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Abstract: Precise facility-specific speed correction factors (SCFs) are important parameters for direct and quick evaluation of the effect of
traffic flow variations on vehicle emissions. However, the traditional method in developing SCFs is time consuming and costly, which im-
pedes the development of SCFs and their applications. Based on massive instantaneous vehicle activity data, this paper proposes a novel
method for deriving SCFs for light-duty vehicles on restricted access roadways in Beijing. First, a large sample of 60-s speed-specific tra-
jectories is divided from the vehicle activity data, and grouped into speed-specific trajectory pools. Then, a database and two models of speed-
specific and vehicle-specific power (VSP) distributions are established for different speed ranges. Further, by combining emission rates and
VSP distributions, the SCFs for nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) pollutants are derived for different
emission standards. The derived SCFs from different sources of VSP distributions are compared with each other and validated by using
another independent data source. The analysis result shows that, by using the VSP distribution database, the proposed method is applicable
and effective in generating reliable SCFs in high resolution. The VSP distribution models can predict well SCFs within each speed range,
while discontinuous predictions occur at their range boundary. Finally, several recommendations are made for future studies on developing
comprehensive SCFs, which may help in practice to monitor dynamic traffic emissions when the real-time speed data are available. DOI: 10
.1061/(ASCE)TE.1943-5436.0000819. © 2016 American Society of Civil Engineers.
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Introduction

Developing an accurate relationship between speed and vehicle
emissions would be very helpful when monitoring traffic emission,
and further evaluating the effects of congestion mitigations on
emission reductions. In Chinese megacities, the traffic congestion
has seriously aggravated the air pollution problems, and traffic
management agencies are seeking strategies for reducing emissions
by mitigating traffic congestions. As such, the variation of emis-
sions with traffic speeds has become a key issue for evaluating
the effect of congestion mitigations on emission reductions. On
one hand, as an important parameter for online congestion moni-
toring, the average speed is widely available through the data sour-
ces of loop, remote traffic microwave sensor (RTMS), GPS, or
video-based detectors in the field. On the other hand, many cities
have their base emission factors based on the standard driving
cycles (such as NEDC and LA92 cycles) for the purpose of

estimating total emissions and developing emission inventories.
Also, existing studies have demonstrated that different pollutants
showed different variation patterns with the speed, which means
that the effect of traffic strategies may vary for different pollutants.

The average speed has long been an important parameter in
emission models. Considerable efforts have been made in develop-
ing speed correction factors (SCFs) (Brzezinski and Enns 2001),
which represent the adjustments on the baseline emission factors
for capturing the effects on vehicle emissions by traffic conditions
associated with different average speeds. However, the traditional
method in developing SCFs is costly and inefficient, and also in-
sufficient in speed resolutions, because it relies on a series of time-
consuming procedures, including collecting representative driving
activity data, constructing speed correction cycles, and then testing
corresponding emissions. In the newly developed emission model
of MOVES (U.S. EPA 2014), besides using the predefined 47 fa-
cility-specific and speed-specific driving cycles, the model is also
able to apply user-supplied trajectories to represent specific traffic
conditions. However, because it is difficult to collect real-time
vehicle trajectories and impractical to complete intensive compu-
tations (Frey and Liu 2013), MOVES is still difficult to meet the
need of monitoring online traffic emissions by using the commonly
used field traffic data.

In this context, the objective of this study is to propose an effi-
cient approach for developing accurate and high-resolution SCFs,
which can be coupled with the real-time traffic data and can be used
for the online evaluation of traffic emissions.

Overview of Existing Studies

The relationships between the speed and emissions and correspond-
ing SCFs have long been studied in traditional macroscopic
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emission models, such as EMFAC (California Air Resource Board
2013) and MOBILE (U.S. EPA 2003). In developing SCFs, they
first established representative driving cycles for different average
speeds (or levels of service, LOS), then conducted emission tests on
dynamometers according to these cycles, and further compared
emission factors from each test cycle. Historically, EMFAC had
several versions of SCFs, 7EP-SCF1, 7EP-SCF2, etc. (Eisinger
et al. 2002), which resulted in different predictions of optimum ve-
hicle speeds for HC, CO, and NOx emissions. Being different from
EMFAC and MOBILE5, in which speed correction cycles were
defined as trip-based cycles, in MOBILE6 EPA adopted facility-
specific driving cycles to develop SCFs for various roadway types
and congestion levels (Brzezinski and Enns 2001). In MOBILE6’s
SCFs for light-duty vehicles, six driving cycles were developed for
freeways with an average speed ranging from 21.1 to 101.7 km/h
(13.1 to 63.2 mi/h), and three driving cycles for arterial/collectors
with speeds from 18.7 to 39.9 km/h (11.6 to 24.8 mi/h). The length
of each cycle was around 10 min. Based on the similar method,
several megacities have developed their facility-specific and
speed-specific driving cycles and emission factors (Watson et al.
1982; Kamble et al. 2009; Yu et al. 2008; Hung et al. 2007). How-
ever, SCFs based on predefined driving cycles have been question-
able on the following aspects: (1) whether the fixed driving cycles
can adequately capture traffic characteristics on emissions (Yu et al.
2010); (2) developing driving cycles and then conducting emission
testing for various road, vehicle, and speed classifications are time
consuming and costly; and (3) whether the resolution of the average
speed bin (or LOS) is sufficient for developing continuous speed
correction curves for emissions.

Motivated by addressing disadvantages of traditional macro-
scopic models in depicting dynamic traffic conditions, studies
on emission models have evolved from using the average speed
(associated with the driving cycle) to using the road load-based
parameters, such as vehicle specific power (VSP) (Jiménez-
Palacios 1999). Most of the newly developed emission models,
such as MOVES (U.S. EPA 2014) and IVE (Davis et al. 2005),
have used VSP as the primary parameter. In VSP-based emission
models, both emission rate and vehicle activities are derived by us-
ing a VSP binning approach (Frey et al. 2002), and running
emissions in a traffic network are estimated basically by multiply-
ing the emission rate by the time spent in each VSP bin (the
so-called VSP distribution or operating mode distribution; U.S.
EPA 2014), as shown in Eq. (1)

Emission ¼ Running Time ×
X

ðERi × VSPDistributioniÞ ð1Þ

where ERi and VSPDistributioni are the emission rate (in units of
gram per hour or second) and the percentage of the time spent (in
the unit of %) in VSP bin i. As such, the new emission modeling
approach has divided the research of traffic emissions into two
broad branches. One is to develop emission rates for different
pollutants, vehicle classes, fuel types, vehicle age, etc., by using
various sources of emission test data like dynamometer, portable
emission measurement systems (PEMS), remote emission sensing
device (RSD), or inspection/maintenance (I/M) data (Koupal
2009). The other branch is for modeling various traffic conditions
by using VSP distributions (Song et al. 2012) instead of driving
cycles.

The VSP-based emission modeling approach also implies a new
method for developing SCFs. If one has accurate facility-specific
VSP distributions for different average speeds, SCFs could be cal-
culated mathematically by coupling VSP distributions with emis-
sion rates, so the laboratory emissions tests according to speed
correction cycles could be avoided. Frey and Liu (2013) developed

SCFs for MOVES; however, it was based on fixed driving cycles
instead of high-resolution speed-specific VSP distributions. Recent
studies have reported encouraging progresses in modeling facility-
specific and speed-specific VSP distributions. By examining speed
profiles on different links for the speed bin of 30–40 km=h, Frey
et al. (2006) showed that VSP distributions of different runs were
not statistically different within the range of the mean speed. After
comparing VSP distributions on expressways and non-expressways
during peak and nonpeak hours, Song and Yu (2009) reported
distinguished characteristics of VSP distributions for different
road types. Based on massive second-by-second field vehicle tra-
jectories, Song et al. (2012) found several stable regularities of
speed-specific VSP distributions: (1) the VSP distribution ap-
proaches to the normal distribution when the average speed is
higher than 20 km=h; (2) the mean of the VSP distribution in-
creases monotonously with the travel speed; and (3) the mean
of VSP distributions is equal to VSP values of cruising at the cor-
responding travel speed. These regularities are physically explain-
able (Song and Yu 2011): for a speed trajectory with the average
speed of v, it necessarily consists of several speed subcurves with
speeds higher and lower than v. Assuming that w is the vehicle
power per ton (i.e., VSP) to keep the vehicle cruising at speed
v, then the instantaneous VSP during this speed trajectory neces-
sarily varies around the value of w. That is why the VSP distribu-
tion behaves in certain ways similar to the normal distribution.

The aforementioned findings are meaningful because they pro-
vide a theoretical possibility for modeling SCFs by using VSP dis-
tributions and emission rates, which may have the following
potential advantages in contrast to the traditional SCFs develop-
ment method: (1) it is unnecessary to develop (speed correction)
driving cycles; (2) emission tests are avoided; and (3) SCFs will
be in a high resolution (or continuous) if only the VSP distribution
models are in a high resolution (or continuous) on the aver-
age speed.

Methodology

General methodology in this research includes four parts. First, the
emission rate and the real-world vehicle activity data are collected
from typical light-duty vehicles on expressways in Beijing (the type
Urban Restricted Access Roadways in MOVES). Second, facility-
specific and speed-specific VSP distributions database and distri-
bution models are developed based on the existing research results.
Third, SCFs are calculated by using the VSP distribution database
and distribution models respectively. Finally, the accuracy of pro-
posed SCFs is compared and their applicability is discussed. It
should be stated that, as seen in Eq. (1), this study focuses on
the approach of developing SCFs based on facility-specific and
speed-specific VSP distributions, while the effects of vehicle age
and seasonal meteorology on emission rate are not included.

Data Source and Preparation

Data Preparation of Speed-Specific Trajectories
In order to analyze characteristics of speed-specific driving activ-
ities for developing SCFs, massive vehicle activity data were col-
lected in Beijing by using GPS devices, Garmin GPS18 and
Columbus v900 GPS data loggers, mounted on 22 typical taxis
of light-duty vehicles (LDVs), including the Volkswagen Jetta
and Hyundai Elantra (Yu and Song 2012). The data were collected
when the taxis were running and serving as usual, and no fixed
routes were predesigned. Over 5.2 million records of second-
by-second data were collected from 4,038 trips from 2005 to
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2012. The average length of each trip was 9.4 km. Because this
study focuses on the specific road type of expressways, 726,000
records of data on expressways were selected by mapping
them on a GIS tool, in which the time ranged from 5:00 a.m. to
10:00 p.m., and instantaneous speeds ranged from 0 to
133.5 km=h. It should be noted that the data collected on the gra-
dient ramps or bridges were labeled on the GIS tool, and they were
not included in this study in order to avoid the impact of the road
grade on the vehicle speed, acceleration, and VSP. The selected
data were divided further into two groups: Group I of 355,000
records of data collected during 2011–2012 were used for the de-
velopment of VSP distribution model and SCFs, and Group II
of 371,000 records collected during 2005–2010 were used for
validation.

All the selected data were then divided into 11,406 pieces of
trajectories, each of which consist of 60 s of continuous speed data.
The average speed (in units of km=h) was calculated for each tra-
jectory by using Eq. (2). Then, each trajectory was classified into a
speed-specific trajectory pool according to its average speed. The
trajectory pool was defined by the average speed bin with an equal
interval of 2 km=h, as shown in Eq. (3). The definitions were
consistent with previous studies (Song et al. 2012)

Average Speed ¼ Distance Traveled
Time Spend

¼ 3.6 ×

P
60
i¼1 vi
60

ð2Þ

∀:Average Speed ∈ ½n − 1; nþ 1Þ; Speed bin#
¼ n ðn is an integer; n > 20Þ ð3Þ

where v = vehicle instantaneous speed in the unit of m=s and Speed
bin# = ID of the speed-specific trajectory pool. It should be noted
that two reasons are considered in dividing the raw second-by-
second speed profile into smaller trajectories with a 60-s time inter-
val: (1) a long speed profile, like a 10-min driving cycle,may contain
toomuch traffic pattern information to produce stable and repeatable
speed-specificVSPdistributions, which is alsowhy the fixed driving
cycle is difficult to represent the real-world traffic; and (2) in traffic
monitoring systems, the field traffic data [from remote traffic
microwave sensor (RTMS), loop, or floating car data (FCD)] are
commonly updated at 1-min, 2-min, or 5-min intervals, so VSP
distributions based on the 60-s interval would be more compatible
for estimating dynamic emissions by using online traffic data. Con-
sequently, a total of 57 speed-specific trajectories pools were con-
structed for the average speed ranging from 3 to 115 km=h.

Data Preparation of Emission Rate

Emission rates (in units of g=h, as shown in Fig. 1) of NOx, HC,
and CO pollutants were derived from an emission database (Yu and
Song 2012) in Beijing Jiaotong University. Since 2003, 52 light-
duty gasoline vehicles were tested by using the portable emission
measurement systems (PEMS). Mass emissions of NOx, HC, and
CO from the tailpipe exhaust and the corresponding vehicle speed
and acceleration were collected on a second-by-second basis. The
vehicles were classified into five groups according to the regulatory
emission standards, named China 0 (pre-China I), I, II, III, and IV,
which are nearly identical to Europe’s emission standards in terms
of the limit value, test cycle, and other parameters. A strict quality
control process was conducted on the emission data, including
(1) synchronization of system time between PEMS gas analyzers,
GPS receiver, and engine data; (2) identification of missing and
jumping of engine data from sensor array including RPM, intake
air pressure, and temperature; (3) elimination of leakage and

flooding error of emission sampling system; (4) correction of
zero-level drift of gas analyzers; and (5) identification of missing
and jumping of GPS signals. In addition, a finer time alignment
between GPS and PEMS gas analyzer was conducted separately
for NOx, HC, and CO by calculating the Pearson correlation co-
efficient between emissions and the corresponding positive VSP
values. The alignment with the maximum correlation coefficient
was considered as the best time alignment. A total of 442,539 re-
cords of second-by-second mass emission data of 8, 12, 9, 11, and 8
LDVs were selected from the database for China 0, I, II, III, and IV
emission standards. For each record of emission data, the VSP
value was calculated according to its instantaneous speed and
acceleration by using a typical VSP equation for LDV (Jiménez-
Palacios 1999), as Eq. (4),

VSP ¼ v × ½1.1 × aþ 9.81 × gradeþ 0.132� þ 0.000302 × v3

ð4Þ
where v = instantaneous speed (m=s); a = acceleration (m=s2); and
grade (%) = vehicle vertical rise divided by the slope length, which
is assumed to be zero because the emission data collected on the
gradient ramps or bridges were excluded in this study. Then, emis-
sion rates for different emission standards were calculated by
grouping the raw second-by-second emission data into each
VSP bin, as shown in Fig. 1. The VSP binning method in this study
will be provided in the next section.

Development of VSP Distribution Database and Models

VSP Binning Method
VSP bins have to be defined in advance in order to calculate emission
rates and VSP distributions, and thus running emissions, as shown in
Eq. (1). In previous studies of modeling traffic characteristics based
onVSP distributions (Song et al. 2012; Song and Yu 2011), VSP bins
were defined by using an equal VSP interval of 1 kW=t so as to re-
veal quantitative correlations between the VSP distribution and the
average speed. In this paper, different binning methods were applied
for the parts of VSP > 0, VSP ¼ 0, and VSP < 0.

For VSP > 0, a similar binning method as those in reference
(Song et al. 2012) was applied, as shown in Eq. (5)

∀:VSP ∈ ½n; nþ 1Þ;VSP bin
¼ n ðn is a positive integer from 0 to 25Þ ð5Þ

The VSP value of 0 was defined as an independent VSP bin
because it was known that vehicles generally emit the lowest emis-
sion rate when VSP ¼ 0 (i.e., in idling condition) (U.S. EPA 2002,
2011). For VSP < 0, the whole negative VSP side was combined
and defined as one bin because emission rates in the negative VSP
side were found nearly identical (U.S. EPA 2011).

VSP Distribution Database

Based on the preceding VSP bin definitions, for both Group I and
Group II speed-specific trajectory pools, the VSP distributions were
calculated for each of 35 speed-specific trajectory spools with the
average speed ranging from 3 to 71 km=h. Other trajectory pools
with higher average speed were not included in calculating VSP
distributions because insufficient samples (less than 20 trajectories)
may lead to errors in representing corresponding traffic conditions.
Calculation results were stored into Group I and Group II VSP
distribution databases separately. The table structure of the VSP
distribution database is illustrated in Table 1.

© ASCE 04016001-3 J. Transp. Eng.
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Theoretically, a VSP distribution database (as shown in Table 1)
is sufficient for deriving speed-specific emission factors and further
SCFs by using emission rates in Fig. 1 and Eqs. (1), (14), and (15).
However, for those cities that do not have VSP distribution data-
base, the existing VSP distribution models (Song et al. 2012; Song
and Yu 2011) provide a possibility to develop local SCFs by inte-
grating VSP distribution models with local emission rates. There-
fore, this study further investigated the feasibility of modeling
SCFs based on existing VSP distribution models by using the
Group I VSP distribution database.

VSP Distribution Models

Two VSP distribution models have been proposed separately for
the average speed higher and lower than 20 km=h, because they
exhibit distinguished regularities. For the average speed higher than

20 km=h, the VSP distribution follows a normal distribution, in
which the mean of the VSP distribution was the VSP value when
cruising at the average speed and the standard deviation was ex-
pressed as a power function of the average speed. The probability
density function for VSP was given by Eq. (6) (Song et al. 2012)

fðVSPÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−ðVSP−μÞ2=2σ2 ðfor s > 20 km=hÞ ð6Þ

where μ and σ could be calculated by using the functions of the
average speed s (km=h), as shown in Eqs. (7) and (8), respectively.
Eq. (7) was derived from Eq. (4) by setting a and grade to zero

μ ¼ 0.132 ×
s
3.6

þ 0.000302 ×

�
s
3.6

�
3

ðfor s > 20 km=hÞ ð7Þ

Fig. 1. Emission rates of different emission standards

© ASCE 04016001-4 J. Transp. Eng.
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σ ¼ 0.885 × s0.4073 ðfor s > 20 km=hÞ ð8Þ

Because the VSP binning method in this study has been modi-
fied according to the emission rate in idling conditions, as shown in
Table 1, the fraction of VSP ¼ 0 cannot be predicted by using this
probability density function. Therefore, the fraction of VSP ¼ 0
was modeled separately based on a regression analysis on the
Group I VSP distribution database. As shown in Fig. 2(a) and
Eq. (9), the fraction of VSP ¼ 0 can be expressed as a power func-
tion of the average speed, in which the regression R2 is 0.96

VSP FractionVSP¼0 ¼ 0.8998 × e−0.127×s ð9Þ

For the average speed lower than 20 km=h, Song and Yu (2011)
modeled VSP distributions for negative VSP bins, zero bin
(−0.5 ≤ VSP < 0.5), and positive bins separately. A similar mod-
eling approach was adopted with slight modifications according to
the new VSP bin definition. The fraction of 0 < VSP < 1 was mod-
eled as shown in Fig. 2(b). A cubic function was found to be able to
describe the relationship between the VSP fraction and the average
speed with a regression R2 of 0.799, as provided in Eq. (10)

VSP Fraction0<VSP<1 ¼ 0.1982 × s3 − 13.81 × s2 þ 249.01 × s

þ 925.02=10,000ðfor s ≤ 20 km=hÞ ð10Þ

For negative VSP bins, because the whole negative side was
defined as one bin, the fraction of VSP < 0 was regressed based
on values in Table 1. The regression result is provided in
Eq. (11) with an R2 value over 0.95

VSP FractionVSP<0 ¼ −6.5837 × s2 þ 226.16 × s

þ 1,166.2=10,000 ðfor s ≤ 20 km=hÞ ð11Þ

For positive VSP bins, since the absolute fractions dropped rap-
idly to very low values (around 10−3 when VSP bin > 7), a trans-
formation was applied, in which the original fractions were logged
to the base e. It was found that the quadratic functions fit well the
relationship between − lnðVSPFractionÞ and the VSP bin number.
After examining all the regression results of the average speed from
3 to 20 km=h, the − lnðVSPFractionÞ values were expressed as
Eq. (12)

− lnðVSPFraction ¼ A × VSP bin2 − B × VSP binþ C

ðfor s ≤ 20 km=hÞ ð12Þ

where VSP bin is the VSP bin number, and A, B, and C are constant
coefficients, as listed in Table 2.

Table 1. Illustration of Group I VSP Distribution Database

Average speed (km=h)

VSP bin

VSP < 0 (%) VSP ¼ 0 (%) (0, 1] (%) (1,2] (%) (2,3] (%) (3,4] (%) : : : (24, 25] (%) >25 (%)

3 14.5 60.7 14.5 3.1 2.1 1.8 : : : 0.0 0.0
5 20.3 48.6 18.1 5.3 2.7 1.3 : : : 0.0 0.0
7 24.1 34.1 24.0 8.1 3.4 2.0 : : : 0.0 0.0
9 26.5 24.9 24.5 9.7 5.2 3.2 : : : 0.0 0.0
11 27.1 24.1 21.3 10.9 5.5 3.2 : : : 0.0 0.1
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
69 10.2 0.0 4.6 5.8 7.0 8.0 : : : 0.0 0.0
71 9.4 0.0 4.3 5.5 6.6 7.7 : : : 0.0 0.1

(a)

(b)

Fig. 2. Fraction of VSP ¼ 0 and 0 ≤ VSP < 1 at different average
speed: (a) fraction of VSP ¼ 0; (b) fraction of 0 < VSP < 1

Table 2. Regression Coefficients and R-Squares for Different Average
Speeds

Average speed (km=h)

Positive VSP side

A B C R2

3 −0.0153 0.505 3.21 0.96
4 −0.0226 0.608 2.59 0.98
5 −0.0160 0.524 2.78 0.98
6 −0.0122 0.526 2.49 0.97
7 −0.0166 0.594 2.19 0.97
8 −0.0178 0.639 1.95 0.94
9 −0.0149 0.571 1.92 0.97
10 −0.0152 0.610 1.75 0.97
11 −0.0187 0.649 1.53 0.96
12 −0.0198 0.639 1.54 0.99
13 −0.0184 0.669 1.35 0.98
14 −0.0140 0.618 1.41 0.97
15 −0.0174 0.632 1.31 0.98
16 −0.0062 0.481 1.58 0.99
17 −0.0091 0.531 1.47 0.96
18 −0.0101 0.587 1.20 0.99
19 −0.0074 0.509 1.38 0.99
20 −0.0056 0.459 1.51 0.97
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Regular variation patterns were observed for A, B, and C along
with the average speed. Regression models were further developed
to describe the relationship between coefficients A, B, and C and
the average speed, as shown in Eq. (13). So far, by combining
Eqs. (6) to (13), mathematical VSP distribution models have been
established based on Group-I database, which are able to predict
VSP distributions based on the average speed

A ¼ 0.8459 × s2 − 13.724 × s − 120.65=10,000; R2 ¼ 0.68

ð13aÞ

B ¼ −21.25 × s2 þ 475.89 × sþ 3,636.45=10,000; R2 ¼ 0.65

ð13bÞ

C ¼ −6.4049 × s3 þ 339.56 × s2 − 5,971.7 × sþ 48,891=10,000;

R2 ¼ 0.96 ð13cÞ

Development of SCFs
SCFs were calculated by using Eq. (14), where EFS stands for the
emission factor (g=km) at the average speed of s (km=h), which can
be calculated by Eqs. (1) and (15), and EFB is the emission factor
for the baseline driving cycle

SCFS ¼ EFS=EFB ð14Þ

EFS ¼ EmissionS=Average SpeedS ð15Þ

where EmissionS is total emissions per running hour.
The NEDC driving cycle was used as the baseline driving cycle

for calculating EFB, because it is the regulatory cycle in China for
testing base emission factors. The 1,180-s NEDC cycle consists of
four repeated ECE-15 urban cycles and an extra-urban cycle, with a
total distance of 11.02 km and an average speed of 33.6 km=h.
After calculating NEDC’s VSP distribution, and combining it with
NOx, HC, and CO emission rates in Fig. 1, baseline emission fac-
tors for each pollutant at each emission standard were derived by
using Eqs. (1) and (15), as listed in Table 3.

Four sets of speed-specific emission factors were then derived
based on four sources of VSP distributions: (1) Group I VSP dis-
tribution database, which is termed VDB-Group-I; (2) Group II
VSP distribution database, which is used for validation, and termed
VDB-Group-II; (3) VSP distribution model for the average speed
lower than 20 km=h, termed VDM-Low; and (4) VSP distribution

Table 3. Baseline Emission Factors

Pollutants

Emission factors (g=km)

China 0 China I China II China III China IV

NOx 1.08 0.47 0.21 0.13 0.07
HC 2.01 0.79 0.46 0.25 0.14
CO 19.76 7.69 4.31 2.48 1.12

Fig. 3. SCFs based on three sources of VSP distribution
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model for the speed higher than 20 km=h, termed VDM-High.
Then, by using Eq. (14) and the values in Table 3, four sets of SCFs
were calculated, as shown in Fig. 3.

Discussion

It was observed from Fig. 3 that the SCFs generated from the
Group-I VSP distribution database are nearly identical to the ones
from validation group (Group-II VSP distribution database), and
their SCF curves overlap each other. After examining all the SCFs
derived by the two VSP distribution databases, it was found the
relative differences of two sets of SCFs were less than 2% for
all pollutants and emission standards, which indicated that the
SCFs developed based on VSP distributions in this study are
repeatable and reliable. In terms of the SCFs’ variation pattern,
the pollutants HC and CO were of similar value with a wide varia-
tion range, approximately from 0.5 to 7. The value dropped rapidly
with the increase of the speed in the low-speed range and increased
slowly in the high-speed range. However, the SCFs curve of NOx
was much flatter than those of HC and CO. Its variation range was
approximately from 0.7 to 3, which indicated that NOx is rela-
tively less sensitive to speed than the other two pollutants. For
HC and CO, their SCFs predicted the minimum emission point
at approximately 80 km=h. However, the optimal speed for NOx
was around 52 km=h. Similarities can be found between these
results and those of freeway SCFs in MOBILE6 (Brzezinski
and Enns 2001).

In terms of the feasibility of modeling SCFs based on the
existing VSP distribution models, when the average speed was
higher than 20 km=h, the normal distribution-based VDM-High
model predicted smooth and consistent SCFs curves compared
to the VDB-Group-II. However, in the speed range lower than
20 km=h, there were considerable discrepancies between SCFs
generated by the VDM-High and VDB-Group-II. In terms of
the VDM-Low model, it generated well-matched SCFs curves in
the speed range lower than 20 km=h. Though either VDM-High
or VDM-Low was able to predict well SCFs within its modeling
range of speed, they were not continuous at the point of 20 km=h,
where the SCFs derived by VDM-High was higher than those by
VDM-Low for all pollutants.

It may need to be noted that this paper used NEDC as the base
cycle, with the average speed of 33.6 km=h; however, SCFs
at 33.6 were approximately 0.8 for NOx and 0.95 for HC
and CO, instead of 1. Reasons can be attributed to two aspects:
)1 ) NEDC is a trip-based cycle, which combines both urban (aver-

age speed 18.8 km=h) and extra-urban (average speed 62.6 km=h)
cycles, while the trajectory pool in this study consisted of facility-
specific and speed-specific, 60-s trajectories; and (2) the road type
in this study was expressways (urban restricted access roadways),
so there existed less driving modes of idling, deceleration, and
acceleration than unrestricted access roadways. Therefore, the
60-s speed-specific trajectories on expressways with the average
speed 33.6 km=h tended to generate lower emissions than the
NEDC cycle.

Because the speed limit of most expressways in Beijing is
80 km=h, this study did not have sufficient trajectory samples
for deriving VSP distributions and SCFs for the average speed
higher than 71 km=h. By assuming that the speed-specific VSP dis-
tribution still follows the normal distribution in the average speed
ranging from 71 to 120 km=h, the VDM-High model was applied
to extrapolate SCFs based on the real VSP distribution database, as
shown in Fig. 4. However, the extrapolation needs to be further
validated.

Summary and Recommendation

Based on massive LDV field activity data, a large sample of speed-
specific 60-s trajectories was created for establishing speed-specific
VSP distributions. A practical method for developing SCFswas then
proposed based on VSP distributions and emission rates, which was
applicable and was able to generate repeatable SCFs for different
pollutants. The proposed method has the following advantages:
1. It does not need the traditional process in developing driving

cycles and the emission testing for different speeds or LOS.
On one hand, this process is considerably costly and time con-
suming. On the other hand, the method of developing a driving
cycle has long been questionable about how to ensure the cy-
cle’s representativeness on facility-specific and speed-specific
driving characteristics;

2. It is able to generate SCFs in a high-resolution manner. In con-
trast to the traditional SCFs on large speed intervals or LOS, the

Fig. 4. SCFs of NOx, HC, and CO for restricted access roadways
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new SCFs can be more continuous with the speed as long as
sufficient speed-specific trajectories are available. It will be
helpful for the online emission modeling and developing the
high-resoluted temporal and spatial emission distributions on
a dynamic traffic network; and

3. More flexibility is provided for developing various kinds of
SCFs for different road classes, vehicle types, and management
measures. In the proposed method, developing VSP distribu-
tions and emission rates involve two independent procedures.
Given that the MOVES model has provided a huge and
comprehensive emission rate database, developing the speed-
specific VSP distribution is the only need for deriving SCFs.
The only input for developing VSP distributions is to collect
vehicle trajectories or using a reliable VSP distribution model;
therefore, it would be more flexible for traffic engineers to
develop SCFs to meet their practical needs.
This paper provides a method for deriving SCFs on urban

expressways. Further studies are recommended to improve the
proposed approach. First, trajectories with average speeds over
71 km=h need to be collected. Second, the effect of road grade
on SCFs needs further investigations by measuring accurate grade
or altitude data. Third, for the type of unrestricted roadways, 60-s
speed-specific trajectories may not be sufficient to cover all driving
characteristics of both on roads and at intersections. A longer and
proper trajectory length needs to be further analyzed.
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Notation

The following symbols are used in this paper:
A = vehicle acceleration in the unit of m=s2;

Emissions = total emission per running hour (g);
EF = emission factor (g=km);
ER = emission rate (g=h);

Grade (%) = vehicle vertical rise divided by the slope length in the
unit of %;

i = number of VSP bin;
n = positive integer from 0 to 25;
s = average travel speed (km=h);
v = vehicle speed (m=s);

VSP = vehicle specific power (kW=t);
VSPDistributioni = percentage of the time spent in VSP

Bin i (%);
μ = mean of normal distribution; and
σ = standard deviation of normal distribution.
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