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Driven by the requirements of inter-satellite link antenna for tracking mechanism with two
degree-of-freedom (DoF), this paper proposes a 2-DoF over-constrained rotational parallel
mechanism (RPM) with an articulated traveling platform and formulates its stiffness model con-
sidering gravitational effects. The stiffnessmodeling is implementedby three steps: 1) Considering
the over-constrained property and gravitational effects, twist/wrench mapping models of two
R(RU)2 limbs connecting the fixed base and the articulated traveling platform are obtained
based upon screw theory. 2) Employing deformation superposition principle, the compliance
models of two R(RU)2 limbs in their joint spaces are formulated, of which component compliance
is described by n-DoF (n ≤ 6) virtual springs; and 3) by applying deformation compatibility condi-
tions and twist/wrench mapping models into the virtual work equations, the stiffness model of
the 2-DoF over-constrained RPM considering gravitational effects is derived. From component,
limbs tomechanism, the stiffness modeling process demonstrates their relations with clear phys-
icalmeaning and unifies performances including kinematic, stiffness, accuracy and dynamics. This
approach is verified by commercial FEA software. Finally the stiffness distribution and gravitation-
al effects within prescribed workspace are discussed.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The inter-satellite link antenna of the tracking and data relay satellite (TDRS) needs to track the satellite and receive the signal in
real time, and the tracking operation is usually carried out by the tacking mechanism having two rotational degrees-of-freedom
(DoFs) [1–3]. The traditional trackingmechanism is to employ the serial topology structurewith two shafts connected perpendicular-
ly, such as the famous COMETS tracking mechanism [1]. However, with the expansion of aperture and the increment of antenna
weight, it is inevitable to design the tracking mechanism with serial topology structure towards larger size and heavier weight,
which cannot be allowed due to the limitation of the satellite space and weight [2,3]. In addition, stiffness, accuracy and velocity per-
formances are the disadvantages of this serial trackingmechanism [4,5]. Bearing these inmind, the trackingmechanismswith parallel
topology structure have drawn more and more attention from both academia and industry in recent years.

In this paper, the tracking mechanism with parallel topology structure is referred to as the 2-DoF rotational parallel mechanism
(RPM) which has been intensively investigated over the past few decades. The 5R mechanism is claimed as the simplest topology
structure of the 2-DoF RPMs, in which R denotes the revolute joint and the axes of these revolute joints intersect at common point
[6–8]. By introducing parallelogram structure, Baumann et al. [9] invented a 2-DoF RPM called Pantoscope that has been applied to
the micro invasive surgery. Inspired by human wrist, Ross–Hime Designs [10] proposed a 2-DoF RPM named as Omni Wrist, whose
performance was investigated by Sdfka et al. [11–13]. After that, Carricato and Parenti-Castelli [14] applied interconnected slider–
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crank linkages to formulate decoupled 2-DoF RPM. Di Gregorio and Sinatra [15] employed two PUS kinematic chains and one U joint
for the 2-DoF pointingmechanism. Herein, P, U, and S denote actuated prismatic joint, universal joint and spherical joint, respectively.
Furthermore, Vertechy and Parenti-Castelli [16] proposed synthesis approach of 2-DoF fully RPMwith US leg. Based upon the graphic
approach, Yu et al. [17,18] investigated a type of 2-DoF RPM with equal-diameter spherical pure rotation. In addition, Gogu [19]
designed a 2-DoF uncoupled RPM with isotropy based on the condition number of Jacobian matrix. Recently, Cammarata [20]
reconsidered the topology of U-2PUS for solar tracking system and conducted its optimized design.

While 2-DoF RPMs with larger rotational angles, better stiffness and accuracy performances are needed, it is concluded from the
above-mentioned literatures that the existing topology structures of 2-DoF RPMs are difficult to meet the increasing demands in sat-
ellite tracking mechanism, as well as in aerospace, military and biomimetic fields. This paper proposes a promising solution for these
demands, a 2-DoF over-constrained RPM with an articulated traveling platform, which has the potential of large rotational angles,
good stiffness and superior accuracy [21–23]. Noting that good stiffness performance of the trackingmechanism provides fundamen-
tal guarantee for achieving accurate tracking, i.e., accuracy performance of 2-DoF RPM, stiffness is the key concern in this paper.

Stiffness modeling and analysis are two basic and crucial procedures of stiffness design and estimation in preliminary and final
design of parallel mechanisms. As an over-constrained parallel mechanism, its over-constrained property can provide linear depen-
dent constraints to enhance the capacity resisting external payloads and do not change the DoF of the mechanism. For this reason,
there are several differences between the stiffness modeling of over-constrained and non-over-constrained parallel mechanisms. Lit-
erature reviews [24–32] show that there are three main methods for stiffness modeling of over-constrained parallel mechanisms: fi-
nite element analysis (FEA) approach, structural matrix approach, and virtual joint approach.

The FEA approach is regarded as the most accurate and reliable approach to formulate the stiffness model of over-constrained
parallelmechanisms, inwhich the componentswith irregular shape can bemodeled precisely [24,25]. However, the stiffnessmapping
between joint space and operated space cannot be expressed analytically. Besides, the FEA models have to be re-meshed and re-
computed as configuration of end-effector changes, which will increase the computational costs. In consequence, the FEA approach
is not suitable for parameterized stiffness model. It is usually utilized to the stiffness estimation in the preliminary design stage and
the stiffness verification in the final design stage.

The structurematrix approach is to employ standard elements such as beam, shell and plate elements to describe the stiffnessma-
trix of components then assemble to form the stiffnessmatrix ofwholemechanismby compatibility conditions [24–28]. Comparing to
FEA approach, structurematrix approach is able to derive analytical stiffnessmodel nomatter how complex the over-constrained par-
allel mechanism is. However, Pashkevich [25] reminded that the structuralmatrix approach is more complicated in computingmulti-
dimensional matrix thus not suitable for stiffness design of parallel mechanisms. In addition, the stiffness matrices of standard ele-
ments are not accurate to characterize the stiffness of actual components with irregular shape.

The virtual joint approach provides acceptable accuracy with lower computational efforts comparing with the approaches
mentioned above, and it has been widely used in analytical parametric analysis of both over-constrained and non-over-constrained
parallel mechanisms in the light of Jacobian matrix and virtual work principle. Unlike non-over-constrained parallel mechanisms,
the Jacobian matrix of over-constrained parallel mechanism cannot directly apply to compute stiffness model because of the over
constrained condition. Bearing this in mind, Majou [30] appended three additional virtual springs to describe the over-constrained
condition of Orthoglide mechanism with parallelogram-type legs while he proposed an elimination method to achieve the stiffness
matrix with virtual joint approach. However, Pashkevich [25] believed that additional virtual joints changed themechanism structure
and then established the stiffness model of Orthoglide mechanism by employing 6-DoF virtual springs to describe component and
joint stiffness. With the 6-DoF generalized spring, Taghvaeipour [31] developed elestostatic analysis method for mechanical systems,
including over-constrained manipulator. It is found out that 6-DoF virtual springs are suitable for accurate and complete stiffness
model of over-constrained parallel mechanism, but it consists of redundant springs since linear or angular stiffness of some compo-
nents correspondingmovable axis is zero, whichmight need to be paid extra effort for dealing with the redundant stiffness of virtual
spring.

What's more, even though themicrogravity environment of outer space results in the invalidation of gravity of the 2-DoF tracking
mechanism, it is noting that the 2-DoF trackingmechanismwill be estimated and verified repeatedly on the earth before launching to
outer space. Therefore, the gravity of the 2-DoF tracking mechanism needs to be considered in the stiffness model for analyzing its
effect separately.

As is known to all, Jacobianmatrix, reflecting thewrench/twist relationship between limbs andmechanism, is an important oper-
ator for the analysis of parallelmechanism in terms of the kinematic, stiffness, accuracy and dynamic performance. Bearing aforemen-
tioned issues in mind, on the basis of the conventional Jacobianmatrix, the wrench/twist mappingmodel of each limb and the 2-DoF
RPM is taken into account separately, allowing the consideration of the over-constraints and external wrench such as gravity. And the
stiffness/compliance of every limb is computed by the sum of component deformations described by n-DoF spring (n ≤ 6), concerning
the effect of passive joints. The component deformations are obtained from the FEA software,making it more reliable and accurate. By
the three steps from component, limbs to the 2-DoF RPM, the stiffness model is achieved with clear physical meaning and helps to
unify mechanism performance analysis including kinematic, stiffness, accuracy and dynamic.

Having outlined in Section 1 the state of the art, existing problems and the promising solutions for the stiffness of 2-DoF over-
constrained RPMs, the paper is organized as follows. In Section 2, the RPM description and inverse position analysis are introduced
briefly. The stiffness model considering gravitational effect is formulated in Section 3 after obtaining the twist and wrench mapping
modes. In Section 4, the stiffness matrices of two linked limbs are obtained utilizing n-DoF (n ≤ 6) virtual spring approach. Section 5
demonstrates the determination of the component compliance in detail. A typical example is then given in Section 6 to verify the stiff-
ness modeling process before the conclusions are drawn in Section 7.
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2. Mechanism description and inverse position analysis

As shown in Fig. 1, the proposed 2-DoF over-constrained RPM is consist of a fixed base, two R(RU)2 limbs and an articulated trav-
eling platform.Herein, R denotes the actuated revolute joint. The R(RU)2 limb connects the fixed base by R joint and links the plate I or
plate II by two U joints. More specifically, the 1st (3rd) rod and the 2nd (4th) rod link the 1st (2nd) bracket and plate I (plate II) by R
joint and U joint, respectively. The plate I and plate II are articulated by one R joint to form the articulated traveling platform shown in
Figs. 1 and 2, in which the plate I is regarded as the output end of motion/force and connected rigidly to the end-effector. The intro-
duction of an articulated traveling platform can enlarge rotational angles of the 2-DoF RPM effectively and decrease the geometrical
constraints dramatically.

As shown in Fig. 2, one axis of the U joint is collinear with that of the other U joint in the same R(RU)2 limb, meanwhile the other
axes are parallel to the axes of R joints that perpendicular to the plane of the R(RU)2 limb. The axis of R joint is parallel to axes of R
joints in same R(RU)2 limb. Point A1, A2, B1 and B2 denote the centers of R joints, while point A3, A4, B3 and B4 denote the centers of
U joints, respectively. C1 and C2 represent the centers of R joints. The intersection points of two R(RU)2 limbs within the planes of
the fixed base and the articulated traveling platform are designed as point O and D, respectively.

In order to describe themotions of the 2-DoF RPM, a fixed reference frame designated as frame O− xyz is assigned to the point O
with the z-axis coincident with the intersection line of the two R(RU)2 limbs and x-axis pointing to C2, whereas a moving reference
frame D − uvw is established at point D, its u-axis is collinear with A4A3 and the w-axis is normal to the plane of the articulated
traveling platform. A local reference frame D − u1v1w1 is defined at point D whose u1-axis points to the same direction as u-axis
and v1-axis is collinear with y-axis. Similarly, a local reference frame D − u2v2w2 is located at point D with u2-axis pointing to C2
and v2-axis coincident with B4B3. An instantaneous reference frame D − x′y′z′ is defined at point D, whose axes are parallel with
those of frame O− xyz at home configuration. In addition, by rotating angle φ(φ=−5π/4) about z-axis of frame O− xyz, the grav-
itational reference frame O − xgygzg is established whose xg-axis is collinear with the direction of gravity acceleration (see Fig. 3).

Based upon the above-mentioned definitions, the orientationmatrices R1 and R2 of frameD− u1v1w1, frame D− u2v2w2 with re-
spect to frame O − xyz can be described by rotating about y-axis with θ1,1 angle and u-axis with θ1,2 angle respectively, which are
expressed as
R1 ¼
cθ1;1 0 sθ1;1
0 1 0

−sθ1;1 0 cθ1;1

2
4

3
5;R2 ¼

1 0 0
0 cθ1;2 −sθ1;2
0 sθ1;2 cθ1;2

2
4

3
5 ð1Þ
where c and s denote cosine and sine, respectively.
The relationship between frame D − uvw, frame D − u1v1w1 and D − u2v2w2 frame can be described as
u ¼ R1x; w ¼ R1xð Þ � R2yð Þ; v ¼ w0u ð2Þ
where x, and y are the unit axial vectors of frame O− xyz, and u, v andw represent the unit axial vectors of reference frameD− uvw,
respectively.

Therefore, the rotational matrix R of frame D − uvw with respect to frame O − xyz is formulated as follows.
R ¼ u v w½ � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2θ1;2 þ c2θ1;1s2θ1;2

q cθ1;1 sθ1;1cθ1;1sθ1;2 sθ1;1cθ1;2
0 cθ1;2 −cθ1;1sθ1;2

−sθ1;1 c2θ1;1sθ1;2 cθ1;1cθ1;2

2
64

3
75 ð3Þ
Supposed the anglesφx andφy that plate I rotates about x and y-axis are known, the direction vectorw of plate I is determined, and
the input angles θ1,1 and θ1,2 can be calculated by Eq. (3). For the 1st R(RU)2 limb, frameD− uvw can be obtained by rotating the limb
about v1-axis with θ1,1 and rotating about the other axis of U joint with θ2,1. For the 2nd R(RU)2 limb, frame D − uvw is derived by
Fig. 1. Topology structure of the 2-DoF RPM.



Fig. 2. (a) Virtual prototype and (b) schematic diagram of 2-DoF RPM.
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rotating the limb about u2-axis with θ1,2, then rotating about another axis of U joint with θ2,2, finally rotating about articulated R joint
with θ3,2. Therefore, the rotational angle θ2,1 within 1st R(RU)2 limb and θ2,2, θ3,2 within 2nd R(RU)2 limb are determined by
R ¼ R1 � Rot u1; θ2;1
� �

; R ¼ R2 � Rot v2; θ2;2
� �

� Rot w; θ3;2
� �

: ð4Þ
3. Stiffness modeling of 2-DoF RPM considering gravitational effects

Based upon the topology structure of the 2-DoF over-constrained RPM, the deformation of plate I caused by an external payload is
formed by the deformations of the two R(RU)2 limbs supposing the articulated traveling platform as rigid-bodywithout deformation.
According to the mapping relationship of the payload and the deformation, the virtual work principle is employed to formulate the
Fig. 3. Free-body diagram of 2-DoF RPM.
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stiffnessmodel of the 2-DoF RPM considering gravitational effects, which is implemented by three steps: 1) formulating the twist and
wrench mapping models of the two R(RU)2 limbs between their joint spaces and operated spaces considering gravitational effects,
respectively, of which the gravitational wrenches are treated as external wrench exerting on the end reference point in the light of
static equilibrium; 2) establishing the compliance models of the two R(RU)2 limbs in their joint spaces by means of deformation su-
perposition principle, of which the component compliance in each limb is described by n-DoF (n ≤ 6) virtual springs; and 3) applying
deformation compatibility conditions and twist/wrenchmappingmodels into the virtualwork equations, the stiffnessmodel of the 2-
DoF RPM in the operated space is derived.

3.1. Twist mapping model

Mainly drawing on screw theory, the twist of end reference point D can be represented by a linear combination of the twist of 1-
DoF joint in the R(RU)2 limbs. It is mentioned in Ref. [32] that the twist of parallelogram structure is equivalent to the unit screw of
permission associated with the 1-DoF R joint. Therefore, the following equations are formulated as
$t¼
X2
ja¼1

ρa; ja ;1$̂ta; ja ;1 þ
X4
jc¼1

ρc; jc ;1$̂tc; jc ;1

$t¼
X3
ja¼1

ρa; ja ;2$̂ta; ja ;2 þ
X3
jc¼1

ρc; jc ;2$̂tc; jc ;2

8>>>>><
>>>>>:

ð5Þ
where $t denotes the instantaneous motions (twists) of point D, $̂ta; ja ;1 and ρa; ja ;1 ($̂tc; jc ;1 and ρc; jc ;1) are the jath ( jcth) unit screw of
permissions (restrictions) and its intensity in the 1st R(RU)2 limb, while $̂ta; ja ;2 and ρa; ja ;2 ($̂tc; jc ;2 and ρc; jc ;2) are the jath ( jcth) unit
screw of permissions (restrictions) and its intensity in the 2nd R(RU)2 limb and the articulated R joint. Herein, screw of permissions
(restrictions) represents the twists permitted (restricted) by the limbs [32].

Taking the generalized inner product on both sides of Eq. (5) with each of $wa;gk ;k and $wc;kc ;i, leads to
$T
wa;gk ;k

$̂t ¼ ρa;gk ;k
$̂
T
wa;gk ;k

$̂ta;gk ;k

$T
wc;kc ;i

$̂t ¼ ρc;kc ;i
$̂
T
wc;kc ;i

$̂tc;kc ;i

8<
: ð6Þ
where k = 1, 2; when i = 1, kc = 1, 2, 3, 4; when i = 2, kc = 1, 2, 3. $wa;gk ;k, $̂wa;gk ;k denotes the wrench, unit wrench of actuations
associated with the actuated revolute joint and $wc;kc ;i, $̂wc;kc ;i represents the wrench, unit wrench of constraints, and
$wa;g1;1 ¼ 0
s1;1

� �
; $wa;g2 ;2 ¼ 0

s2;2 � s3;2

� �
; $wc;1;1 ¼ −s1;1 � s1;2

0

� �
; $wc;2;1 ¼ s1;1

0

� �
; $wc;3;1 ¼ s1;2

0

� �
;

$wc;4;1 ¼ 0
s1;1 � s2;1

� �
; $wc;1;2 ¼ −s1;1 � s1;2

0

� �
; $wc;2;2 ¼ s1;1

0

� �
; $wc;3;2 ¼ s1;2

0

� �
:

Rewriting Eq. (6) in matrix form results in
JCL;i$t ¼ $t;CL;i; i ¼ 1;2 ð7Þ
where $t,CL,i denotes the deformations of the 1st and 2nd R(RU)2 limb in frame D − u1v1w1 and frame D − u2v2w2, respectively.
And
JCL;1 ¼

sT1;2 0
sT1;1 0

s1;2 � s1;1
� �T

0

0 sT1;1
0 s1;2 � s1;1

� �T

2
666666664

3
777777775
; JCL;2 ¼

sT1;2= sT1;2 � s2;2 � s3;2
� �

0

sT1;1= sT1;2 � s2;2 � s3;2
� �

0

s1;2 � s1;1
� �T

= sT1;2 � s2;2 � s3;2
� �

0

0 sT1;2= sT1;2 � s2;2 � s3;2
� �

2
66666664

3
77777775
:

3.2. Wrench mapping model

The wrenches applying on the 2-DoF over-constrained RPM are composed of the external payload, internal payload of actuations/
constraints and gravity. Based upon the analysis of wrenchmappingmodel, as shown in Fig. 3, the equation of static equilibriumof the
2-DoF over-constrained RPM at point D can be written as
$w;E þ $w;G ¼
X2
k¼1

f wa;gk ;k
$̂wa;gk ;k

þ
X4
kc¼1

f wc;kc ;1$̂wa;kc ;1 þ
X3
kc¼1

f wc;kc ;2$̂wa;kc ;2 ð8Þ
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where $w,E denotes the external wrench exerting on point D, $w,G is the equivalent gravitational wrench of the 2-DoF RPM applying
on point D, f wa;gk ;k

is the intensity of actuated wrench and f wc;kc ;1 and f wc;kc ;2 are the intensities of constrained wrench of 1st and 2nd
R(RU)2 limbs, respectively.
$w;E ¼ f EτE
� �

; $w;G ¼
X2
j¼1

X2
i¼1

$G;i; j; $G;1; j ¼ m1; jg
e1

− r1; j þ dw
� �

� e1

 !

$G;2; j ¼ 2m2; jg
e1

r1; j−
1
2
dw

� �
� e1

0
@

1
A; $G;3; j ¼ m3; jg

e1
r3; j � e1

� �
where fE and τE are the external force and torque applying on point D, $G,i,j is the equivalent gravitational wrench of ith (i = 1, 2, 3)
component on point D.mi,1 represents the mass of the 1st bracket, the 1st rod (2nd rod), and plate I. Similarly,mi,2 is the mass of the
2nd bracket, the 3rd rod (4th rod), and plate II. r1,j is the vector frommass center of the 1st bracket or the 2nd bracket to point O, and
r2,j is the vector frommass center of the 1st rod (2nd rod) or the 3rd rod (4th rod) to the center of U joint. r3,j denotes the vector be-
tween mass center of the articulated traveling plate and point D.

Rewriting Eq. (8) in matrix form leads to
$w ¼ JTCL;i$w;CL;i; i ¼ 1;2 ð9Þ
where $w ¼ $w;E þ $w;G;$w;CL;1 ¼ $wa;1;1 þ ∑
4

kc¼1
$wc;kc ;1; $w;CL;2 ¼ $wa;1;2 þ ∑

3

kc¼1
$wc;kc ;2:

It is found out from the wrench mapping analysis that two actuated wrenches and four constrained wrenches are applying to the
articulated traveling platform. The constrained wrenches offered by 1st R(RU)2 limb include three force screws along the x, y and z-
axes and one moment screw about z-axis while the constrained wrenches from 2nd R(RU)2 limb consist of three force screws along
the x, y and z-axes. It is obvious that the three force screws are overconstrainedwrencheswhich have been taken into account respec-
tively in the mapping matrices of 1st and 2nd R(RU)2 limbs to end reference.

3.3. Stiffness model

According to Sections 3.1 and 3.2, the virtual work equation can be written as follow
$T
t $w;D ¼ $T

t;CL;1$w;CL;1 þ $T
t;CL;2$w;CL;2: ð10Þ
Fig. 4. (a) Virtual prototype and (b) equivalent elastic model of the 1st R(RU)2 limb.



Fig. 5. (a) Virtual prototype and (b) equivalent elastic model of the 2nd R(RU)2 limb.
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Based upon aforementioned twist andwrenchmappingmodels, the stiffnessmodel of 2-DoF RPM can be formulated in the light of
Hook's Law. Substituting Eqs. (7) and (9) into Eq. (10),
K ¼
X2
i¼1

JTCL;iKCL;i JCL;i ð11Þ
whereK denotes the stiffnessmatrix of 2-DoF over-constrained RPM, andKCL,i is the stiffnessmatrices of the 1st and 2nd R(RU)2 limbs
in the joint space, respectively.

Considering passive joints within 1st and 2nd R(RU)2 limbs, the rank of KCL,1 is 5 and that of KCL,2 is 4 which are correspondence
to the twist/wrenchmappingmatrices. Regarding Eq. (11), several assumptions should be made as: 1) the friction and contact defor-
mation within the joints are ignored; 2) the deformations of the components satisfy the linear superposition principle; and 3) the
fixed base and the plate I and plate II are regarded as rigid bodies without deformation.

4. Stiffness models of R(RU)2 limbs

In order to formulate the stiffness model of the R(RU)2 limb in their joint space, n-DoF spring is employed to describe the compo-
nent deformations. Affected by the passive joints, linear or angular stiffness corresponding to the movable axis is zero, resulting in
n ≤ 6. It is worth mentioning that the deformations of the R(RU)2 limb can be transferred from fixed base to point D by two roads
Fig. 6. FEA model of (a) the 1st bracket and (b) the 2nd bracket.



Fig. 7. Equivalent elastic model of the 1st and the 2nd rods.
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simultaneously based upon the mechanical principle. Therefore, the stiffness modeling approach of the R(RU)2 limb is implemented
by: 1) formulating the compliance of each road bymeans of deformation superposition principle considering effects of passive joints,
2) establishing the stiffness model of the R(RU)2 limb in their each joint space utilizing Hooke's Law and deformation compatibility
conditions.

4.1. The 1st R(RU)2 limb

As shown in Fig. 4a, the equivalent elastic model of the 1st R(RU)2 limb demonstrates the deformation of pointD is determined by
road C1OA1A4D and road C1OA2A3D simultaneously. It is shown in Fig. 4b that the compliancemodel at point A4(A3) includes the con-
tribution of 1st bracket, 1st (2nd) rod and U joint components.
Table 1
Dimens

d1(mm

60
CA4
¼ C1;1 þ C3;1 þ C5;1; CA3

¼ C2;1 þ C4;1 þ C6;1 ð12Þ
where C1,1 denotes the compliance matrix of the 1st bracket at point A4 in frame D− u1v1w1, C2,1 is the compliance matrix of the 1st
bracket at point A3 in frame D− u1v1w1, C3,1 and C4,1 are the compliancematrices of the 1st rod and the 2nd rod in frameD− u1v1w1,
respectively, and C5,1 and C6,1 are the compliance matrices of U joint components in frame D − u1v1w1.

Since the compliancematrices of 1st (2nd) rod and U joint components are referred to point A4(A3), C3,1(C4,1) and C5,1(C6,1) can be
directly applied to Eq. (12). For the 1st bracket, if connectingpoint A4(A3) to pointA1(A2) by a rigid part and applying awrench topoint
A4(A3), the deformation twist at point A4(A3) is composed of deformation of point A1(A2) and the rigid motion of the rigid part,
resulting in
C1;1 ¼ T1;1C1;1T
T
1;1; C2;1 ¼ T2;1C2;1T

T
2;1 ð13Þ
where C1;1(C2;1) represents the compliance matrix at point A1(A2), T1,1(T1,2) is the transformation matrix of point A1(A2) to point

A4(A3), and T1;1 ¼ T2;1 ¼
"
E3 ½−l1��
0 E3

#
. Herein, E3 denotes 3 × 3 unit matrix, [l1×] is the skew symmetrical matrix relating to vector

l1 from point A1(A2) to point A4(A3).
ional parameters and maximum rotating angles of the 2-DoF over-constrained RPM.

) d2(mm) l1(mm) l2(mm) φmax(∘)

65 167.5 167.5 45



Table 2
Diagonal elements of component compliance matrix in 1st R(RU)2 limb.

Linear compliance ((μm/N) × 10−3) Angular compliance (rad/(N ⋅ m)) × 10−6

c11 c22 c33 c44 c55 c66

C1,1 48.873 967.21 2.110 0.363 ∞ 0.0252
C2,1 48.564 973.10 4.109 0.298 ∞ 0.0235
C3,1(C4,1) ∞ 97.176 1.531 0.0286 ∞ 0.00172
C5,1(C6,1) 0.0238 0.0486 0.0546 ∞ ∞ 0.00287
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Based upon the Hooke's law and deformation compatibility conditions, the following equation is formulated.
Table 3
Non-dia

C1,1
C2,1
C3,1
(C4,1)
C5,1
(C6,1)

a The
CAi
$w;Ai

¼ $t;Ai
; $t;D ¼ TAi

$t;Ai
; i ¼ 3;4 ð14Þ
where TAi
¼
"
E3 ð−1Þi½d1��
0 E3

#
, d1 is the vector from point D to point A4 in frame D − u1v1w1 as shown in Fig. 2.

Bearing in mind the virtual work principle, the virtual work equation of the 1st R(RU)2 limb at point D is established as
$T
t;CL;1$w;CL;1 ¼ $T

t;A3
$w;A3

þ $T
t;A4

$w;A4
: ð15Þ
Substituting Eqs. (12)–(14) into Eq. (15), the stiffnessmatrix of the 1st R(RU)2 limb in frameD−u1v1w1 can be formulated as
KCL;1 ¼
X4
i¼3

T−T
Ai

C−1
Ai

T−1
Ai

: ð16Þ
4.2. The 2nd R(RU)2 limb

The equivalent elastic model of the 2nd R(RU)2 limb is shown in Fig. 5. Similar with the stiffness modeling of 1st R(RU)2 limb, the
stiffness matrix of the 2nd R(RU)2 limb in frame D − u2v2w2 considering the effect of articulated R joint is calculated as
KCL;2 ¼
X4
i¼3

T−T
CL;2T

−T
Bi

C−1
Bi

T−1
Bi

T−1
CL;2 þ T−T

CL;2C
−1
aR T−1

CL;2 ð17Þ
where CBi denotes the compliance matrices at point Bi (i=3, 4), TBi , TCL,2 are the deformation compatibility conditions of plate II and
articulated R joint, respectively. CaR is the compliance matrix of articulated R joint. And
CB3
¼ C1;2 þ C3;2 þ C5;2; CB4

¼ C2;2 þ C4;2 þ C6;2

TBi
¼ E3 −1ð Þi d2�½ �

0 E3

� �
; TCL;2 ¼ E5 05�1

01�5 0

� �
where C1,2 denotes the compliancematrix of the 2nd bracket at pointB4 in frameD− u2v2w2, C2,2 represents the compliancematrix of
the 2nd bracket at point B3 in frameD− u2v2w2, C3,2 and C4,2 are the compliancematrices of the 3rd rod and the 4th rod in frameD−
u2v2w2, respectively, and C5,2 and C6,2 are the compliance matrices of U joints in frame D− u2v2w2. d2 is the vector of pointD to point
B4 in frame D − u2v2w2. Similar to 1st R(RU)2 limb,
C1;2 ¼ T1;2C1;2T
T
1;2; C2;2 ¼ T2;2C2;2T

T
2;2 ð18Þ
herein, C1;2(C2;2) denotes the compliance matrix of the 2nd bracket at point B1(B2), T1,2(T2,2) is the transformation matrix of point

B1(B2) to point B3(B4), T1;2 ¼ T2;2 ¼
"
E3 ½−l2��
0 E3

#
, and l2 is the vector from point B1(B2) to point B3(B4).
gonal elements of component compliance matrix in 1st R(RU)2 limb.a

c12
(c21)

c14
(c41)

c24
(c42)

c25
(c52)

c34
(c43)

c15
(c52)

c35
(c53)

c16
(c61)

c26
(c62)

−0.0026 0 0.0057 0 0.0049 0.0047 0.0034 −0.0023 −0.0026
−0.0028 0 0.0053 0 0.0050 0.0042 0.0033 −0.0019 −0.0027

0 0 0.021 0 0 0.029 0 0 0

0 0 0 0 −0.0006 0 0.0007 0 0

elements not listed are 0. Units are either (m/N) × 10−6 or (rad/(N ⋅ m)) × 10−6.



Table 4
Diagonal elements of component compliance matrix in 2nd R(RU)2 limb.

Linear compliance ((μm/N) × 10−3) Angular compliance (rad/(N ⋅ m)) × 10−6

c11 c22 c33 c44 c55 c66

C1,2 53.368 6.929 0.123 ∞ 0.0157 0.0316
C2,2 53.368 6.929 0.123 ∞ 0.0157 0.0316
C3,2(C4,2) 18.834 ∞ 0.104 ∞ 0.00236 0.00917
C5,2 0.0238 0.0486 0.0546 ∞ ∞ 0.00287

174 T. Sun et al. / Mechanism and Machine Theory 96 (2016) 165–178
5. Compliance matrices of components

In this section, the compliance matrices of required components can be derived by means of FEA software since the components
with irregular shapes are difficult to be described and analyzed analytically. The process is implemented by: 1) obtaining 6 × 6 com-
pliance matrix with FEA software by applying forces and moments on the output point of components, and 2) formulating accurate
compliance matrix considering the effect of passive joints in the R(RU)2 limbs, which is demonstrated by n-DoF (n ≤ 6) spring illus-
trated in Figs. 4 and 5.

5.1. Compliance matrix of 1st and 2nd brackets

As shown in Fig. 6, the 1st and the 2ndbrackets have one input point and two output point, respectively.What'smore, symmetrical
parts connecting to thefixedbasewith revolute joint to increase stability are implemented. According to the geometry of the 1st (2nd)
bracket, fixed constraint is applied to input point C1 (C2) while revolute constraint is added to point C1′ (C2′). Taking compliancematrix
at point A1 as example, unit force/moment along/about u1, v1, andw1-axes is exerting to point A1 and the compliancematrix is formu-
lated as
Table 5
Non-dia

C1,2
C2,2
C3,2
(C4,2)
C5,2
(C6,2)

a The
C1;1 ¼
Δpu1; f u1 Δpu1; f v1 ⋯ Δpu1;τw1
Δpv1; f u1 Δpv1; f v1 ⋯ Δpv1;τw1

⋮ ⋮ ⋯ ⋮
Δαw1; f u1 Δαw1; fw1 ⋯ Δαw1;τw1

2
664

3
775
6�6

ð19Þ
where the ith (i = 1, 2, ⋯, 6) column represents linear/angular deformations resulted from unit force/moment. The linear deforma-
tions are obtained directly from FEA softwarewhile angular deformations are derived from rotationmatrix determined by SVD-based
solution [24]. With the same approach, compliance matrices at points A2, B1 and B2 are achieved.

Considering the effect of passive R joints and R joints of R(RU)2 limb, the angular stiffness about the v1-axis of the 1st bracket and
the x-axis of the 2nd bracket is zero, and then the compliance matrices of the brackets can be described by a 5-DoF virtual spring.

5.2. Compliance matrix of rods

The compliance of the rod can be obtained numerically by FEA software and analytically by regarding the rod as flexible beam el-
ement, and the non-zero element of the compliance matrix is
c11 ¼ l3j
3EIv j

; c22 ¼ l3j
3EIu j

; c33 ¼ l j
EAj

; c44 ¼ l j
EIu j

; c55 ¼ l j
EIv j

;

c15 ¼ c51 ¼ l2j
2EIv1

; c24 ¼ c42 ¼ −
l2j

2EIu1
; j ¼ 1;2

ð20Þ
where lj is the length of the 1st (2nd) rod or the 3rd (4th) rod, Aj is the cross-section area, EIu1 and EIv1 are the bending sectional mod-
ules and GIt is torsional section modulus.
gonal elements of component compliance matrix in 2nd R(RU)2 limb.a

c12
(c21)

c23
(c32)

c24
(c42)

c15
(c51)

c34
(c43)

c35
(c53)

c16
(c61)

c26
(c62)

0.011 −0.010 0 0.017 0 −0.023 0.014 0.022
0.011 −0.010 0 0.017 0 −0.023 0.014 0.022
0 0 0.024 0.026 0 0 0 0

0 0 0 0 0.0007 −0.0006 0 0

elements not listed are 0. Units are either (m/N) × 10−6 or (rad/(N ⋅ m)) × 10−6.



Table 6
Diagonal elements of compliance matrix of articulated R joint.

Linear compliance ((μm/N) × 10−3) Angular compliance (rad/(N ⋅ m)) × 10−6

c11 c22 c33 c44 c55 c66

CaR 0.0298 0.0298 0.009 0.0312 0.0312 ∞
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The method of computing compliance matrices of the 1st and the 2nd rods is the same as compliance matrices of the 3rd and the
4th rods. Taking the1st and the 2nd rods as example, the equivalent elasticmodel is as shown in Fig. 7. It is obvious that the 1st and the
2nd rods are components of parallelogram-based structure. The angular stiffness about v1-axis and linear stiffness along u1-axis is
compensated by the R joints in the parallelogram structure (as described in Ref. [25]), and then the compliance matrices of the 1st
and the 2nd rods at point A4 and A3 can be described by a 4-DoF virtual spring.

5.3. Compliance matrix of U joint components

As shown in Fig. 5, the U joint is composed of the 1st and 2nd R joints whose axes are perpendicular mutually. The U joint com-
ponents can be described by a 4-DoF virtual spring considering the effect of the two R joints. The calculation of U joint component
in the 1st R(RU)2 limb and the 2nd R(RU)2 limb are the same. Taking U joint component in the 1st R(RU)2 limb as example, the com-
pliance matrix of U joint components can be calculated by the superstition of two R joint components as
Table 7
Mass an

1st br
2nd b
1st ro
3rd ro
1st R
2nd R
Plate
Plate
C i;1 ¼ C1;i;1 þ TUC2;i;1T
T
U ; i ¼ 5;6 ð21Þ
where C1,i,1 denotes the compliancematrix of the 1st R joint in frame Aj− u1v1w1(j=3, 4), C2,i,1 is the compliancematrix of the 2nd R

joint in local frame Aj − u1v1w1 (see Fig. 7),TU ¼
"
Rθ2; j 0
0 Rθ2; j

#
, andRθ2; j is the orientationmatrix of frame Aj − u1v1w1 with respect

to D − u1v1w1.

6. Example and discussion

Based upon the kinematic optimal design in Ref. [18], the dimensional parameters and themaximal rotational angles of the 2-DoF
over-constrained RPM are given in Table 1. According to the software-based stiffness design and engineering experiences, the inertial
parameters are obtained and hereby the virtual prototype of the 2-DoF RPM is established by means of the commercial software. On
the basis of the virtual prototype of the 2-DoF RPM, the compliance coefficients, mass andmass centers of components are measured
as shown in Tables 2–7.

In order to verify above-mentioned stiffness model considering gravitational effects, the FEA software (ANSYS) analysis is applied
to four typical configurations D1, D2, D3 and D4, whose rotating angles φx, and φy are (0∘, 0∘), (45∘, 0∘), (0∘, 45∘) and (30∘, 30∘), respec-
tively. It is worth noting that fixed base and articulated traveling platform are regarded as rigid bodies in order to satisfy the assump-
tions made in analytical analysis. In addition, component gravity is regarded as distributed force in ANSYS while it is treated as
concentrated force applied on mass of center in analytical analysis. Table 8 shows the linear and angular deformations of reference
point D in frame D − xyz obtained by theoretical and FEA models. It can be concluded that the variation tendency of the theoretical
values is similar to that of the FEA values and the errors are in an acceptable range (within 10%), which indicates the efficiency of
the concentrated gravity, and furthermore, validation of theoretical stiffness model.

After verifying the theoretical stiffness model by means of FEA model, the distribution of stiffness and deformation caused by
equivalent concentrated gravity in the prescribed workspace can be analyzed explicitly. Fig. 8 demonstrates the linear stiffness kpx,
kpy and kpz and angular stiffness kαx, kαy and kαz in frame O− xyz. It is easy to find out that: 1) kpx and kαx are distributed symmetrical
about plane φy=0. The values of kpx gets its maximumwhenφy=0, and it gradually decreases with the change of φy. Whenφy=0,
d center of mass of the 2-DoF over-constrained RPM.

Mass (kg) Coordinate of central point (mm)

u1 v1 w1

acket 6.390 0.95 −0.8 −209.83
racket 2.839 −4.07 0 −173.89
d (2nd rod) 0.607 −60(60) 0 −96.46
d (4th rod) 0.861 0 65(−65) −98.11
joint 0.050 −60(60) 0 0
joint 0.083 −60(60) 0 12.98
I 3.582 0 0 26.95
II 3.893 0 0 25.95



Table 8
Comparisons between deformations of theoretical and FEA models caused by gravity.

Δpx Δpy Δpz Δαx Δαy Δαz

(× 10−5 m) (× 10−5 m) (× 10−5 m) (× 10−6 rad) (× 10−6 rad) (× 10−6 rad)

D1 Theoretical −1.0757 2.8010 0 1.0152 1.0825 −0.0242
FEA −1.1301 2.9149 −0.0026 1.0770 1.1348 −0.0256
Error 4.81% 3.79% 5.74% 4.61% 5.54%

D2 Theoretical −1.7057 3.4700 0.0043 0.7463 0.7127 3.1297
FEA −1.8562 3.7062 0.0017 0.8115 0.7661 3.3736
Error 8.10% 6.37% 6.05% 8.03% 6.97% 7.23%

D3 Theoretical −1.6620 2.7992 −0.0016 0.6652 0.7839 −4.5189
FEA −1.8016 3.0224 −0.0023 0.7050 0.8463 −4.9220
Error 7.75% 7.38% 3.43% 5.64% 7.37% 8.19%

D4 Theoretical −1.4274 3.2338 0.0018 0.1366 0.0926 −0.0168
FEA −1.3563 3.2488 0.0019 0.1314 0.0842 −0.0178
Error 4.98% 4.61% 5.26% 3.80% 9.07% 5.88%
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kαu reaches the peak value, it goes down rapidlywith the increase ofφy and starts to rise at aroundφy=±20∘ .2) The variations of kpy
and kαy are similar, which is symmetrical about planeφx=0. kpy, kαy obtain their minimumwhenφx=0, and they increase with the
change ofφx. The value of kpx is nearly twice bigger than that of kpy at the same configurationwhile the ranges of kαx and kαy are almost
the same. 3) The distribution of kpz is axial symmetrical and that of kαz shows plane symmetry. kpz is the biggest when φx = 0 and
φy=0. kαz steadily decreases with the increase of φy. The value of kpz is much bigger than kpx, kpywhile kαz is the smallest comparing
with the other two angular stiffness.

In fact, the plane symmetrical structure contributes to the plane-symmetrical distribution of the stiffness along/around x-axis and
y-axis. The approximately axial symmetrical about z-axis leads to the axial-symmetrical distribution of kpz. As a result, the stiffness
distribution, in return, is able to guide the optional design of the mechanism structure. For instance, distribution of kpz shows that
there is no need to increase the stiffness along z-axis comparing with kpx, and kpy. The sharp change of kαx results from the increasing
of φy indicates that 2nd R(RU)2 limb might go through non-monotonous changes, which needs to be specially concerned in the op-
timal design considering stiffness performance.

Deformation of reference point D caused by equivalent gravity in the prescribed workspace in frame O− xyz is shown in Fig. 9. It
can be concluded that: 1)Δpx, andΔpy are distributed symmetrical about planesφy=0andφx=0, respectively.Δpx shows downward
changing rule while Δpy steadily goes up with the increase of φy and φx. The value of Δpy is bigger than Δpx in the same configuration.
2) The distributions of Δαx are similar to the change of kαx while Δαy shows opposite distribution from kαy. The value of Δαx is much
bigger than that of Δαy. 3) The distribution of Δpz and Δαz are alike. Both of them are not affected by equivalent gravity when φx =0,
Fig. 8. Stiffness distribution of 2-DoF RPM in frame O − xyz.



Fig. 9. Deformation of reference point D caused by gravity in frame O − xyz.
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φy=0.Δpz varieswith the change ofφywhereasΔαzmainly depends onφx.Δpz andΔαz are all smaller than the other linear or angular
deformations.

As shown in Fig. 9, the gravity of the 2-DoF over-constrained RPMhas some impact on the deformations of reference point D in all
directions and it should not be ignored in the stiffness analysis. In fact, the deformation caused by gravity will changewhen the 2-DoF
over-constrained RPM is embedded in different configurations. Therefore, it is a multi-factor analysis including mechanism posture,
gravitational effect and stiffness distribution when evaluating stiffness performance of the 2-DoF over-constrained RPM. The results
concluded above provide reference for the optimal design issues including: how to arrange the posture of the 2-DoF over-
constrained RPM tominimize the effect of gravity, how to achieve compact yet rigid design and how to balance theweight and rigid-
ities of the components.

7. Conclusion

Aiming at the inter-satellite link antenna for 2-DoF tracking mechanisms, this paper carries out the stiffness modeling of a 2-DoF
over-constrained RPM with an articulated traveling platform considering gravitational effect. Conclusions are drawn as follows:

(1) The 2-DoF over-constrained RPM is a promising solution for tracking mechanism in the outer space because of the over-
constrained structure and the articulated traveling platform. And the stiffnessmodeling procedure is proposed asfirstly formu-
lating the twist/wrench mapping models, then computing stiffness of each limb by the sum of component deformations, and
finally applying to the virtual work equation.

(2) Twist/wrenching mapping model of each R(RU)2 limb to the end reference point is formulated considering the over-
constrained property and gravitational effect, in which component gravities are treated as external wrenches applying on
the end reference point by static equivalence.

(3) The stiffnessmodel of 1st and 2ndR(RU)2 limbs in their local reference frames is carried out bydeformation superposition prin-
ciple. Compliancematrices of components are described by n-DoF (n ≤ 6) virtual springs,which takes the effect of passive joints
into account to match the twist/wrench mapping models.

(4) The stiffnessmodeling procedure shows the relationship between component, limbs andmechanism,which is of clear physical
meaning and unifies the mechanism performance analysis including kinematic, stiffness, accuracy and dynamic.
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