
Journal of Constructional Steel Research 123 (2016) 135–143

Contents lists available at ScienceDirect

Journal of Constructional Steel Research
System-based design of planar steel frames, I: Reliability framework
Hao Zhang a,⁎, Shabnam Shayan a, Kim J.R. Rasmussen a, Bruce R. Ellingwood b

a The University of Sydney, Australia
b Colorado State University, United States
⁎ Corresponding author.
E-mail addresses: hao.zhang@sydney.edu.au (H. Zhan

shabnam.shayan@sydney.edu.au (S. Shayan), kim.rasmus
(K.J.R. Rasmussen), bre@engr.colostate.edu (B.R. Ellingwo

http://dx.doi.org/10.1016/j.jcsr.2016.05.004
0143-974X/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 11 February 2016
Received in revised form 9 May 2016
Accepted 9 May 2016
Available online 17 May 2016
The design of steel frames by advanced analysis (second-order inelastic analysis with imperfections) of overall
system behaviour is permitted in the American steel specification AISC360-10 and the Australian Standard
AS4100. In both specifications, the strength of a structural frame can be determined by a rigorous system nonlin-
ear analysis in lieu of checking member resistances to the specific provisions of the Specification, provided that
the limit states covered by the Specification equations are detected by the inelastic analysis, and a comparable
or higher level of structural reliability is achieved by the inelastic analysis than by member-based design. This
system-based, design-by-advanced analysis approach is termed “Direct Design Method” (DDM). In DDM, a
system resistance factor is applied to the frame strength. The system factor in AISC360-10 was adopted without
considering its impact on frame reliability. This paper describes the framework for developing reliability-based
system resistance factors suitable for use with DDM. A simple frame is used to demonstrate the procedures.
Appropriate system resistance factors for various load cases and design recommendations are presented in a
companion paper [1] based on the system reliability analyses of a series of steel frames.
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1. Introduction

In conventional steel design methods, structural members and
connections are designed individually based on component strength
limit states. Structural system effects are reflected in the current steel
designs, but only implicitly through the use of effective length factors
and similar approximations. The design customarily has been based
on elastic analysis. This component-based, elastic approach cannot ac-
curately predict the complex interactions between members of a large
structural system, nor can it capture the inelastic load redistribution
subsequent to first yielding. The load-carrying capacity of a structural
steel system with even a modest capacity to redistribute loads can be
larger than what is determined by the design of individual members
[2–8]. Therefore, there are strong reasons for designing a steel frame
as a whole system rather than an assembly of individual components,
particularly with the advent of performance-based design in modern
engineering practice.

Recent advances in nonlinear structural modelling make it possible
to address the issue of designing a steel frame as a system rather than
as a set of independent components [2,9–17]. Many studies have dem-
onstrated that the ultimate limit state strength and stability of a real
steel structure system can bemost accurately captured by the geometric
g),
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and material nonlinear analysis with imperfections. Analysis with this
capability is termed “advanced analysis” in the Australian Steel Struc-
tures Standard AS4100 Appendix D [18], and termed “inelastic analysis”
in the American Institute of Steel Construction Specification AISC360-10
Appendix 1 [19]. The advantages of the design-by-analysis approach are
evident in several aspects. For one, the system strength can be directly
evaluated from analysis without the need for checking member and
connection resistances to the specific provisions. Also, advanced analy-
sis may lead to the design of lighter and more economic structures. For
example, Ziemian, et al. [20] analysed a series of two-bay two-storey
planar frames and a 22-storey 3D frame. It was shown that design by
advanced analysis could save about 12% of steelweight compared to tra-
ditional design by the AISC Load and Resistance Factor Design (LRFD)
method.More importantly,with advanced analysis, engineers are better
able to understand the system behaviours. This system-based, design-
by-advanced analysis approach is termed “Direct Design Method”
(DDM) in the present study. The change of emphasis from individual
member strengths to the overall structural behaviour will promote a
more holistic approach and greater innovations in structural design. It
should be noted that the Direct DesignMethod is different from the “Di-
rect Analysis Method” (abbreviated as “DM” in the AISC Specification),
stipulated in Section C1.1 of AISC360-10 [19]. DM is based on a rigorous
second-order analysis directly modelling member imperfections. In the
DM, member and system instability are checked/detected by the
analysis, the equation based design checks only need to be completed
at the cross section level. While DM eliminates the need for calculating
effective length factor, it is still a member-based design approach as
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Fig. 1. Cross-section dimensions.
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opposed to system checks. The “Direct DesignMethod” (DDM) present-
ed in this paper is a system-based approach, which is similar to the
design procedure stipulated in Appendix 1 – Inelastic Analysis and
Design – of AISC360-10 and is an extension of the DM. Therefore, the
two methods are different.

The AISC Specification 360–10 permits design through inelastic
analysis of overall systembehaviour (except for seismic design), provid-
ed that (1) the limit states covered by the Specification equations are
detected by the inelastic analysis; (2) members and connections with
elements subject to yielding have adequate ductility; and (3) a compa-
rable or higher level of structural reliability is provided by the inelastic
analysis than by member-based design. The ad hoc AISC approach to
ensure structural reliability in DDM is to reduce the strength and
stiffness of all members and connections by a factor of 0.9. The
AISC360 commentary acknowledges that this factor of 0.90has its origin
in the AISC LRFD resistance factors of tension and flexural members that
yield; its use in system-based design, although “deemed acceptable”, is
not based on any system reliability analysis. There is a lack of research to
develop the system resistance factors based on rigorous system reliabil-
ity considerations.

Consistent with the LRFD philosophy, if advanced analysis is used to
determine the ultimate strength of a structural system, an appropriate
system resistance factor (ϕs) which accounts for the main factors
influencing the reliability of a frame must be provided. The resistance
factor is applied to the entire system strength, rather than to each
component, to account for potential risks arising from uncertainties.
The development of system resistance factors requires rigorous system
reliability analyses.

This paper outlines a framework of developing the system resistance
factors for DDM. A sample planar frame is used to demonstrate the
procedures of assessing system reliability and developing the system re-
sistance factors. The companion paper [1] examines an extensive range
of planar low-to-mid-rise moment resisting and braced frames with
regular and irregular configurations, with the aim of providing suitable
system resistance factors to be used for system-based design.

2. Direct design method

Consistent with the current LRFD philosophy, in DDM a global sys-
tem resistance factor is applied to the nominal frame strength. Thus
the familiar LRFD format can be applied in an integral sense for the
whole frame:

ϕsRn≥
X

γiQni ð1Þ

in which Rn represents the nominal system strength determined by
advanced analysis with nominal (unreduced) values of structural
properties (i.e., strength, stiffness, dimension), ϕs is a system resistance
factor, Qni are the nominal loads (i.e., Dn, Ln and Wn for dead, live and
wind loads, respectively), and γi is the load factor for Qni. The subscript
“n” in Eq. (1) emphasizes that those terms are code-specified nominal
values used in design.

In conducting a nonlinear structural analysis, the loads are increased
incrementally by using a load scale factor λ. The loads are scaled upuntil
failure of the frame occurred to determine the ultimate load scale factor
λu. The ultimate strength of a frame is defined as the peak load in the
frame's load–displacement response (at a certain key location). If the
load–displacement response does not have a descending branch, it is
assumed that the ultimate strength is reached when the slope of the
load–displacement curve reduces to 5% of its initial value. Eq. (1) can
be rewritten as

λu≥
1
ϕs

ð2Þ

in which λu represents the ultimate load scale factor under the applied
loads ∑γiQni . It is assumed for code implementation purposes that
the current load combination rules (for member-based design) are
still applicable to checking overall system response. Thus, the load
factors γi are taken from the existing load standard. The value of system
resistance factorwill be determined using structural reliability theory to
assure a (pre-defined) target level of structural reliability.

2.1. System reliability analysis

The structural system probability of failure, denoted by Pf, is given
by:

P f ¼ Pr R−Q ≤0ð Þ ¼ Pr g R;Qð Þ≤0½ � ¼
Z

…
Z

g Xð Þ≤0

f x xð Þdx ð3Þ

in which Pr( ) represents the probability of the event in the bracket, R is
the system resistance, Q represents the applied load(s), and g() is the
limit state function defined such that g()≤0 defines the unsafe (failure)
domain. X=(X1 ,… .Xn) is an n-dimensional vector of basic random
variables representing uncertainties such as material strength, stiffness
and applied load. fx(x) is the joint probability density function (PDF) for
X. Note that R and Q are functions of X. In practice, Pf is often converted
to a reliability index,β, which serves as an alternative andmore familiar
measure of reliability [21]. The reliability index is related to Pf by β=
Ф−1(1−Pf), in which Ф represents the standard normal distribution
function (zeromean and unit variance), andФ−1 is the inverse function
of Ф.

Considering the load criteria in ASCE7-5 [22], if a frame as a system is
at its limit under gravity loads, then the design equation of Eq. (1)
becomes

ϕsRn ¼ 1:2Dn þ 1:6Ln ð4Þ

and the limit state function g is given by

g ¼ RG−D−L ð5Þ

in which RG represents the system's gravity resistance, D is the dead
load, and L represents the (lifetime maximum) live load. Note that RG,
D and L are random variables, while Rn, Dn and Ln are nominal values.

For a frame at its strength limit under combined gravity and wind
loads, the design equation is

ϕsRn ¼ 1:2Dn þ 0:5Ln þ 1:6Wn: ð6Þ



Table 1
Statistical results for cross-section dimensions [25].

Thickness Mean/Nominal COV

Section depth (h) 1.001 0.0044
Section width (b1) 1.012 0.01
Section width (b2) 1.015 0.0095
Web thickness (t1) 1.055 0.04
Flange thickness (t21) 0.988 0.044
Flange thickness (t22) 0.988 0.049

Fig. 2. First three buckling modes of a simply supported axially loaded column.
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Note that Eq. (6) represents the dead load plus “arbitrary point-in-
time” live load (Lapt) and the (lifetime maximum) wind load. For this
load combination, we are concerned about the system's lateral load
capacity, and the governing system limit state can be expressed as

g ¼ Rw �W ð7Þ

inwhichW is thewind load, and Rw denotes system's lateral load capac-
ity under the applied dead load and the “arbitrary-point-in-time” live
load. W and Rw are expressed in dimensionally consistent units.

Oneway to compute the probability of failures for Eqs. (5) and (7) is
to use the direct Monte Carlo simulation in which random variables are
sampled randomly and repeatedly to observe the result. The probability
of failure is estimated by

P f ≅
n
N

ð8Þ

inwhichN is the total number of simulations, and n denotes the number
of simulation for which the system failed. For typical structural reliabil-
ity assessments (i.e., Pf on the order of 10−3), such a direct simulation
method requires a large number of N to sufficiently capture the lower
tail behaviour of the distribution of structural strength. Obviously the
computing burden of the direct Monte Carlo simulation is very high as
it requires performing N advanced analyses.

In this study, the probability of failure is estimated using a simplified
method following the concept of First-Order ReliabilityMethod (FORM)
[21]. In this method, the probabilistic models (distribution type and dis-
tribution parameters) of system resistance (RG and Rw) are estimated
first using simulation taking into account the uncertainties in material
stiffness and strength, and subsequently are combined with the load
distributions using the FORM. In this simplified method, relatively few
simulations (e.g., 300 to 500 simulations) are sufficient for estimating
the cumulative distribution function (CDF) of system resistance R [21].
The efficiency of sampling can be further improved by using the Latin
Hypercube sampling (LHS) technique. The probabilistic models of
loads are available from the literature as described subsequently. Once
the statistics of system strength and loads are known, the probability
failures for Eqs. (5) and (7) can be readily computed using the FORM.

2.2. Procedures for developing ϕs for DDM

The procedure for developing system resistance factors suitable for
use with DDM can be summarized in the following steps:

(1) A suite of low-to-mid-rise steel frames are selected to represent
the current steel building inventory and cover all ranges of
Table 2
Correlation matrix for cross-section dimensions [25].

h b1 b2 t1 t21 t22

h 1 −0.0068 0.0534 0.0399 −0.0686 −0.0989
b1 −0.0068 1 0.6227 −0.2142 −0.2681 −0.1456
b2 0.0534 0.6227 1 −0.2132 −0.1596 −0.0423
t1 0.0399 −0.2142 −0.2132 1 0.2368 0.2451
t21 0.0686 −0.2681 −0.1596 0.2368 1 0.7634
t22 0.0989 −0.1456 0.0423 0.2451 0.7634 1
system behaviours, including different failure modes (elastic/
inelastic failure, strong column-weak beam and weak column-
strong beam framing systems, redundancy, ductility, regular/
irregular structural configurations, connection type, etc.). The
frames are subjected to gravity loads, and combined gravity
and wind loads.

(2) A range of ϕs values are considered for each frame. For a givenϕs,
the designs of the frames are adjusted such that the frames are
just at their strength limit.

(3) Probabilistic assessments of the strengths of all frames are con-
ducted using Monte Carlo simulation combined with advanced
analysis to generate distributions of the system resistance, taking
into account the randomness in material and geometric proper-
ties.

(4) Using the statistics for the system resistance obtained in Step 3,
and the probabilistic models of the loads, the reliability index β
of each frame is computed.

(5) Steps 3 and 4 are repeated to obtain the relationships between β
and ϕs. The results can then be used by the specification writing
group to choose resistance factors corresponding to desired
reliabilities.

Steps 2–5 will be demonstrated using a simple planar moment
frame in this paper.

3. Uncertainties in steel frame systems

This section summarizes the probabilistic models for the basic
random variables considered in this study, including yield stress, elastic
modulus, residual stress, cross-sectional dimensions, member out-of-
straightness, frame out-of-plumbness, and structural loads.

3.1. Variability in yield stress and elastic modulus

Yield stress often has a significant influence on the load-carrying
capacity of a frame system. Yield stress is modeled by a lognormal
distribution with a mean-to-nominal value of 1.05 and a coefficient of
variation (COV) of 0.1 [23]. Note that these statistics are based on tests
of steels that were manufactured in the 1970′s. Recent studies of steel
Table 3
Statistics for out-of-straightness scale factors [28].

Statistics a1/L a2/L a3/L

Mean 0.000556 0.000139 0.000073
Standard deviation 0.000427 0.000071 0.000078
Distribution Normal Normal Normal



Fig. 3. Residual stress: (a) ECCS pattern; and (b) typical actual measurement.
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properties for modern grades of steel have indicated that the mean-to-
nominal ratio and COV both are somewhat less due to better controlled
manufacturing processes [24]. However, it has been found that
these differences in statistics do not have a significant impact on the
reliabilities presented herein. The modulus of elasticity is modeled as a
normally distributed randomvariablewith amean equal to the nominal
value and a COV of 0.06 [23].

3.2. Variability in cross-section dimensions

Steel section properties were statistically examined in [25] based
on the measurements of 369 hot-rolled I-sections. The statistical data
for the cross-section dimensions shown in Fig. 1 are listed in Table 1.
Correlations observed between section parameters are summarized in
Table 2.

Using the statistics in Tables 1 and 2, it was found that both the
moment of inertia and cross-sectional area have a mean-to-nominal
ratio of unity and a COV of about 0.05; these results are comparable to
those reported elsewhere [26,27].

3.3. Variability in initial geometric imperfections

Themember initial out-of-straightness can be expressed as the com-
bination of a given number of bucklingmodes of a single column under
compression [28]:

δ ¼
Xm
i¼1

ai sin iπxð Þ ð9Þ

in which x∈[0,1] is the normalized coordinate along the length of the
member, δ denotes the initial out-of-straightness at location x, ai is the
scale factor for the ith mode, and is modeled as a random variable. It
has been shown that in general, using the first 3 modes is sufficient to
model member out-of-straightness [28]. To determine the statistics for
Fig. 4. A three-bay three-storey frame, (a) gravity lo
the scale factors ai, the initial-out-straightness data of hot-rolled IPE-
160 columns reported by ECCS Committee 8.1 [29] were analysed. The
reported data comprise the out-of-straightnessmeasured atmid-length
and quarter points. The measured imperfections were extracted into
first three buckling modes (Fig. 2). The mean and COV of the three
scale factors were determined and summarized in Table 3. Details can
be found elsewhere [28]. Using the statistics shown in Table 3a random
member imperfection can be simulated by generating a random scale
factor and a random sign for each mode and then combining the three
modes.

The frame out-of-plumb is treated as a random variable and
modeled as all columns leaning in the same direction. The statistics for
frame out-of-plumb has been studied in [28], and it was found that
the out-of-plumb angle can be modeled as a lognormal distribution,
with a mean of approximately 1/770 and a standard deviation of 1/880.

3.4. Variability in residual stress

This study considers the variability in the magnitude of residual
stress. The pattern of residual stress is assumed to be deterministic,
following the “ECCS” (European Council for Constructional Steelworks)
residual stress pattern shown in Fig. 3. To model the uncertainty in the
magnitude of residual stress, a random scale factor x is applied to the
ECCS residual stress pattern. A total of 63 actual residual stressmeasure-
ments from the literature were used to determine the statistics of the
scale factor [30]. For a given residual stress measurement, the scale
factor is obtained by minimizing the error between the actual residual
stress and the (scaled) ECCS result:

Error ¼
Xn
i¼1

xσ i
m−σ i

e

� �2
ð10Þ

in which n = total number of measured nodes, i = ith node, x = scale
factor, σm

i = the scaled, theoretical value at node i, σe
i = measured
ad; and (b) combined gravity and wind loads.



Table 4
System based design under gravity load only.

Members ϕs = 0.63 ϕs = 0.69 ϕs = 0.74 ϕs = 0.86 ϕs = 0.96

Sections Sections Sections Sections Sections

C1,C4,C5,C8,C9,C12 250UC72.9 250UC72.9 200UC59.5 250UC72.9 250UC72.9
C2,C3,C6,C7 200UC59.5 200UC59.5 200UC59.5 200UC59.5 200UC59.5
C10,C11 150UC30.0 150UC30.0 150UC30.0 150UC30.0 150UC30.0
B1,B3,B4,B6,B7,B9 460UB74.6 460UB67.1 460UB67.1 360UB56.7 360UB50.7
B2,B5,B8 360UB56.7 360UB50.7 360UB50.7 360UB50.7 310UB46.2

139H. Zhang et al. / Journal of Constructional Steel Research 123 (2016) 135–143
value at node i. This errorminimization processwas conducted for all 63
samples. It was found that the scale factor x has a mean of 1.047 with a
COV of 0.21, and can be best fitted by a normal distribution [30].

3.5. Variability in structural loads

The statistics of loads can be obtained from the literature [31]. The
present study uses the load criteria appearing in ASCE7–05. The dead
load is assumed to be normally distributed with a mean-to-nominal
value of 1.05 and a COV of 0.1. The (lifetime maximum) live load is
modeled by an Extreme Type I distribution with a mean-to-nominal
value of 1.0 and a COV of 0.25. The “arbitrary-point-in time” live load
has a Gamma distribution with a mean of 0.24Ln and a COV of 0.6. The
wind load is modeled by an Extreme Type I distribution with a mean
of 0.92Wn and a COV of 0.37.

4. Example frame

A three-bay, three-storey planar steel frame has been selected as an
example to demonstrate the procedure for developing the system
resistance factor. Fig. 4 shows the geometry of the frame. The nominal
yield strength fy and modulus of elasticity E are 320 MPa and 200 GPa,
respectively. The stress–strain relation of the steel was initially
described by a tri-linear curve, consisting of an elastic part and a yield
plateau extending to a strain of 10εy followed by a strain-hardening
part with a strain-hardening modulus of Esh = 0.02E, where εy = fy/E
is the yield strain. However, it was found that the strain hardening has
an insignificant effect for the ultimate strengths of the frames consid-
ered in this study [32]. Hence, the steel is modeled as elastic-perfectly-
plastic in this study. A nominal frame out-of-plumbness of 1/500
(which is the maximum out-of-plumbness specified by AISC) is
assumed in the design. The residual stress was modeled as a self-
equilibrating initial stress following the ECCS residual stress pattern.
All beams and columns are compact and laterally braced so that local
buckling and lateral-torsional buckling are not considered. Connections
are assumed to be fully rigid; compliance of the connections is not con-
sidered. Furthermore, it is assumed that the connections have sufficient
ductility and are capable of maintaining their design strength while
accommodating inelastic deformation demands.

The second-order inelastic finite element (FE) models were devel-
oped using the software OpenSEES [33], accounting for all material
and geometrical nonlinearities. Displacement-based, fibre-type
beam elements were used to trace the spread of plasticity through the
cross-section and along the members. Typically, each column/beam
was discretised into twenty elements. Frame out-of-plumbness was
Table 5
Simulation results for system's gravity load capacity.

ϕs μR (kN/m) VR

0.63 80.06 0.08
0.69 72.86 0.08
0.74 68.32 0.08
0.86 58.30 0.08
0.96 52.31 0.09

μR = mean; VR = COV
modeled by the notional load approach. Arc-length techniques were
used to obtain the complete load-deflection response at key locations
(e.g. load versus roof drift).

Two load criteria fromASCE7-05were considered, i.e., 1.2Dn+1.6Ln
and 1.2Dn+0.5Ln+1.6Wn. In ASCE7-05, the designwind load, 1.6Wn, is
based on a wind speed with a return period of 50 years (V50). In the
more recent standard ASCE7-10, the design wind load, 1.0Wn, is based
on a wind speed with a return period of 700 years (V700) for the struc-
tures of Risk Category II. In the upcoming standard ASCE7-16, the design
wind load, 1.0Wn, is also based on a wind speed with a return period of
700 years. Since the ratio V700/V50≈

ffiffiffiffiffiffiffi
1:6

p
, the design wind loads are

approximately the same in all three standards. Hence the system resis-
tance factors developed in this work is also applicable to ASCE7-10 and
upcoming ASCE7-16.

Because dead load, live load andwind load all have different variabil-
ities, the reliability studies need to consider various loading conditions.
In the case of gravity loads, the typical factored gravity load is
1.2Dn + 1.6Ln = 67.2 kN/m as shown in Fig. 4, with Ln/Dn varying
from 0.5 to 5.0. For instance, for Ln/Dn = 2, Ln = 30.55 kN/m, and
Dn = 15.27 kN/m. For the combined wind and gravity load case, Ln
andDn are assumed to be 48 kN/m and 24 kN/m, respectively; the nom-
inal wind loadWn varies from 86.4 kN to 277.2 kN to consider different
lateral-to-gravity load ratios. Let WT and GT denote the overall factored
wind force and the overall factored gravity force on the building,

WT ¼ Σi1:6Wni;GT ¼ Σi 1:2Dni þ 0:5Lnið ÞAi

inwhichWni,Dni, Lni and Ai represent thewind force, dead load, live load
and floor area at level i, respectively. Four cases of the wind-to-gravity
force ratio WT/GT are considered in this study, i.e., WT/GT = 0.11, 0.15,
0.25 and 0.35.

4.1. System reliability analysis-gravity load only

To consider the effect on system reliability of ϕs, the design of the
frame is adjusted such that the frame is at its strength limit state
under a given value of ϕs. Table 4 summarizes five values of ϕs and the
Fig. 5. Histogram of gravity load capacity, (ϕs = 0.63).



Fig. 6. β vs. ϕs, gravity load only.
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correspondingmember sizes. Take the case of ϕs =0.63 as an example,
the ultimate load scale factor λu is 1.59 so that with a system resistance
factor ϕs=0.63, the frame is just at its strength limit state (λuϕs=1.0).
The framemember sizes were then adjusted such that the frame is at its
strength limit state for other values of ϕs as well.

Monte Carlo simulation using Latin Hypercube sampling technique
were conducted to generate sample distributions of the system
Table 6
System resistance factors (ϕs) for different reliability levels, gravity load only.

Ln/Dn Weight (%) ϕs

β = 2.5 β = 2.75 β = 3.0 β = 3.5

0.5 10 0.95 0.92 0.89 0.82
1 20 0.94 0.89 0.85 0.78
1.5 25 0.93 0.88 0.83 0.74
2 35 0.92 0.86 0.81 0.72
3 7 0.90 0.85 0.80 0.71
5 3 0.89 0.83 0.78 0.68

Average weighted value of ϕs

0.92 0.87 0.83 0.74

Fig. 7. Histogram of RW, (WT
strength, based on which we can estimate its statistics. 350 simulations
were performed for each frame. In each simulation, a sample of frame is
generated with randomly generated values for yield strength, modulus
of elasticity, initial geometric imperfections, and residual stress, accord-
ing to their statistics presented in Section 3. Assuming that the loads at
every level are perfectly correlated, the frame is loadedwith an increas-
ing gravity load until collapse to obtain the ultimate gravity load
capacity RG. Based on the Monte Carlo simulation, the statistics of RG
(mean and COV) for different values of ϕs are summarized in Table 5.
It can be seen that the mean of RG decreases as ϕs increases. This is to
be expected as a smaller value of ϕs represents a more conservative
design. Table 5 also shows that the COVof RG appears to be independent
with ϕs; it is about 8% in all cases. A lognormal distribution can fit to the
histogram of RG. This is consistent with the common observation that
structural resistance often can be modeled by a lognormal distribution.
As an example, Fig. 5 shows the histogram of RG for the frame assigned
with ϕs = 0.63.

With known statistics of RG (from simulation) and the loads (from
literature), the reliability index for Eq. (5) can be computed using
the FORM procedure outlined in Section 2.1. Fig. 6 plots the system
reliability indices β as a function of ϕs for different cases of Ln/Dn. It
/GT = 0.15, ϕs = 0.87).



Table 7
Simulation results for system's lateral load capacity.

WT/GT = 0.11 WT/GT = 0.15 WT/GT = 0.25 WT/GT = 0.35

ϕs μR (kN) VR ϕs μR (kN) VR ϕs μR (kN) VR ϕs μR (kN) VR

0.75 289.15 0.13 0.76 350.96 0.12 0.74 535.92 0.10 0.75 684.20 0.08
0.83 243.00 0.13 0.80 331.42 0.12 0.80 499.84 0.11 0.79 638.77 0.09
0.88 225.01 0.14 0.87 297.64 0.12 0.86 449.72 0.10 0.87 582.89 0.10
0.93 208.95 0.15 0.93 268.22 0.13 0.95 391.81 0.11 0.95 523.05 0.09

μR = mean; VR = COV.
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can be seen that for a given value of ϕs, β decreases as Ln/Dn increases.
This is because live load has more variability than dead load. The results
of Fig. 6 can be used to select a required ϕs in order to achieve a given
value of target reliability index. Table 6 summarizes the ϕs values for
four representative target reliability index (i.e. β = 2.5, 2.75, 3 and
3.5) for different live-to-dead load ratios. Clearly, a single value of ϕs

cannot achieve a “uniform” reliability. However, a constant resistance
factor for all load ratios is desirable for its simplicity in everyday design
use. To obtain a weighted average value of ϕs, a weight is assigned to
each case of Ln/Dn, representing the relative frequency of different load
situations [34]. Theseweights reflect the best judgement of the authors.
Thus, the final system resistance factor ϕs can be calculated as

ϕs ¼
X

wiϕsi

in whichwi is the weight assigned to the ith load situation, and ϕsi is the
system resistance factor for the ith load situation. Table 6 summarizes
the weight-averaged resistance factors for different target reliability
indices.

4.2. System reliability analysis – combined gravity and wind loads

For a given combination of ϕs and wind-to-gravity load ratioWT/GT,
the member section sizes are adjusted such that the frame is just at
its strength limit state. The section sizes for different combinations of
WT/GT and ϕs can be found in the Appendix A.

For each design of the frame, 350 Monte Carlo simulations were
performed to obtain a sample of its lateral capacity. In each simulation,
a random frame is generated, and subjected to a random dead load and
a random arbitrary-point-in-time live load. Loads on each level are
assumed to be perfectly correlated. The frame is analysed under the ap-
plied gravity loads. Once the deformed shape of the frame under gravity
loading is obtained and the gravity loads are in position, a static lateral
pushover analysis is conducted by increasing the lateral load until
failure. The applied lateral load at system failure represents the lateral
Table 8
Comparison of reliability indices from FORM and direct MC simulations.

WT/GT ϕs β (FORM) β (MC) Error

0.11 0.75 3.55 3.62 1.86%
0.83 3.09 3.16 2.18%
0.88 2.85 2.94 2.95%
0.93 2.63 2.69 2.32%

0.15 0.76 3.26 3.39 3.77%
0.80 3.10 3.18 2.60%
0.87 2.79 2.87 2.99%
0.93 2.50 2.60 3.78%

0.25 0.74 3.08 3.14 1.89%
0.80 2.78 2.86 2.79%
0.86 2.59 2.70 4.01%
0.95 2.25 2.33 3.27%

0.35 0.75 2.85 2.95 3.45%
0.79 2.65 2.73 2.94%
0.87 2.38 2.51 4.89%
0.95 2.09 2.15 2.88%
load capacity of the system, RW. Fig. 7 shows the histogram of RW for
the frame withWT/GT =0.15 and ϕs =0.87. The statistics of RW for dif-
ferent combinations ofWT/GT and ϕs are summarized in Table 7. Similar
to the gravity load case, the mean of RW decreases with increasing ϕs.
However, its COV appears to be independent of ϕs; it is about 10% to
15% in all cases. It is also found that in general, RW can be fitted by a log-
normal distribution.

The reliability indices for all cases were computed using the FORM
outlined in Section 2.1, and summarized in Table 8. To verify the accura-
cy of the FORM, the results from the direct Monte Carlo simulations are
also presented in Table 8. As can be seen from Table 8, the reliability
indices from the FORM are generally slightly lower than those from
the Monte Carlo simulations. The discrepancy of β is about 2% to 5%.
This shows that the simplified FORM is reasonably accurate, and suffi-
cient for code development purpose. The following discussions are
based on the results from the FORM.

The system reliability indices for all combinations of ϕs and WT/GT

are plotted in Fig. 8. It is evident that β decreases as WT/GT increases.
This is to be expected because the COV of the wind load is greater
than that of the gravity loads. It can be seen from Fig. 8 that for ϕs =
0.85, β approaches a value of 2.5 when the wind is themajor load com-
ponent; with greater gravity loads, the value of β increases to about 3.1.
By assigning weights to different wind-to-gravity load ratio WT/GT, the
weighted-average values of system resistance factors for different
reliability levels are determined and summarized in Table 9.
Fig. 8. β vs. ϕs, combined gravity and wind loads.

Table 9
System resistance factor (ϕs) for different reliability levels (combined gravity and wind
loads).

WT/GT Weight (%) ϕs

β = 2.5 β = 2.75 β = 3.0

0.11 20 0.95 0.91 0.85
0.15 30 0.92 0.88 0.82
0.25 30 0.88 0.81 0.75
0.35 20 0.83 0.77 0.71
Final value of ϕs 0.90 0.84 0.78
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Comparing Tables 6 and 9, it can be seen that for a particular value of
resistance factor, the reliability index for wind load is somewhat lower
than that for gravity load only. For instance, with ϕs = 0.85, the aver-
age-weighted β is 2.9 for gravity load only, and 2.7 for combined wind
and gravity loads.

5. Conclusion

This paper presents a framework for determining system resistance
factors for the Direct DesignMethod (DDM) of steel frames by advanced
analysis (second-order inelastic analysis). The system reliability
analysis method is based on the concept of First-Order Reliability
Method. The statistics of system strength is estimated using Monte
Carlo simulations, and then compared with the structural loads to
compute the system reliability indices.

As an example, a 2D three-bay, three-storeymoment resisting frame
is studied in this paper. The relationships between the system resistance
factor ϕs and the system reliability index β are computed for the gravity
load case and combined wind and gravity loads. Based on the system
C
C
C
B
B

C
C
C
B
B

C
C
C
B

C
C
C
B

reliability analysis results, the required resistance factorϕs can be deter-
mined to achieve a certain reliability level. The accuracy of the proposed
simplified reliability analysis method based on FORM is verified against
the direct Monte Carlo simulations and good agreement is observed. It
was found that for gravity load only, a system resistance factor of
ϕs = 0.85 can achieve a target system reliability index of about 2.9.
For combined wind and gravity load cases, a system resistance factor
of ϕs = 0.85 would yield a system reliability index of 2.7. Additional
frame reliability analyses, system resistance factors and design recom-
mendations for a wide range of two-dimensional frames are presented
in the companion paper [1].
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Appendix A. Frame section sizes for combined gravity and wind loads
Table A1

System based design under combined gravity and wind loading (WT/GT = 0.11).
Members
 ϕs = 0.75
 ϕs = 0.83
 ϕs = 0.93
 Members
 ϕs = 0.88
Sections
 Sections
 Sections
 Sections
 Sections
1,C4,C5,C8,C9,C12
 460UB74.6
 460UB67.1
 360UB56.7
 C1,C4
 460UB67.1

2,C3,C6,C7
 360UB50.7
 310UB46.2
 360UB50.7
 C5,C8,C9,C12
 360UB56.7

10,C11
 250UB31.4
 250UB25.7
 250UB25.7
 C2,C3,C6,C7
 310UB40.4

1,B3,B4,B6,B7,B9
 460UB74.6
 460UB74.6
 460UB67.1
 C10,C11
 250UB25.7

2,B5,B8
 360UB56.7
 360UB56.7
 360UB50.7
 B1,B3,B4,B6,B7,B9
 460UB82.1
B2,B5,B8
 360UB56.7
Table A2

System based design under combined gravity and wind loading (WT/GT = 0.15).
Members
 ϕs = 0.76
 ϕs = 0.80
 ϕs = 0.93
 Members
 ϕs = 0.87
Sections
 Sections
 Sections
 Sections
 Sections
1,C4,C5,C8,C9,C12
 460UB67.1
 460UB74.6
 460UB67.1
 C1,C4
 460UB67.1

2,C3,C6,C7
 460UB67.1
 410UB67.1
 360UB50.7
 C5,C8,C9,C12
 360UB50.7

10,C11
 250UB37.3
 250UB31.4
 250UB31.4
 C2,C3,C6,C7
 410UB59.7

1,B3,B4,B6,B7,B9
 460UB82.1
 460UB74.6
 460UB74.6
 C10,C11
 250UB31.4

2,B5,B8
 360UB56.7
 360UB56.7
 360UB56.7
 B1,B3,B4,B6,B7,B9
 460UB67.1
B2,B5,B8
 360UB50.7
Table A3

System based design under combined gravity and wind loading (WT/GT = 0.25).
Members
 ϕs = 0.76
 ϕs = 0.80
 ϕs = 0.86
 ϕs = 0.95
Sections
 Sections
 Sections
 Sections
1,C4,C5,C8,C9,C12
 530UB92.4
 530UB82.0
 530UB82.0
 460UB74.6

2,C3,C6,C7
 530UB82.0
 460UB82.1
 460UB82.1
 460UB74.6

10,C11
 310UB46.2
 310UB46.2
 310UB46.2
 310UB46.2

1,B3,B4,B6,B7,B9
 530UB82.0
 530UB92.4
 460UB74.6
 460UB74.6

2,B5,B8
 460UB67.1
 460UB67.1
 410UB53.7
 410UB53.7
B
Table A4

System based design under combined gravity and wind loading (WT/GT = 0.35).
Members
 ϕs = 0.75
 ϕs = 0.79
 ϕs = 0.87
 ϕs = 0.95
Sections
 Sections
 Sections
 Sections
1,C4,C5,C8,C9,C12
 610UB101
 530UB92.4
 530UB92.4
 530UB92.4

2,C3,C6,C7
 610UB101
 610UB101
 530UB92.4
 530UB82.0

10,C11
 310UB46.2
 310UB46.2
 310UB46.2
 310UB46.2

1,B3,B4,B6,B7,B9
 530UB92.4
 530UB92.4
 530UB92.4
 460UB82.1

2,B5,B8
 460UB67.1
 460UB67.1
 460UB67.1
 460UB67.1
B
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