW features belonged to the first
test day are used as GW baseline sample set to construct a
baseline GW-GMM at the first part shown in figure 3. All the
600 GW features are input to the second part one by one to
calculate the MI. For hotspot 2, the first 50 feature vectors are
also adopted to construct a baseline GW-GMM. All the 550
features are used to calculate the MI. Although the first
50 GW features are adopted to construct the baseline GW-
GMM, they can be still adopted to validate the migration
process of the GW-GMM. The length of the feature sample
set is K=50.

An important step of the GW-GMM is to determine the
number of Gaussian components before it is implemented.
Indeed, the more Gaussian components are used, the higher
sensitivity it may be reached. However, the sensitivity also
depends on the spread of the GW features. In addition, the
computational efficiency and the GMM stability will be
reduced by using so many Gaussian components. If few
Gaussian component is used, an average effect will be
appeared so as to reduce the sensitivity [37–40]. For hotspot
1, the number of Gaussian components is set to be 3 to
cover the GW feature sample set. For hotspot 2, the number
of Gaussian components is set to be 2. One is used to
cover the concentrated GW features and the other is used to
cover the dispersed GW features. The baseline GW-GMM
of the two hotspots are shown in figures 13(a) and 14(a)
respectively.

For on-line migration of the GW-GMM, the correction
factor shown in equation (6) is set to be 1×10−3 considering
the scale of the GW features is [0, 1]. Based on the migration
method, some typical on-line migrated GW-GMMs of the two
hotspots accompanying with the crack propagation are shown
in figures 13(a)–(c) and 14(a)–(c) respectively.

For hotspot 1, the Gaussian components Φ1 and Φ2 move
slowly to track the relative concentrated GW features and the
Gaussian component Φ3 moves fast to track the relative dis-
persed GW features. At the early stage of the crack propa-
gation monitoring, the mixture probability of the on-line GW-
GMM shown in figure 13(b) is similar to that of the baseline
GW-GMM shown in figure 13(a). This is because that the
GW features are overlapped in high degree at this stage.
When the crack propagation length was increased and the
GW features are accumulated, the on-line GW-GMM is
migrated thoroughly as shown in figures 13(c) and (d). The
result indicates that the weak cumulative variation trend of the
GW feature sample set is enlarged by the fast changing of the
mixture probability of the on-line GW-GMM.

For hotspot 2, the Gaussian component Φ1 moves slowly
to track the concentrated GW features and the Gaussian
component Φ2 moves fast to track the dispersed GW features
as shown in figure 14. It can be noted by comparing the four
GW-GMMs that the Gaussian component Φ1 shows a
cumulative migration trend and the Gaussian component Φ2

shows a fast migration trend.

Figure 10. Damage indexes of hotspot 1.

Figure 11. Damage indexes of hotspot 2.
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4.3. Crack propagation monitoring results

The crack propagation monitoring results of the two
hotspots are shown in figure 15. As it can be seen that the MI
corresponding to the first 50 GW features approach zero,
which means that the variation property of these GW features
has been completely contained in the baseline GW-GMM.

For hotspot 1, the MI are increased slowly from the crack
length 0.5–2 mm because the GW features are overlapped in
high degree. The MI are increased prominently from the crack
length 2.0 to 2.5 mm, because the GW-GMM is migrated
thoroughly as shown in figures 13(c) and (d).

For hotspot 2, The MI are increased fast and stably because
the dispersed GW features is fast tracked by Gaussian comp-
onent Φ2 as mentioned above. The MI are also increased faster
than that of hotspot 1 because of the lower fatigue load influence.

Compared to the DI shown in figures 10 and 11, it can be
known that the MI are increased cumulatively and stably
accompanying with the crack propagation. When the crack
propagation length is larger than 2 mm, the MI are increased
fast. Therefore, the early stage of the crack propagation can be
reliably evaluated based on the cumulative increasing trend of
the MI.

Figure 12. GW Feature sample set.

Figure 13. GW-GMM migration process of hotspot 1.
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5. Conclusion

The GW based SHM method is applied to a full-scale aircraft
fatigue test. The GW-GMM method is proposed to improve
the crack propagation monitoring reliability under time-vary
conditions, especially at the early stage of the crack propa-
gation. The monitoring results in the full-scale aircraft fatigue
test show a high performance of the GW-GMM. However,

there are several further studies will be performed in the near
future to improve the GW-GMM. They are given as follows.

(1) The feature extracting methods of GW signal in time
domain, frequency domain and time–frequency domain
[43–49] will be systematically studied to reduce the
spread of the GW features and thus to increase the crack
monitoring sensitivity.

(2) As mentioned before, an important step of the GW-
GMM is to determine the number of Gaussian
components. To take this problem into account, an
adaptive GW-GMM method will be studied, in which
the number of Gaussian components can be changed
adaptively and automatically.

(3) The environmental influence such as temperature is low
in the fatigue test. More full-scale aircraft fatigue tests
will be performed in the near future to validate the GW-
GMM under a more comprehensive time-varying
condition.
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