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Abstract: Projects are considered interrelated when their benefits or costs depend on which other projects are implemented. The timing of
such projects may also complicate their analysis. Selection and scheduling of interrelated projects is a challenging optimization problem that
has many applications in various fields, including economics, operations research, business, management, and transportation. The goal is to
determine which projects should be selected and when they should be funded in order to minimize the total system cost over a planning
horizon. Finding the optimal solution for such problems often requires extensive evaluation of possible solutions because of the complex
nature and noisy surface of their solution space. This paper applies three metaheuristic algorithms including a genetic algorithm (GA),
simulated annealing (SA), and Tabu search (TS) in seeking efficient and consistent solutions to the selection and scheduling problem. These
approaches are applied to a special case of link capacity expansion projects to showcase their functionality and compare their performance.
The paper’s main contributions are to (1) compare three metaheuristics for this problem in terms of solution quality, computation time, and
consistency; (2) consider explicitly the supplier costs as well as user costs in the formulated objective function; and (3) enhance some
simplifying assumptions from previous studies by recognizing that candidate projects may not remain economically justifiable throughout
the analyzed period. It is found that a GA yields the most consistent solution with the least total cost while SA and TS approaches excel in
terms of computation time. DOI: 10.1061/(ASCE)IS.1943-555X.0000293. © 2016 American Society of Civil Engineers.

Introduction

As traffic increases and links become congested, passenger and
freight movements experience increasing travel times and delays.
One obvious solution to this problem is to construct new lanes and
create additional capacity on the highly congested links. Then it
must be determined which links should be selected, in what order
they should be implemented, and when they should be funded in
order to minimize costs. One simple idea is to identify congested
links and prioritize them according to their congestion level,
i.e., volume/capacity ratio. However, even after adjusting for the
relative costs of links, this approach does not yield the best solution
because it disregards the interrelations among network links. In
fact, changes in one link affect the flows on others, and removing
bottlenecks from some links may shift them elsewhere in the net-
work. Thus, in sequencing a set of improvement projects, their in-
terrelations should be considered. The selection and scheduling of
projects with consideration of their interrelations is a challenging
optimization problem, but its solution is very valuable because it
has applications in various fields, including economics, finance,
operations research, development, industrial engineering, and busi-
ness administration.

Conceptually, the first step of a project planning problem is the
project evaluation, which identifies candidate projects and evalu-
ates their merits, often in terms of their benefits and costs. In a sec-
ond step, projects are selected from among the considered set for
implementation. After evaluating and selecting a set of projects for
improvement, a third step determines the order of projects; finally, a
fourth step determines the deadline for completion under budget
constraints (Wang and Schonfeld 2005). Project selection and
scheduling easily constitute a large optimization problem whose
feasible domain increases rapidly as the number of considered
projects in the system grows. In considering a set of improvement
projects for a given network, the objective is to find a project im-
plementation sequence that minimizes the total system costs or
maximizes the net benefits over the analyzed period. To date, sev-
eral methods have been developed for scheduling interrelated proj-
ects. However, the number of studies on this topic is relatively low.

This study applies and compares three alternative metaheuristic
algorithms for solving the problem of selecting and scheduling in-
terrelated projects. These three algorithms are a genetic algorithm
(GA), simulated annealing (SA), and Tabu search (TS). This study
also demonstrates how a relatively simple method, namely, a traffic
assignment model, can be efficiently used as the objective function
for such an optimization problem and thereby compute the relevant
interrelations among many projects that are implemented at various
times. However, more complex methods for evaluating the objec-
tive functions, such as microscopic simulations, can also be com-
bined with the same metaheuristic algorithms for optimizing the
project selection and schedule.

The motivation of this line of research is to develop a general
optimization framework for selecting, sequencing, and scheduling
interrelated alternatives. The work presented in this paper advances
this objective and contributes to the previous research in several
ways. First, three metaheuristics are applied to explore and com-
pare different solution approaches for the selection and scheduling
of interrelated alternatives. Second, the objective function is refor-
mulated to consider the total system cost, including supplier costs
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and user costs. Third, the algorithms’ assumptions are further
modified to account for the possibility that candidate projects
may become economically unjustifiable after the implementation
of previous projects. This may occur owing to project interrelations
and the possibility that the cost savings from completing a project
are affected by earlier project implementations.

The three metaheuristic algorithms are demonstrated through a
case study and comparison of their performances in terms of sol-
ution quality, computation time, and consistency. The comparative
analysis is useful in deciding which algorithm to use in different
circumstances. Generally, the methodology presented in this paper
should also be applicable to other prioritization and resource allo-
cation problems with interrelated alternatives.

Literature Review

In portfolio management, interrelations between choices (stocks)
were identified and modeled as early as the 1950s in pioneering
work by Markowitz (1952). This study proposed a quadratic pro-
gram formulated as a multiobjective function to minimize the sum
of purchase costs and interrelated risks. The consideration of
project interdependence significantly complicated the model’s
structure because the combined costs and benefits for a set of proj-
ects were no longer equal to the sum of the costs and benefits, re-
spectively, of individual projects. To deal with interdependencies
among choices, a dependence matrix was introduced to capture
the pairwise or n-way interrelations among alternatives. In portfolio
optimization, the use of a dependence matrix was convenient in
modeling interdependence between choices, and its variants are
still used in recent works, for example, Durango-Cohen and
Sarutipand (2007) and Bhattacharyya et al. (2011). However, esti-
mation of a dependence matrix is difficult and its manipulation is
computationally arduous when the project space grows (Disatnik
and Benninga 2007). Moreover, the pairwise dependency between
projects, as well as three-way and higher-order dependencies, is
insufficient to model the complex relations among infrastructure
development projects and difficult to estimate.

A different approach to analyzing interdependence alternatives
is to adopt complete system models, such as queueing approxima-
tions (Jong and Schonfeld 2001), equilibrium assignment (Tao and
Schonfeld 2005), microsimulation (Wang and Schonfeld 2008),
and neural networks (Bagloee and Tavana 2012), to model the in-
terrelations. These models are generally applicable for modeling
truly complex systems and relations among infrastructure develop-
ments. The remainder of this section presents an overview of some
recent studies applying these models.

Bouleimen and Lecocq (2003) developed a SA algorithm for the
resource-constrained project scheduling problem. The objective
of this model was to minimize total project duration. Tao and
Schonfeld (2005) developed a Lagrangian heuristic for selecting
interdependent projects under cost uncertainty. They developed a
GA for solving the Lagrangian problem and applied equilibrium
assignment to evaluate the objective function. Mika et al. (2005)
proposed two local search metaheuristics, namely, SA and TS,
to solve the multimode resource-constrained project scheduling
problem with discounted cash flows. The objective was to maxi-
mize the net present value of all cash flows. Wang and Schonfeld
(2005) developed a waterway simulation model for evaluating lock
operations over long analysis periods and then solved the problem
of selecting, sequencing, and scheduling interdependent projects
with a GA. Milatovic and Badiru (2004) proposed a methodology
for the mapping and scheduling of interdependent and multifunc-
tional project resources. Their methodology included an activity

scheduler and a resource mapper. The first procedure prioritized
and scheduled activities based on their attributes, whereas the latter
considered resource characteristics and mapped the available
resource units to the scheduled activities.

Tao and Schonfeld (2007) developed island models, which are a
variant of traditional GAs, to optimize the selection and scheduling
of interrelated projects under resource constraints. Dueñas-Osorio
et al. (2007) studied the interdependence response of network
systems to internal or external disruptions. They established inter-
dependencies among network elements based on geographical
proximity. Their work indicated that responses that are detrimental
to networks are greater when interdependencies are considered
after disturbances. Szimba and Rothengatter (2012) extended the
classical benefit–cost analysis by incorporating the interdepend-
ence among projects within an investment package. They addressed
the interdependence problem by introducing a heuristic method to
solve the large-scale problem with numerous projects. Bagloee and
Tavana (2012) formulated the prioritization problem as a Traveling
Salesman Problem (TSP) and incorporated a neural network (NN)
to assess project interdependence. A heuristic algorithm with
hybrid components was then used to search for the longest (most
beneficial) path in the NN as a solution to the TSP. Li et al. (2013)
proposed a hypergraph knapsack model to maximize the overall
benefits for a subcollection of interdependent projects. Chen et al.
(2015) proposed a surrogate-based optimization framework to si-
multaneously find both optimal capacity expansions of existing
links and new link additions. The upper level aimed to minimize
the network cost, while the lower level used a dynamic user-optimal
condition that could be formulated as a variational inequality
problem.

A literature review reveals a number of studies that adopt meta-
heuristics on the basis of evolution strategies, such as GAs, TS, or
scatter search. Although metaheuristics have been widely used in
network design modeling (Devika et al. 2014; Sicilia et al. 2015;
Jeon et al. 2006; Xu et al. 2009), they are rarely investigated and
compared for problems with interrelated alternatives to identify
their strength and weaknesses. Such an exploration would be es-
pecially useful in deciding what algorithm is preferable in various
circumstances.

Development of Evaluation Model

Traffic assignment models are simple methods for assessing the
traffic-related attributes for unsaturated networks. These attributes
include travel time, traffic flow, and volume-capacity ratio over all
the links in a network. This information is important for estimating
the cost savings from capacity improvements and therefore sup-
ports a proper evaluation method for the selection, sequencing,
and scheduling of projects. The aforementioned cost savings
mainly pertain to the value of travel time reduction for users, which
is explained in detail in subsequent sections. These cost savings are
obtained by rerunning the traffic assignment model at different
stages of the metaheuristic algorithms to compute the objective
function and compare solutions.

It should be noted that the use of traffic assignment in this paper
provides a relatively simple and easy way to evaluate solutions,
i.e., computing the values of their objective functions. More precise
evaluations for such a road network capacity expansion problem
may be obtained using a microscopic simulation model, but at con-
siderably higher computation cost. Other problem-specific evalu-
ation methods would be needed for other applications.

This paper employs the convex combination algorithm (Frank
and Wolfe 1956) to evaluate link expansion projects upon their
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implementation in a network. This method is an iterative algorithm
applicable to nonlinear programming problems with convex objec-
tive functions and linear constraints and is widely used for solving
the traffic equilibrium problem (van Vliet 1987; Ahipasaoglu et al.
2008). Starting with an initial flow x, the search direction at each
iteration is determined by solving a linear approximation of the
objective function, determining the step size, and moving in that
direction. The algorithm eventually stops when the convergence
criterion, which is based on the similarity of two successive solu-
tions, is satisfied.

Problem Formulation

The objective function for prioritizing transportation investments
has a nonconvex surface. Moreover, the scope of the problem
may be beyond the capability of typical mathematical optimization
methods since the problem size grows very fast with the number of
candidate projects np. The solution space for all possible sequences
of projects is

Xnp
i¼0

np!

ðnp − iÞ!i! · i! ¼
Xnp
i¼0

np!

ðnp − iÞ! ð1Þ

Consequently, heuristic methods have gained popularity among
researchers for solving such complex problems. This paper ex-
plores three metaheuristic methods, including GAs, SA, and TS,
which have often been found to be effective in finding near-optimal
solutions for challenging optimization problems. The planning
problem is to determine which links should be expanded in what
order and when each project should be completed over the planning
horizon T. The objective is to minimize the total cost, which con-
sists of the total road user cost and the total supplier cost, subject to
a budget constraint.

Jong and Schonfeld (2001) formulated this problem by defining
the decision variables as the completion time of projects. In this
formulation the budget constraint is defined as follows:

Xnp
i¼1

cixiðtÞ ≤
Z

t

0

bðtÞdt; 0 ≤ t ≤ T ð2Þ

xiðtÞ ¼ 0 if t < ti

xiðtÞ ¼ 1 if t > ti

where ti = time when project i is completed; and xiðtÞ = binary
variable specifying whether project i is completed by time t. It
should be noted that the set of all ti eventually determines the
schedule of projects. This occurs because under a limited budget,
which is continuously distributed over time, it is reasonable to fund
and finish each project one at a time knowing that there are always
some justifiable projects awaiting funding, and the system gains an
immediate benefit as soon as a project is completed. In other words,
funding multiple projects simultaneously delays their completion
time and, hence, delays the cost savings of capacity improvements.
Thus, under limited budget flow it is desirable to fund and complete
one project at a time and avoid funding overlaps (although not
necessarily construction time overlaps). As a result, the schedule
of each project is easily determined from a given sequence by
considering the budget flow. The idea is that each project is funded
immediately after the preceding one is finished and is completed as
soon as the available cumulative budget reaches the project cost. To
date, other studies have have haveassumed that all candidate proj-
ects that are initially justified economically remain so until the end
of the studied period. However, owing to project interdependencies,

the cost savings from completing a project may change over time. It
is also possible that initially unjustifiable projects turn out to be
desirable later. To tackle this problem, projects with unacceptable
marginal benefit–cost ratios are removed temporarily from the
sequence list during the evaluation stages and replaced by other
justifiable projects. At later stages, the removed projects may re-
enter the sequence after their marginal benefits outweigh their
marginal costs.

As stated earlier, the objective function minimizes the total sup-
plier cost and user cost over the planning horizon subject to a
budget constraint. The user cost is defined as the system delay
multiplied the by value of time, and the supplier cost is the present
value of all project costs. Unlike in some previous studies, in which
the cumulative costs of projects are implicitly determined by the
budget constraint, the cost of projects must be included in the ob-
jective function used here since not all selected projects are guar-
anteed to be implemented during the analyzed period. Therefore,
the objective function that is first introduced in Jong and Schonfeld
(2001) is modified as follows:

minZ ¼
XT
j¼1

�
v

ð1þ rÞj
Xnl
i¼1

wij

�
þ
Xnp
i¼1

cixiðtÞ
ð1þ rÞt ð3Þ

where wij = waiting time over link i in year j; ci = present value of
cost of project i; np, nl, and v = number of projects implemented,
total number of links, and value of time, respectively; and r is the
interest rate.

Development of Optimization Models

The main objective of this paper is to compare the performance of
three metaheuristic methods (GA, SA, TS) in solving the selection,
sequencing, and scheduling of interrelated projects. The common
elements of the three approaches are as follows. First, the solutions
are represented by the sequence of projects in which projects are
implemented. Second, the objective function with all three ap-
proaches minimizes the present worth of the total user and system
costs subject to a cumulative budget constraint, defined in the
previous section. Third, all three algorithms incorporate a solution
feasibility test to check the justification of adding a new project to
the project list. This is done by estimating the marginal benefit and
the marginal cost of adding a new project to the sequence and cal-
culating the resulting benefit–cost ratio. Any unjustified project is
discarded before the next project in the list is similarly considered
in order to maintain the feasibility of solutions. Furthermore, the
implementation time is checked so as not to exceed the planning
horizon, and the projects scheduled beyond the horizon are deleted
from the accepted sequence. This makes intuitive sense because in
real-world applications, there are usually more desirable projects
than the available budget allows for during a planning time period,
and one must choose from among a subset of candidate projects and
discard the rest. If justified projects are always available, then the
budget constraints are binding and optimal sequencing decisions
also determine the optimal timing of projects. Fourth, two stopping
criteria, namely, the number of iterations and running time, are
tested for all the algorithms.

Genetic Algorithm

A GA is a metaheuristic method that mimics the process of natural
selection and is a successful optimization method in a wide range of
fields. GAs obtain a set of possible solutions called the population.
Each individual in the population is specified by a string of encoded
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genes called a chromosome. In this process some individuals are
selected to reproduce offspring, and since each individual has
a probability of selection according to its fitness value, better
(“fitter”) solutions have a higher probability of being selected. Then
the selected solutions are processed through a series of crossover
and mutation operators that create offspring and change their attrib-
utes while maintaining the diversity of the population. Designing
an appropriate GA can lead to an optimal or near-optimal solution.

In general, solutions of GAs are mostly represented by binary
digits, and the initial population is generated randomly. In
this paper, each individual in a population is defined by a string,
including a sequence of numbers, each corresponding to a spe-
cific project. In addition to random-order solutions, two other
methods—greedy-order solutions and bottleneck-order solutions—
are used to create the initial population (Jong and Schonfeld
2001). In greedy-order solutions, projects are selected based on
their benefit–cost ratio, regardless of their interrelations. In
bottleneck-order solutions, projects are ranked based on the link
volume–capacity ratio, which describes the congestion severity
over a link. This assumes that more congested links should have
higher priority for implementation.

The fitness function is considered equivalent to the value of the
objective function [net present value (NPV) of total cost] and is com-
puted through the traffic assignmentmodel. The selection probability
is generally based on the value of the objective function in maximi-
zation problems. Therefore, in minimization problems, the selection
probability varies inversely with the objective function value. How-
ever, to prevent some undesirable properties of prematurity, a ranking
method is applied instead (Wang 2001). In this method, the popula-
tion is sorted with nonlinear ranking from best to worst. Then
the selection probability of each chromosome is assigned accord-
ing to its exponential ranking value considering a lowest fitness
value equal to one (Michalewicz 1995). Let q be the selective
pressure ∈ ½0; 1�; the selection probability is defined as follows:

Pi ¼ c × qð1 − qÞi−1; c ¼ 1=½1 − ð1 − qÞPopSize� ð4Þ
Next, a roulette-wheel approach is incorporated to select appro-

priate parents based on their selection probabilities (Michalewicz
1995). Then a crossover and a mutation operator are applied to re-
produce offspring and create a new population. Common methods
of mutation and crossover are not very efficient for sequencing
problems since they construct many infeasible solutions with
repetitive project numbers in one sequence. To avoid producing
such solutions, some other genetic operators are employed to solve
the project sequencing problem. These crossover and mutation op-
erators consist of partial mapped crossover, position-based cross-
over, order crossover, insertion mutation, and swap mutation
(Goldberg 1989; Gen and Cheng 1997). The reproducing process
randomly selects one operator and applies it to the selected parents.

Simulated Annealing

Simulated annealing is a probabilistic metaheuristic method for the
global optimization of an objective function, which may possess
several local optima. The algorithm that was introduced independ-
ently by Kirkpatrick et al. (1983) and Černý (1985) was inspired by
a process that involves the heating and gradual cooling of a material
to reach a minimum energy configuration. Starting from an initial
solution (S), the value of the objective function is calculated for the
new solution in the neighborhood fðS 0Þ where fðÞ denotes the ob-
jective function value for a solution. Then the algorithm attempts to
move to a neighborhood solution (S 0) based on specified criteria.
In minimization problems, a transition to a new solution is immedi-
ately allowed when Δ ¼ fðS 0Þ − fðSÞ < 0. However, a transition

to the new solution is also permitted based on the probability func-
tion expð−Δ=TmpÞ, where Tmp (temperature) is a control param-
eter. Allowing for such transitions guarantees the diversification of
the solutions and enables SA to escape a local optimum in a search
for the global optimum. After each iteration, the parameter Tmp
decreases within a cooling function (Tmp ¼ Tmp × α), where α
is a constant parameter by which the temperature decreases after
each iteration. The algorithm finally stops when the stopping cri-
terion is satisfied. In the developed SA, the neighbor solutions are
produced by using the Project Shift operator in which project j is
randomly selected from the project list and project i is randomly
selected from the first predecessor and successor of project j. The
two selected projects switch positions, and the new solution is
evaluated for possible transition.

One of the most important steps in SA is to set an appropriate
initial temperature. In this paper, a recursive formula proposed in
Ben-Ameur (2004) is used to assess an initial value for the temper-
ature Tmp as follows:

Tmpnþ1 ¼ Tmpn

�
ln½χ̂ðTmpnÞ�

lnðχ0Þ
�

1=ρ
ð5Þ

where χ0 = desired acceptance probability; ρ ¼ real number ≥ 1;
and χ̂ðTmpnÞ is determined by generating a set of positive transi-
tions P (a transition in which the objective function increases), stor-
ing the corresponding objective functions ½fðS 0Þ; fðSÞ�, and using
the following equation:

χ̂ðTmpnÞ ¼
P

p∈P exp
�
− fðS 0Þp

Tmp

�

P
p∈P exp

�
− fðSÞp

Tmp

� ð6Þ

The iteration stops as χ̂ðTmpnÞ becomes sufficiently close to
χ0 and the value of Tmpn can be used as a good approximation
for the initial temperature.

Tabu Search

Tabu Search is a metaheuristic originated by Glover (1986) that
employs neighborhood search and enhances it by using a memory
structure that avoids visiting previously investigated solutions. To
achieve this goal, the method records recent moves and stores them
in a tabu list, preventing the algorithm from retracing these moves.
This insures that new regions of the solution space will be explored
in the search for the global optimal solution.

Similarly to SA, the neighbors of current solutions are generated
by swapping the position of projects in the project sequence. A
move is defined as the position number in the project list selected
for swapping. After a move is made, its reverse enters the tabu list,
while the oldest existing move exits the list. All moves that exist
in the list remain tabu for a specified number of iterations, called
tabu tenure. However, it is possible that a tabu move will reach a
nonvisited solution. To avoid the possibility of overlooking a
better solution, an aspiration criterion authorizes a tabu move only
if this move leads to a solution with the best objective value visited
so far.

Case Study

The Sioux Falls network illustrated in Fig. 1 is selected for demon-
strating the performance of the proposed algorithms. This is not con-
sidered a realistic network since it mainly includes the city’s major
arterial roads and omits many characteristics of its transportation

© ASCE 04016004-4 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 04016004 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

W
es

te
rn

 M
ic

hi
ga

n 
U

ni
ve

rs
ity

 o
n 

02
/2

1/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



system. However, it has been used widely to examine and compare
studies on networks (LeBlanc et al. 1975). Sioux Falls city has a total
area of 190 km2 and is located in eastern South Dakota, approxi-
mately 24 km west of the Minnesota border. This network consists
of 24 nodes and 38 links. The links in Fig. 1 are numbered from 1 to
38, each one representing traffic in both directions. Since the demand
matrix used in this study is symmetric for all origin and destination
nodes, each link expansion improvement is assumed to be imple-
mented in both directions between the two connected nodes. This
assumption is also justified economically because it saves costs
thanks to the joint use of resources and construction equipment.
The network inputs include the O/D demand table, link capacity,
link length, and free flow travel time. These are documented in
Shayanfar and Schonfeld (2015). After running the traffic assign-
mentmodel, the critical laneswith high volume–capacity ratioswere
identified as an initial set of candidate projects. After identifying an
initial collection of candidates, all projects are further investigated
through a benefit–cost analysis to identify and rank economically
beneficial projects. Eventually, the finalized set of candidate projects
includes links with the most severe congestion level (i.e., highest
volume–capacity ratio) and benefit–cost ratios greater than one:
{2, 3, 4, 8, 9, 11, 16, 14, 13, 15, 12, 21, 36, 22, 25, 27, 35, 37,
30, 34}.

It is assumed that each project improvement adds one lane
equivalent to 700 vehicle=h additional capacity to each link, while
the equivalent annual cost of each lane expansion is assumed to be
$1,800,000=km. Moreover, the value of time is set at $15=h, and
the interest rate is assumed to be 10%. It should be noted that this

study does not account for delays during lane closures. The main
cost saving of link expansion projects is the reduced travel time
for all the users. These travel time reductions can be computed
using the traffic assignment model by comparing the total system
travel time before and after project implementation. Table 1 shows
a sample of the travel time savings from separate implementations
of projects in the network. The second column presents the initial
link travel times prior to project implementation, while Columns
3–7 present the travel time reductions for single projects. Positive
values indicate travel time reductions, while negative values
show increases in travel time due to network interdependencies.
(Conceptually, if the capacity increases in one link in the network,
the congestion and average travel times tend to increase in un-
changed links that are “in series” with it while decreasing in
its “parallel” links.) The bolded numbers indicate the travel time
changes in the location of the expanded links. These numbers are
relatively higher since the expanded links gain direct benefits fol-
lowing project implementation. Notably, the sum of all the cells in
one column is not equal to the travel time changes on the links
that are being expanded. This, in effect, confirms the interrelation
among links and the possible shifting of bottlenecks to nearby
links. The last column shows the reductions in the cost of travel
times from implementing two projects together. This column
shows that the total system delay savings (25.216 min=veh) dif-
fers from the sum of cost savings for two individual projects
(9.753þ 15.656 ¼ 24.409), emphasizing that the cost savings
of multiple projects are not linear summations of their individual
savings.

Fig. 1. Sioux Falls network
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Results

This section analyzes the results obtained from the GA, SA, and TS
in terms of (1) the quality of the final results, (2) the computational
speed, and (3) the consistency of the optimized solutions. Table 2
describes the parameter values for each algorithm. The paper fur-
ther compares each algorithm in the aforementioned categories.

Quality

Each metaheuristic is tested for 50 replications, each encompassing
150 iterations, which is considered a reasonable number of
iterations for comparison purposes since all 3 algorithms reach a
stable convergence within 150 iterations. The best results out of
50 replications in terms of the final value for the objective function
(minimum total cost) are extracted and plotted in Fig. 2, which
presents the performances of the GA, SA, and TS. The results
suggest that after all the algorithms are run for a long enough time
to obtain stable convergence, the GA performs better in terms of
finding solutions with lower objective functions and TS performs
better than SA. In this case, the present values of total system costs
are as follows: GA ¼ $15,009 million, SA ¼ $15,028 million, and
TS ¼ $15,016 million, which are remarkably close. Furthermore,
the resulting selection, sequencing, and scheduling of projects are
presented in Table 3, which also presents a comparison between the
metaheuristic solutions and the solution ranked according to con-
gestion severities. The severity-ranked solution has a total cost of

$15,605 million, while the solutions obtained from the metaheur-
istics have lower total costs, highlighting the significance of project
interrelations and the importance of estimating their effects. In fact,
the present worth of the total costs is reduced by $596 million,
$577 million, and $589 million when applying GA, SA, and
TS, respectively, compared to the severity-ranked order.

Computation Time

The metaheuristic results may also be compared in terms of com-
putation time. For this purpose, the average running time per iter-
ation is computed for all algorithms as follows: GA ¼ 87.5 s,
SA ¼ 19.3 s, and TS ¼ 37.7 s. The results indicate that the GA
has the most and the SA the least computation time. This is due
to the relative complexity and multiple operators incorporated in
the GA. However, as discussed in the previous section, if the run-
ning time is sufficiently large for all algorithms to reach conver-
gence, then GA yields slightly better solutions than SA and TS.

In this section, the sensitivity of computation time to the
problem size (i.e., number of candidate projects) and planning hori-
zon for the three algorithms is also evaluated. According to Fig. 3,
the computation time of all algorithms grows logarithmically as the
planning horizon increases, whereas Fig. 4 shows an exponential
growth of computation time as the problem size grows. These

Table 1. Travel Time Reduction due to Link Expansion

Link
Link travel time
without projects

Link travel time reduction (min=veh)

Expanding 2 Expanding 3 Expanding 4 Expanding 8 Expanding 9 Expanding 2 and 3

1 3.6 0.012 −0.036 0.016 0 −0.008 −0.046
2 10.042 2.23 1.44 −0.816 −0.124 0.062 3.318
3 20.712 4.676 11.424 6.936 1.316 −0.684 14.48
4 9.1 −0.692 1.14 1.854 −0.538 −0.288 1.472
5 3.258 −0.186 0.332 −0.12 0.03 −0.412 0.328
6 6.002 −0.688 0.68 −1.052 −0.544 −1.702 0.734
7 5.236 0.032 0.082 0.064 0.042 0.082 0.104
8 14.748 −0.076 −8.442 −8.796 5.606 4.102 −4.616
9 14.78 0.106 2.428 1.866 1.766 4.784 2.026
: : : : : : : : : : : : : : : : : : : : : : : :
37 6.574 0.18 0.378 0.328 −0.38 −0.346 0.278
38 2.861 −0.006 0.082 −0.173 0.100 0.067 0.158
Total travel time savings 9.753 15.656 8.054 13.632 18.037 25.216

Note: Bold numbers indicate the travel time changes in the location of the expanded links.

Table 2. Parameter Values for GA, SA, and TS

Algorithm Parameter Value

GA Neighborhood size 100
Number of samples for initial temperature 0.5

Cooling ratio 0.8
Trial count 20

Move method Swap
SA Population size 20

Mutation rate 0.5
Crossover rate 0.5

Selective pressure 0.1
Sampling mechanism Roulette Wheel

TS Neighborhood size 100
Tabu tenure 3
Trial count 20

Move method Swap Fig. 2. Performances of GA, SA, and TS for 150 iterations
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results indicate that the computation time is more sensitive to the
problem size for the GA than for SA and TS.

Consistency

When running replications of the metaheuristics, one can find how
similar the results are among replications after different numbers of
iterations. In other words, how consistent are the outcomes after
running a specific number of iterations and at what point do they
reach steady state? To address these questions, after running 50 rep-
lications the coefficient of variation (CV) of the objective function
is estimated for each number of iterations. Fig. 5 shows the CV
value for each algorithm as the number of iterations increases. It
indicates that the variation in results is relatively low initially since
the set of initial solutions is quite similar, then it increases during
the process, and finally drops after the 80th iteration, converging to
0.07% for the GA. This means that running different replications of
the GA method yields almost similar results after the 80th iteration.
Similarly for TS and SA, the CV value fluctuates with the number
of iterations and finally converges to 0.13% and 0.22%, respec-
tively. In the case analyzed here, the GA is the most consistent al-
gorithm, followed by TS and SA.

Conclusions

The selection and scheduling of interrelated projects is an interest-
ing problem for policymakers and researchers in various fields, in-
cluding economics, operation research, business, management, and
transportation. Although it is crucial to consider the interrelations
among projects when evaluating and prioritizing them, the problem
is not sufficiently addressed in the literature. This paper combines a
simple traffic assignment model for evaluating the objective func-
tion with three metaheuristic algorithms, namely, GA, SA, and TS,
for optimizing the sequence and schedule of interrelated expansion
projects. In particular, the optimized schedule is directly deter-
mined by the sequence of selected projects. More specifically,
under a limited budget, which is continuously distributed over time,
it is reasonable to fund and finish each project one at a time and
gain benefits from each project as soon as it is completed.

To apply the proposed algorithms and demonstrate the numeri-
cal results, a sample network is examined through the evaluation

Table 3. Selection, Sequencing, and Scheduling of Projects

Bottleneck
order

GA SA TS

Sequence
Scheduled

completion year Sequence
Scheduled

completion year Sequence
Scheduled

completion year

11 11 1.8 11 1.8 11 1.8
36 3 6 36 6 3 6
34 36 9 12 9 36 9
14 12 13 9 9.8 12 13
9 9 15.2 25 12 9 15.2
27 15 17.4 9 14 22 17.4
35 14 18.2 37 17.6 14 18.2
12 21 20 4 19.8 8 21.2
15 13 21.6 8 22.8 27 22.4
21 2 26.2 14 23.6 15 24.6
3 22 28.4 21 25.4 4 28.2
13 — — 27 27.6 37 29.1
30 — — — — — —
NPV ¼ 15,605 NPV ¼ 15,009 NPV ¼ 15,028 NPV ¼ 15,016

Note: NPV = net present value of total cost (million $).

Fig. 3. Sensitivity analysis for GA, SA, and TS (computation time ver-
sus planning horizon)

Fig. 4. Sensitivity analysis for GA, SA, and TS (computation time ver-
sus problem size)
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and optimization process. The outcomes are further used for a
multilateral comparison in the last section of the paper. After find-
ing the optimum sequence and schedule of the projects, a compar-
ative analysis indicates that the GA, SA, and TS decrease the
present worth of the total cost by $596 million, $577 million,
and $589 million, respectively, compared to a congestion-ranked
solution, indicating that the GA yields a better solution with lower
total costs than the other two. However, the SA and TS yield better
solutions in the earlier stages of the search and thus seem preferable
if computation budgets are limited, although the latter case is
unlikely in the long-term planning and scheduling of significant
investments. The results also indicate that the GA yields the most
consistent solutions with a 0.07% coefficient of variation for the
150th iteration, implying that different replications of the GA yield
almost equal final solutions after a sufficient number of iterations.
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