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Abstract: The flexural failure mode of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars changes from GFRP
rupture to concrete crushing as the reinforcement ratio increases. Due to the uncertainties of material strengths, assumptions made in analysis,
and variations in locations of reinforcements and dimensions of sections, there is a transition region where both flexural failure modes are
possible. An iterative procedure is required when GFRP rupture governs the design. To avoid this iteration, the current American standard
adopts a simplified but conservative procedure. In this study, the upper bound of the reinforcement ratio for beams in the transition region is
revised. Moreover, a simplified yet rational design equation for calculating the flexural capacity of under-reinforced beams is proposed based
on rigorous sectional analyses. Also, alternative design equations based on regression analyses are developed to predict the flexural capacity
of beams in the transition region and over-reinforced beams, respectively. Moreover, the performance of the proposed equations is compared
to that of design equations of recent standards by comparing their predictions with experimental results of 173 GFRP reinforced concrete
beams collected from the available literature. DOI: 10.1061/(ASCE)CC.1943-5614.0000630. © 2015 American Society of Civil Engineers.
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Introduction

The corrosion of steel reinforcement in concrete structures is one of
the major challenges facing the construction industry. When ex-
posed to aggressive environments, such as deicing salts and marine
environments, concrete infrastructure is especially susceptible to
corrosion. Decades of research have shown that substitution of steel
bars with fiber-reinforced polymer (FRP) reinforcements is an
alternative solution (Nanni et al. 2014). In addition to a high resis-
tance to corrosion, FRP reinforcements have characteristics that in-
clude a high strength-weight ratio, outstanding fatigue resistance,
lower elastic modulus compared to steel, and a linear stress-strain
relationship. At present, commercially available fibers include
glass, carbon, aramid, and basalt, and bars using them are termed
GFRP, CFRP, AFRP, and BFRP bars, respectively. In practice,
GFRP bars are widely used as reinforcement for concrete members
in lieu of conventional steel reinforcing bars due to their relative
low cost.

Over the last two decades, a considerable number of experimen-
tal studies (Nanni 1993; Benmokrane et al. 1996; Yost et al. 2001;
Kassem et al. 2011; El-Nemr et al. 2013) have been carried out
to investigate the flexural responses of GFRP reinforced concrete
(RC) beams. These experimental studies have shown that GFRP
RC members fail in flexure in a brittle manner, either due to con-
crete crushing (compression failure mode) or rupture of the GFRP

bars (tension failure mode). At limited state, the compression
failure mode is the recommended failure mechanism since it is
more progressive and has a higher degree of deformability [Nanni
1993; ACI Committee 440 (ACI 2006)]. Nevertheless, design prac-
tice indicates that for some members, such as bridge deck GFRP
RC slabs, tension failure mode is a common practice (Choi et al.
2008).

As GFRP bars possess mechanical and bond properties different
from steel bars, the analytical procedure developed for the design of
concrete structures reinforced with steel bars is not necessarily
applicable to those reinforced with GFRP bars (Nanni 1993;
Xue et al. 2008). The desired failure mode in a traditional steel-
reinforced beam is yielding of the tension steel, followed by
eventual crushing of the concrete in the compression zone of the
member. Because steel reinforcement is a typical elastic-plastic
material and exhibits a long yield plateau, this desired failure mode
can be always implemented in the steel-reinforced beam design
practice. Since GFRP reinforcing bars are linear elastic to failure,
a desired steel-like failure only occurs in the balanced point where
rupture of GFRP and crushing of concrete occur simultaneously in
GFRP RC beams. Theoretically, the distinction between compres-
sion failure mode and tension failure mode is achieved through the
balanced reinforcement ratio ρfb. However, due to uncertainties of
material strengths, assumptions in analysis, and variations in
locations of reinforcements and dimensions of concrete sections
(MacGregor 1997), the actual flexural failure mode may differ from
the predicted one. That is, there is a transition region where com-
pression failure mode and tension failure mode are possible. ACI
440.1R-06 (ACI 2006) suggested that the upper bound of reinforce-
ment ratio of beams in the transition region ρ� was taken as 1.4ρfb.
Similarly, other researchers (Vijay and GangaRao 2001; Yost and
Gross 2002) proposed a reinforcement ratio of 1.33ρfb. Lau and
Pam (2010) compared ρfb at the design stage with that at the testing
stage for GFRP RC beams and suggested that the upper bound of
1.4ρfb for the transition region should be increased. From the afore-
mentioned discussions, it is concluded that there is no universally
acceptedvalueofρ� and that this value shouldbe further investigated.
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Based on a review of existing FRP RC design guidelines
[Fédération Internationale du Béton (FIB 2007); ACI Committee
440 (ACI 2006); Canadian Standards Association (CSA 2002);
Italian National Research Council (CNR) 2006; ISIS Canada
2007] for determining the flexural strength of FRP RC beams, it
is found that FIB task group 9.3 (FIB 2007) and ISIS Canada
(2007) require an iterative procedure for under-reinforced
(ρf < ρfb) beams, because an under-reinforced section will fail
due to rupture of the FRP bars in tension before the concrete has
reached its ultimate strain εcu. This iterative procedure based on
the three principles of mechanics of deformale bodies (equilibrium
conditions, compatibility conditions, and constitutive conditions) is
regarded as accurate but too complex to be efficiently used in normal
calculations in design offices (Bank 2006). To avoid this iteration,
ACI 440.1R-06 (ACI 2006) adopts a simplified procedure based
on the balanced failure condition in which the concrete reaches
the ultimate compressive strain εcu. This simplification, however, as-
sumes a constant maximum value for the depth of the compressive
stress block (Choi et al. 2008), which means a minimum lever arm of
the couple force. Accordingly, ACI 440.1R-06 (ACI 2006) is
regarded as conservation when dealing with flexural failure due
to FRP rupture (Bank 2006; Nanni et al. 2014). It should be men-
tioned that the assumed stress distribution in the concrete conflicts
with the force equilibrium. In addition, regarding the flexural
capacity of over-reinforced beams (ρf ≥ ρ�), experimental results
generally showed higher loads than those predicted by ACI 440
(ACI 2006) design equations (Thériault and Benmokrane 1998;
Wang and Belarbi 2005; Barris et al. 2009). This may be attributed
to the fact that the ACI 440 (ACI 2006) equation ignores the
reinforcement in the compression zone and the maximum concrete
crushing strain, εcu, can reach higher values than the assumed value
of 0.003 in analysis (Barris et al. 2009; Kara and Ashour 2012). More-
over, when estimating the flexural capacity of the beams in the tran-
sition region (ρfb ≤ ρf < ρ�), current design equations based on the
assumption of concrete crushing may overestimate the load capacity
of the beams in transition (Xue et al. 2009) Therefore, it is necessary to
develop simplified and accurate calculating design equations for pre-
dicting the flexural capacity of under-reinforced beams, beams in the
transition region, and over-reinforced beams, respectively.

In this paper, the upper bound of reinforcement ratio for
GFRP RC beams in the transition region is revised. Then, rigorous
sectional analyses based on the three principles of mechanics of
deformale bodies are carried out to obtain a simplified and rational
design equation for calculating the flexural capacity of the under-
reinforced beams. Subsequently, simple yet improved design equa-
tions based on regression analyses are developed to calculate the
flexural capacity of GFRP RC beams in the transition and over-
reinforced beams, respectively. Finally, the accuracy of the pro-
posed equations, ACI 440 (ACI 2006) equations and FIB Task

Group 9.3 (FIB 2007) equations is evaluated by comparing their
predictions with experimental results of 173 GFRP RC beams
available in the literature.

Design Equations for Nominal Flexural Strength

Basic Assumption

Referring to ACI 440.1R-06 (ACI 2006), the following assump-
tions are made in calculating the nominal flexural strength of RC
beams reinforced with GFRP reinforcements:
• Strain in the concrete and the GFRP reinforcement is propor-

tional to the distance from the neutral axis (that is, a plane sec-
tion before loading remains plane after loading);

• Concrete tensile strength is ignored;
• The maximum usable compressive strain in the concrete is

assumed to be 0.003;
• The stress-strain curve of GFRP reinforcement is idealized as

linear elastic to failure;
• The stresses in the concrete can be computed from the strains by

using stress-strain curves for concrete; and
• There is a perfect bond between the GFRP reinforcement and

the concrete.

Balanced Reinforcement Ratio

Existing design guidelines for FRP, such as the ACI-440.1R-06
(ACI 2006) and ISIS Canada (2007), distinguish between concrete
crushing and FRP rupture through the balanced reinforcement ratio,
ρfb, where strains in concrete and GFRP bars simultaneously reach
their maximum values. This is the common design concept for
FRP RC sections. The strain and the stress distribution in the cross-
section are shown in Figs. 1(b and c), respectively. In this case,
the stress distribution in the concrete can be approximated by
Whitney’s rectangular stress block [Fig. 1(d)]. By considering equi-
librium of internal forces and linear strain distribution assumption,
the balanced reinforcement ratio can be expressed as Eq. (1)

ρfb ¼
0.85β1f 0

c

ffu

εcuEf

ffu þ εcuEf
ð1Þ

where β1 = ratio of depth of equivalent rectangular stress block
to depth of neutral axis; Ef = elastic modulus for GFRP; ffu =
ultimate tensile strength of GFRP; f 0

c = cylinder compressive
strength of concrete; and εcu = ultimate compressive strain of con-
crete, which is assumed to be 0.003 according to ACI 440.1R-06
(ACI 2006). Note that this paper focuses on the short-term behavior
of GFRP RC beams, and the degradation of ffu due to exposure to
various types of environments was not considered herein.

(a) (b) (c) (d)

Fig. 1. Balanced failure mode: strain and stress conditions (a) cross section; (b) strain; (c) stress; (d) stress (equivalent)
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Upper Bound of Reinforcement Ratio for Beams in the
Transition Region

The flexural capacity of a GFRP reinforced flexural member is de-
pendent on whether the failure is governed by concrete crushing or
GFRP rupture. Theoretically, if the GFRP reinforcement ratio is
less than the balanced ratio (ρf < ρfb), the GFRP rupture failure
mode governs. Otherwise, the concrete crushing failure mode gov-
erns (ρf > ρfb). Although theoretical delineation of the concrete
crushing failure mode of concrete beams is possible, the actual
member may not fail as predicted. This mainly is attributed to the
uncertainties of material strengths, assumptions made in analysis,
and variations in locations of reinforcements and dimensions of
concrete sections. For example, if the concrete strength is higher
than specified, the member can fail due to FRP rupture. Similarly,
if the maximum compressive strain of concrete reaches higher than
the assumed value of 0.003 in analysis, the member can fail due to
FRP rupture. In this paper, a total of 173 GFRP RC beams tested in
flexure were collected from the available experiments. Eq. (1) was
performed to predict the flexural failure modes. It was found that 10
beams did not fail in the predicted failure mode, and that there was
a transition region where compression failure and tension failure
were possible. Therefore, if Eq. (1) is used to distinguish the flexu-
ral failure mode, an upper bound of reinforcement ratio for beams
in the transition region should be specified. Vijay and GangaRao
(2001) proposed a method to determine the upper bound of
reinforcement ratio for beams in the transition region, as shown
in Eq. (2)

ρ� ¼ ρfb
1 − 3σ

ð2Þ

where σ is the standard deviation of the ratio between the theoreti-
cal flexural capacity and experimental bending capacity of GFRP
RC beams failing in compression failure.

The standard deviation σ in Eq. (2) was observed from the com-
parisons between the theoretical flexural capacity and experimental
bending capacity of 90 GFRP RC beams failing in compression
with ρf > ρfb. It should be noted that all material reduction and
safety factors in determining the flexural capacity were set equal to
1.0 in this study. The Appendix lists the specimens that were used

to obtain the standard deviation σ. Based on a statistical analysis,
the standard deviation σ was taken as 10.9% (see Appendix).
Therefore, the upper bound of reinforcement ratio for beams in the
transition region ρ� should be taken as 1.5ρfb. The reinforcement
ratio of 1.5ρfb, which is 50% higher than the balanced failure con-
dition, accounts for the possible tension failure mode due to afore-
mentioned sources of uncertainty. In summary, Table 1 lists the
relationship between GFRP reinforcement ratios and failure modes.

Tension Failure Mode

If a beam is designed to fail by GFRP rupture, a minimum amount
of reinforcement should be provided to prevent failure upon
concrete cracking. According to ACI 440.1R-06 (ACI 2006), the
minimum reinforcement ratio is given by Eq. (3)

ρf;min ¼
0.41

ffiffiffiffiffi
f 0
c

p
ffu

ðMPaÞ ð3Þ

When ρf;min ≤ ρf < ρfb, the failure of the member is initiated by
rupture of GFRP bar. At failure, the ultimate tensile strain of GFRP,
εfu, is reached and the compressive strain at the extreme compres-
sion fiber of concrete, εc, does not reach the ultimate compressive
strain εcu. In such a case, the strain and the stress distribution in
the cross-section are shown in Figs. 2(b and c), respectively. The
stress distribution in the concrete can be approximated with an
equivalent rectangular stress block using two strain-dependent
and stress-dependent parameters α and β[as shown in Fig. 2(d)].
To compute the equivalent stress block parameters α and β, the
stress-strain relationship in concrete needs to be determined. A
number of models describing the stress-strain curve of concrete
have been proposed. One of commonly used models is the
Todeschini model (Todeschini et al. 1964). The equivalent stress
block parameters for the Todeschini model are given as (Bank
2006; Nanni et al. 2014)

α ¼ 0.90 lnð1þ ε2c=ε20Þ
βεc=ε0

ð4Þ

β ¼ 2 − 4½εc=ε0 − tan−1ðεc=ε0Þ�
εc=ε0 lnð1þ ε2c=ε20Þ

ð5Þ

where εc = compressive concrete strain and ε0 = concrete strain
at maximum strength as determined from cylinder tests cali-
brated based on the results reported by Todeschini et al.
(1964) as ε0 ¼ 1.71f 0

c=Ec. The concrete modulus Ec is equal
to 4,700

ffiffiffiffiffi
f 0
c

p
MPa, according to the ACI 318 building code

(ACI 2011).

Table 1. Reinforcement Ratio versus Failure Mode

GFRP reinforcement ratio ρf Failure mode

ρf < ρfb Tension failure
ρfb ≤ ρf ≤ 1.5ρfb Uncertainty
ρf > 1.5ρfb Compression failure

(a) (b) (c) (d)

Fig. 2. Tension failure mode: strain and stress conditions (a) cross section; (b) strain; (c) stress; (d) stress (equivalent)
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By considering equilibrium of internal forces, Eq. (6) is
obtained

Afffu ¼ αβf 0
cbc ð6Þ

where Af = area of longitudinal GFRP reinforcement in tension;
b = width of beam; and c = distance from extreme compression
fiber to the neutral axis.

Referring to the strain distribution shown in Fig. 2(b), one
obtains

ku ¼
c
d
¼ εc

εc þ εfu
ð7Þ

where d = effective depth and ku = ratio of the depth of the neutral
axis to the effective depth.

Defining the reinforcement index ωf ¼ ρfffu=f 0
c, Eq. (6) can

be expressed as

ku ¼
ωf

αβ
ð8Þ

In order to determine the equivalent parameters α and β, a numeri-
cal procedure is required. The procedure is summarized in the
following steps:
1. Calculate the minimum reinforcement ratio ρf;min from Eq. (3);
2. Assume a value for the concrete strain εc at extreme compres-

sion fiber of concrete;
3. Calculate the block parameters α and β from Eqs. (4) and (5),

respectively;
4. According to the linear strain distribution, determine the value

of ku using Eq. (7);
5. According to the force equilibrium, determine the value of ku

from Eq. (8); and
6. If ku in step 4 equals the value in step 5, the coefficient ku is

calculated from Eq. (7) or Eq. (8). Otherwise, εc should be chan-
ged and steps 2 to 5 should be repeated until ku in step 4 equals
the value in step 5.
Repeating the aforementioned procedure for increasing values

of the reinforcement ratio ρf until the reinforcement ratio ρf
reaches the balanced reinforcement ratio ρfb, the corresponding
nondimensional equivalent neutral axis depth βku can be com-
puted; thus, tables of the reinforcement index ωf and the nondimen-
sional equivalent neutral axis depth βku can be generated.

Based on the described procedure, parametric studies were
performed using a wide range of values for design parameters, for
example, the elastic modulus of GFRP reinforcements (Ef) ranging
from 40 to 60 GPa, ultimate tensile strain of GFRP bars (εfu) rang-
ing from 0.01 to 0.025, concrete compressive strength (f 0

c) ranging
from 30 to 60 MPa, and GFRP reinforcement ratio (ρf) ranging
from ρf;min to ρfb.

Fig. 3 presents (as an example) the βku coefficient graphically in
terms of the reinforcement index ωf and the ultimate strain of
GFRP εfu, for the particular case of the modulus of elasticity of
GFRP Ef ¼ 40 GPa and the concrete strength f 0

c ¼ 30 MPa. The
obtained numerical results (as shown in Fig. 3) indicate that the
nondimensional equivalent neutral axis depth βku is approximately
linear with the reinforcement index ωf . Based on a regression
analysis, Eq. (9) for the nondimensional equivalent neutral axis
depth βku was proposed

βku ¼ ωf þ
0.14

1þ 400εfu
ð9Þ

From the moment equilibrium, the nominal flexural strength of
an under-reinforced section can be computed by Eq. (10)

Mn ¼ Afffu

�
1 − βku

2

�
d ð10Þ

ACI 440.1R-06 (ACI 2006) also recommended a simplified pro-
cedure for failure due to GFRP rupture. This simplification was
based on the balanced failure condition, and a constant maximum
value for the depth of the compressive stress block was obtained

cb ¼
εcu

εcu þ εfu
d ð11Þ

where cb = depth of compression zone at balanced strain condition.
In this case, the nondimensional equivalent neutral axis depth βku
can be expressed as

βku ¼
β1εcu

εcu þ εfu
ð12Þ

Eq. (12) is plotted as the dashed curves in Fig. 3. Note that Eq. (12)
obtained from ACI 440.1R-06 (ACI 2006) does not take into
account the possible variation in the nondimensional equivalent
neutral axis depth βku, when there is a change in the reinforcement
ratio of the GFRP RC section.

Compression Failure Mode

When ρf ≥ 1.5ρfb, the failure of the member is initiated by crush-
ing of the concrete and the stress distribution in the concrete can be
approximated by Whitney’s rectangular stress block. The stresses
in GFRP bars at failure, however, are unknown. Based on equilib-
rium conditions and compatibility conditions (shown in Fig. 4), the
following equations can be obtained:

Mn ¼ Afff

�
d − β1c

2

�
ð13Þ

Afff ¼ 0.85β1f 0
cbc ð14Þ

ff ¼ Efεcu
d − c
c

ð15Þ

where ff = stress in GFRP reinforcement in tension at failure.

Fig. 3. Variation in nondimensional equivalent neutral axis depth βku
for tension failure
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Combining Eqs. (14) and (15) to eliminate c, Eq. (16) is
obtained

ff ¼
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEfεcuÞ2

4
þ 0.85β1f 0

c

ρf
Efεcu

s
− 0.5Efεcu

3
5 ≤ ffu ð16Þ

Substituting f 0
c from Eq. (1) into Eq. (16) to eliminate f 0

c, it can
be found that the stress in GFRP at failure ff is a function of the
ultimate tensile stress of GFRP, ffu, and the ratio between the
reinforcement ratio and the balanced reinforcement ratio, ρf=ρfb.
Based on experimental results of 93 over-reinforced (ρf ≥ 1.5ρfb)
concrete beams, a regression analysis of ff=ffu was made as a
function of ρf=ρfb. This analysis provided the following simplified
expression:

ff ¼ ffuðρf=ρfbÞ−0.55 ð17Þ

Eq. (17) is plotted as a solid curve in Fig. 5. It is found that the
coefficient of determination R2 of the regression curve is 0.86,
which indicates a good correlation between the experimental
and the predicted results (Haldar and Mahadevan 2000). Note that
a higher GFRP reinforcement ratio leads to less efficient use of the
GFRP tensile strength from Fig. 5.

Uncertain Failure Mode

When ρfb ≤ ρf < 1.5ρfb, the failure mode of GFRP RC beams is
uncertain; that is, tension failure and compression failure are pos-
sible. Fig. 6 compares the predictions from Eq. (17) against the
measured results of 33 beams in the transition region. It can be seen
from Fig. 6 that Eq. (17), which is based on the over-reinforced
members (ρf > 1.5ρfb), generally overestimates the GFRP tensile
stress at failure ff . For the sake of safety and continuity of design
equations, a regression curve [Eq. (18)] was chosen close to the
lower envelope curve

ff ¼ ffu½1 − 0.23ðρf=ρfb − 1Þ0.2� ð18Þ

Eq. (18) is plotted as a dashed curve in Fig. 6. The coefficient
of determination R2 is 0.82 for Eq. (18), and is 0.70 for Eq. (17).
It is clear that Eq. (18) shows a better correlation between the
experimental and the predicted results than Eq. (17) does.

Design Recommendations

From the preceding discussions, the stress in GFRP reinforcement
at failure can be computed by Eq. (19)

(a) (b) (c) (d)

Fig. 4. Compression failure mode: strain and stress conditions (a) cross section; (b) strain; (c) stress; (d) stress (equivalent)

Fig. 5. Relationship between ff=ffu and ρf=ρfb for compression fail-
ure mode

Fig. 6. Relationship between ff=ffu and ρf=ρfb for uncertain failure
mode
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ff ¼

8>><
>>:

ffu ðρfmin ≤ ρf < ρfbÞ
½1 − 0.23ðρf=ρfb − 1Þ0.2�ffu ðρfb ≤ ρf ≤ 1.5ρfbÞ
ðρf=ρfbÞ−0.55ffu ð1.5ρfb < ρfÞ

ð19Þ

The design equations previously presented allow the calculation
of the nominal moment resistance using Eq. (20)

Mn ¼ ρfffjbd2 ð20Þ

where j = coefficient of the lever arm of the couple force, given by

j ¼

8>><
>>:

1 − 0.07
1þ 400εfu

− 0.5
ρfff
f 0
c

ðρfmin ≤ ρf < ρfbÞ

1 − 0.59
ρfff
f 0
c

ðρf ≥ ρfbÞ
ð21Þ

Note that Eq. (21) takes into account the variation in the lever
arm of the couple force when there is a change in the reinforcement
ratio, whether GFRP RC beams fail due to GFRP rupture or con-
crete crushing.

Verification of Design Equations

A database of 173 GFRP RC beams, including nine beams tested
by our research group previously, was used to validate the proposed
design equations. The geometrical and material properties of all
beams considered are listed in the Appendix. The reinforcement
ratio of the beams ranges from 0.21 to 10.09 times the balanced
reinforcement ratio ρfb, which covers a relatively wide range of
the reinforcement ratio of GFRP RC beams used in practice. All
173 beams (including 47 under-reinforced beams, 33 beams in
the transition region, and 93 over-reinforced beams) were reported
to fail in flexure, and satisfied the minimum reinforcement require-
ments. In addition to the proposed equations, the predictions given
by ACI 440 (ACI 2006) equations and FIB Task Group 9.3 (FIB
2007) equations were also compared against the experimental re-
sults in the database. It should be noted that all material reduction
and safety factors in the design equations considered in this study
were set equal to 1.0 for the sake of comparison.

Current Flexural Design Guidelines for GFRP RC
Beams

ACI 440.1R-06 (ACI 2006), based on the balanced GFRP
reinforcement ratio ρfb, predicts the nominal flexural capacity Mn
of beams reinforced with GFRP bars using Eq. (22) when the
reinforcement ratio ρf is less than ρfb, and by applying Eqs. (16)
and (23) when the reinforcement ratio ρf is greater than ρfb.
Herein, the ultimate compressive strain in concrete εcu is assumed

to 0.003. It should be mentioned that Eq. (22) is derived bassed on
the balanced failure condition in which the extreme compression
fiber of concrete reaches the ultimate compressive strain, εcu

Mn ¼ ρfffu

�
1 − β1

2

εcu
εcu þ εfu

�
bd2 ð22Þ

Mn ¼ ρfff

�
1 − 0.59

ρfff
f 0
c

�
bd2 ð23Þ

According to FIB Task Group 9.3 (FIB 2007), when the longi-
tudinal GFRP reinforcement ratio ρf is below the balanced
reinforcement ratio ρfb, the nominal moment resistance can be
achieved by solving Eqs. (24) and (25). If the GFRP reinforcement
ratio ρf is higher than ρfb, the nominal moment resistance can be
calculated by Eqs. (26) and (27). Herein, the ultimate compressive
strain in concrete εcu is assumed to 0.0035. In this case, calculation
of the nominal moment capacity of an under-reinforced section
(ρf < ρfb) requires use of the nonlinear stress-strain curve of the
concrete, and this necessitates an iterative procedure

Mn ¼ Afffd

�
1 − ξ

2

�
d ð24Þ

bdξ

R εc
0 σcdεc

εc
¼ Afffd ð25Þ

Mn ¼ ηfcdbd2ðλξÞ
�
1 − λξ

2

�
ð26Þ

ξ ¼ x
d
¼ 2εcu

−εcu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2cu þ 4ηfcdλεcu

ρfEf

q
þ 2εcu

ð27Þ

where ffd = design value of tensile strength for GFRP; x = neutral
axis depth; fcd = design value of concrete compression strength;
λ = factor defining effective height of compression zone; η = factor
defining strength deduction factor; ξ = ratio of the neutral axis
depth to the effective depth; and σc = concrete compressive stress.

Comparison with Design Equations

The Appendix compares the predictions from the proposed equa-
tions, ACI 440 (ACI 2006) equations and FIB Task Group 9.3
(FIB 2007) equations against the experimental moment capacities
of GFRP RC beams in the database. Table 2 lists the means and
standard deviations of the ratio between the predictions and exper-
imental moment strengths of 173 GFRP RC beams (Mn=Mexp).
Generally, the predictions obtained from the three design ap-
proaches are in good agreement with the experimental results.

Table 2. Performance of Flexural Design Equations Considered in This Study

Method

Mn=Mexp Mn=Mexp Mn=Mexp Mn=Mexp

0 < ρf < 11ρfb (173 beams) ρf;min ≤ ρf < ρfb (47 beams) ρfb ≤ ρf ≤ 1.5ρfb (33 beams) ρf > 1.5ρfb (93 beams)

Mean
Standard deviation

(%) Mean
Standard deviation

(%) Mean
Standard deviation

(%) Mean
Standard Deviation

(%)

ACI 440 (ACI 2006) 0.94 19 0.91 21 1.05 19 0.94 17
FIB (2007) 1.05 18 0.96 16 1.10 18 1.05 19
Proposed equations 1.01 15 0.96 17 1.01 12 0.99 11
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However, the equations proposed in this paper are more predictive
than ACI 440 (ACI 2006) and FIB Task Group 9.3 (FIB 2007), in
terms of mean value and coefficient of variation of the ratio be-
tween the experimental and the predicted values. The mean value
obtained (1.01) is the best from all the methods studied. The co-
efficient of variation obtained (15%) is the lowest of all the methods
studied.

Particularly, the influence of failure modes on the accuracy of
these design equations was investigated. Table 2 presents the means
and the standard deviations of the ratio of computed to experimen-
tal moment capacity of under-reinforced beams, beams in the
transition region, and over-reinforced beams, respectively. For
under-reinforced beams (ρf < ρfb), both the proposed equations
and FIB Task Group 9.3 (FIB 2007) equations predict the moment
capacity of under-reinforced sections with sufficient accuracy. The
proposed equations, however, avoid an iterative process. On the
other hand, the simplified equation proposed by ACI 440.1R-06
(ACI 2006) gives conservative predictions. For beams in the tran-
sition region (ρfb ≤ ρf < 1.5ρfb), both the ACI 440 (ACI 2006) and
FIB Task Group 9.3 (FIB 2007) equations mostly overestimate the
load capacity of GFRP RC beams. One of the reasons for these
overestimations may be that both of these design guidelines are
based on the assumption of concrete crushing. For over-reinforced
beams (ρf ≥ 1.5ρfb), the proposed equations provide the most
accurate moment capacity estimations for GFRP RC beams. Mean-
while, ACI 440 equations mostly underestimate the load capacity
of over-reinforced beams. This may be attributed to the fact that the
maximum concrete crushing strain can reach higher values than
what is assumed in analysis.

Conclusions

This paper presents a theoretical investigation on the flexural
capacity of concrete beams reinforced with GFRP bars. The follow-
ing conclusions can be drawn from the studies made:
1. An experimental database including 173 flexural tests on GFRP

RC beams available in the literature has been established. Based
on a statistical analysis of the experimental database, the upper
bound of reinforcement ratio of 1.5ρfb for beams in the transi-
tion region is suggested.

2. A simplified yet rational design equation for evaluating flexural
capacity of GFRP under-reinforced concrete beam is developed
based on rigorous sectional analyses. Moreover, alternative and
simple design equations based on regression analyses of the ex-
perimental database are developed to predict the flexural capa-
city of beams in the transition region and over-reinforced beams,
respectively.

3. The proposed equations have been applied to predict the results
of 173 flexural tests on FRP RC beams. Predictions made by
ACI 440 and FIB Task Group 9.3 design equations have been
also compared with the experimental results. Analysis of this
comparison indicates that ACI 440 design equations give con-
servative predictions for under-reinforced beams. The proposed
design equations are more predictive than ACI 440 and FIB Task
Group 9.3 design equations and can be used for design purposes.
It should be mentioned that Eqs. (19)–(21) have been adopted in

Shanghai’s Construction Standard “Design and Construction of
Concrete Structures with Fibre-Reinforced Polymers,” which will
be published in 2015, in Shanghai, China.

Appendix.

Comparisons between the Theoretical and Experimental Flexural Capacity of GFRP RC Beams

Investigators Specimen
b

(mm)
d

(mm)
f 0
c

(MPa)
ffu

(MPa)
Ef

(GPa) ρf (%) ρf=ρfb
Mn;exp
ðkNmÞ

Mn;pred=Mn;exp

Failure
modea

This
study

ACI
440

FIB Task
Group

Nawy and
Neuwerth (1971)

1 89 165 33.1 1,067 50.3 0.20 0.74 5.32 0.93 0.92 0.92 N
2 89 165 28.2 1,067 50.3 0.20 0.83 4.03 1.23 1.21 0.99 N
5 89 160 34.6 1,067 50.3 0.26 0.94 5.73 1.05 1.04 1.06 N
6 89 160 34.6 1,067 50.3 0.26 0.94 5.73 1.05 1.04 1.06 N
9 89 159 32.6 1,067 50.3 0.31 1.16 6.83 0.87 0.86 0.88 N
10 89 159 31.2 1,067 50.3 0.31 1.20 3.96 1.40 1.49 1.42 N
13 89 160 30.9 1,067 50.3 0.36 1.40 4.91 1.36 1.38 1.34 N
14 89 160 34.2 1,067 50.3 0.36 1.31 6.01 1.13 1.23 1.10 N
17 89 159 34.2 1,067 50.3 0.42 1.52 8.74 0.86 0.85 0.86 N
18 89 159 30.9 1,067 50.3 0.42 1.63 6.96 1.03 1.03 1.08 N

Nawy and
Neuwerth (1977)

7 127 276 32.4 724 26.2 1.81 5.85 43.71 1.00 1.00 1.06 N
8 127 276 29.6 724 26.2 1.81 6.23 39.18 1.07 1.07 1.12 N
9 127 273 29.6 724 26.2 2.19 7.54 47.54 0.93 0.93 0.97 N
10 127 273 35.1 724 26.2 2.19 6.71 46.34 1.03 1.04 1.05 N
11 127 274 39.3 724 26.2 2.54 7.25 50.64 1.06 1.06 1.10 N
12 127 274 30.3 724 26.2 2.54 8.60 46.94 1.02 1.02 1.06 N

Faza (1991) C4 152 267 28.9 551 45.5 2.49 3.28 54.60 1.21 1.22 1.24 Cc

C8 152 268 34.4 551 50.6 1.90 2.03 56.82 1.11 1.20 1.21 Cc

C-H5 152 267 44.8 551 45.5 2.49 2.48 74.73 1.07 1.08 1.08 Cc

CC 152 267 51.7 551 45.5 2.49 2.32 81.90 1.03 1.03 1.08 Cc

EH2 152 273 44.8 737 48.3 0.91 1.47 42.49 1.02 1.00 1.03 Cc

EH4 152 269 38.10 896 47.7 0.87 2.23 51.19 0.99 1.00 1.19 T/C
Brown and
Bartholomew
(1993)

1 152 122 35.9 896 44.8 0.38 1.07 7.09 0.90 0.89 0.95 N
2 152 122 35.9 896 44.8 0.38 1.07 6.69 0.96 0.94 0.96 N
4 152 122 35.9 896 44.8 0.38 1.07 7.28 0.87 0.87 0.86 N
5 152 122 35.9 896 44.8 0.38 1.07 7.40 0.90 0.85 0.89 N
6 152 122 35.9 896 44.8 0.38 1.07 6.79 0.94 0.93 0.92 N
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Appendix (Continued.)

Investigators Specimen
b

(mm)
d

(mm)
f 0
c

(MPa)
ffu

(MPa)
Ef

(GPa) ρf (%) ρf=ρfb
Mn;exp
ðkNmÞ

Mn;pred=Mn;exp

Failure
modea

This
study

ACI
440

FIB Task
Group

Benmokrane et al.
(1995)

ISO30-2 200 300 42 689 44 1.06 1.75 80.4 0.91 0.9 0.87 Cc

KD30-1 200 300 42 689 44 1.06 1.79 50.6 1.24 1.26 1.30 Cc

KD30-2 200 300 42 689 44 1.06 1.79 63.8 1.14 1.12 1.24 Cc

KD45-1 200 450 52 689 55 0.68 1.04 106.6 1.15 1.24 1.30 Cc

KD45-2 200 450 52 689 55 0.68 1.04 113 1.07 1.15 1.09 Cc

ISO55-1 200 550 52 689 43 0.55 0.82 177.5 1.06 1.07 1.08 T
ISO55-2 200 500 43 689 43 0.55 0.92 177.5 1.07 1.07 1.12 T
KD55-1 200 550 43 689 43 0.55 0.90 146.9 1.11 1.12 1.14 T
KD55-2 200 550 43 689 43 0.55 0.90 172.5 1.12 1.12 0.87 T

Brown and
Bartholomew
(1996)

D-1 102 114 35 551 45 1.23 1.43 6.63 1.01 0.99 1.05 Cc

D-2 102 102 35 551 45 1.38 1.60 5.91 0.95 0.86 0.96 Cc

Al-Salloum et al.
(1996)

Group 2 200 157 31.3 561 36 3.60 10.0 34.60 0.95 0.53 0.62 Cc

Group 3 200 211 31.3 710 43 1.20 3.75 49.07 0.84 0.77 0.88 Cc

Benmokrane and
Masmoudi (1996)

Series 1 200 262 51.7 776 37.7 0.56 1.15 59.25 0.90 0.90 0.89 N
Series 2 200 262 51.7 776 37.7 0.91 1.87 65.70 0.99 1.02 1.03 N
Series 3 200 240 45.0 776 37.7 1.51 3.30 73.94 0.87 0.87 0.98 N
Series 4 200 240 45.0 776 37.7 2.35 5.13 85.61 0.90 0.87 1.00 N

Vijay and
GangaRao (1996)

C2 152 270 44.8 568 37.9 1.35 1.65 55.08 1.05 1.09 1.23 Cc

C4 152 270 44.8 568 37.9 1.35 1.65 48.64 1.22 1.23 1.32 Cc

M1 152 270 31.0 558 37.9 0.96 1.43 50.15 0.89 0.89 0.93 Cc

M2 152 270 31.0 558 37.9 1.93 2.87 53.37 1.11 0.92 1.14 Cc

Benmokrane et al.
(1996)

ISO2 200 300 43 690 44 0.23 1.78 80.40 1.17 1.16 1.17 Cc

ISO3 200 550 43 690 44 0.17 0.9 177.70 1.26 1.30 1.34 T
ISO4 200 550 43 690 44 0.14 0.9 177.70 1.26 1.31 1.35 T

Almusallam et al.
(1997)

Comp-00 200 191 35.3 885 43.3 1.33 3.80 41.37 0.90 0.83 0.89 Cc

Comp-25 200 191 35.3 885 43.3 1.33 3.80 39.06 0.96 0.88 0.89 Cc

Comp-50 200 191 36.4 885 43.3 1.33 3.72 39.35 0.96 0.89 0.90 Cc

Comp-75 200 191 36.4 885 43.3 1.33 3.72 49.19 0.77 0.76 0.78 Cc

Sonobe et al.
(1997)

GR-1.26-7 200 245 75.8 540 30 1.26 0.61 79.49 0.97 0.91 0.98 T

Zhao et al. (1997) GB1 152 220 30.0 1,000 45 1.27 4.93 37.62 0.93 0.92 0.96 Cc

GB5 152 220 31.2 1,000 45 1.27 4.79 54.22 0.66 0.65 0.70 Cc

GB9 152 220 39.8 1,000 45 1.27 4.09 39.98 0.98 0.98 1.08 Cc

GB10 152 220 39.8 1,000 45 1.27 4.09 39.76 0.99 0.98 1.08 Cc

Duranovic et al.
(1997)

GB5 150 210 31.2 1,000 45 1.36 5.13 40.30 0.81 0.74 0.93 Cc

GB9 150 210 39.8 1,000 45 1.36 4.38 39.73 0.91 0.86 1.10 Cc

GB10 150 210 39.8 1,000 45 1.36 4.38 39.50 0.92 0.92 1.11 Cc

Thériault and
Benmokrane
(1998)

BC2NB 130 165 53.0 776 38 1.16 2.34 20.00 0.95 0.94 1.07 Cc

BC2HA 130 165 57.1 776 38 1.16 2.23 19.70 0.98 0.99 1.12 Cc

BC2HB 130 165 57.1 776 38 1.16 2.23 20.60 0.94 0.94 1.10 Cc

BC2VA 130 165 97.3 776 38 1.16 1.31 22.70 1.15 1.17 1.18 Cc

BC4NB 130 135 46.1 776 38 2.77 5.94 20.60 0.83 0.79 0.89 Cc

BC4HA 130 135 53.8 776 38 2.77 5.56 21.00 0.86 0.82 0.92 Cc

BC4HB 130 135 53.8 776 38 2.77 5.56 21.40 0.84 0.80 0.85 Cc

BC4VA 130 135 93.4 776 38 2.77 3.25 28.40 0.87 0.86 0.95 Cc

BC4VB 130 135 93.4 776 38 2.77 3.25 29.50 0.84 0.82 0.92 Cc

Masmoudi et al.
(1998)

CB2B-1 200 265 44.2 618 38 0.56 0.80 57.90 0.80 0.81 0.81 Cb

CB2B-2 200 265 44.2 618 38 0.56 0.80 59.80 0.77 0.77 0.78 Cb

CB3B-1 200 265 44.2 618 38 0.91 1.31 66.00 0.97 1.00 1.02 Cc

CB3B-2 200 265 44.2 618 38 0.91 1.31 64.80 0.98 1.01 1.11 Cc

CB4B-1 200 250 38.2 618 38 1.38 2.15 75.40 0.85 0.87 1.01 Cc

CB4B-2 200 250 38.2 618 38 1.38 2.15 71.70 0.89 0.89 1.00 Cc

CB6B-1 200 250 38.2 618 38 2.15 3.35 84.80 0.90 0.87 1.06 Cc

CB6B-2 200 250 38.2 618 38 2.15 3.35 85.40 0.89 0.77 1.06 Cc

Toutanji and Saafi
(2000)

GB1-1 180 268 35 695 40 0.52 1.02 60 0.72 0.72 0.76 Cc

GB1-2 180 268 35 695 40 0.52 1.02 59 0.77 0.75 0.84 Cc

GB2-1 180 268 35 695 40 0.79 1.55 65 0.80 0.80 0.82 Cc

GB2-2 180 268 35 695 40 0.79 1.55 64.3 0.85 0.82 0.87 Cc

GB3-1 180 255 35 695 40 1.10 2.15 71 0.76 0.76 0.80 Cc

GB3-2 180 255 35 695 40 1.10 2.15 70.5 0.80 0.78 0.81 Cc

Pecce et al. (2000) F2 500 185 30 600 42 0.70 1.04 36.8 0.96 1.03 1.07 Tb

F3 500 185 30 600 42 1.22 1.53 60.7 0.82 0.78 0.82 Tb
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Appendix (Continued.)

Investigators Specimen
b

(mm)
d

(mm)
f 0
c

(MPa)
ffu

(MPa)
Ef

(GPa) ρf (%) ρf=ρfb
Mn;exp
ðkNmÞ

Mn;pred=Mn;exp

Failure
modea

This
study

ACI
440

FIB Task
Group

Al-Sayed et al.
(2000)

II 200 210 31.3 700 35.6 3.60 8.52 34.19 1.00 0.93 1.08 Cc

III 200 360 31.3 886 43.3 1.20 3.72 45.13 1.00 0.91 1.06 Cc

IV 200 300 40.7 700 35.6 1.15 2.30 59.19 1.00 0.97 1.18 Cc

V 200 250 40.7 700 35.6 2.87 5.73 57.00 1.00 0.92 1.11 Cc

Yost et al. (2001) 1FRP1 381 203 27.6 830 41.4 0.12 0.38 11.49 1.01 0.98 1.02 T
1FRP2 381 203 27.6 830 41.4 0.12 0.38 12.67 0.92 0.89 0.92 T
1FRP3 381 203 27.6 830 41.4 0.12 0.38 11.49 1.01 0.98 1.02 T
2FRP1 318 216 27.6 830 41.4 0.13 0.42 13.62 0.91 0.88 0.92 T
2FRP2 318 216 27.6 830 41.4 0.13 0.42 13.26 0.94 0.91 0.94 T
2FRP3 318 216 27.6 830 41.4 0.13 0.42 13.06 0.95 0.92 0.96 T
4FRP1 203 152 27.6 830 41.4 1.27 4.06 15.78 0.92 0.86 0.99 Cc

4FRP2 203 152 27.6 830 41.4 1.27 4.06 15.58 0.93 0.88 1.00 Cc

4FRP3 203 152 27.6 830 41.4 1.27 4.06 16.29 0.89 0.84 0.95 Cc

5FRP1 191 152 27.6 830 41.4 1.35 4.32 16.37 0.86 0.80 0.91 Cc

5FRP2 191 152 27.6 830 41.4 1.35 4.32 16.65 0.84 0.79 0.90 Cc

5FRP3 191 152 27.6 830 41.4 1.35 4.32 15.78 0.89 0.83 0.95 Cc

Gao and
Benmokrane
(2001)

IS2B-1 200 254 39 552 45 0.50 0.42 38.50 0.88 0.69 0.89 T
IS2B-2 200 254 51 552 45 0.50 0.32 41.00 0.85 0.65 0.84 T
KD2B-1 200 254 40 513 49 0.50 0.33 52.20 0.67 0.50 0.66 T
KD2B-2 200 254 40 513 49 0.50 0.33 52.30 0.67 0.50 0.66 T
IS3B-1 200 254 39 552 45 0.75 0.63 57.20 0.88 1.02 0.88 T
IS3B-2 200 254 51 552 45 0.75 0.48 59.70 0.85 0.67 0.86 T
KD3B-1 200 254 40 513 49 0.75 0.50 59.70 0.86 0.66 0.85 T
KD3B-2 200 254 40 513 49 0.75 0.50 61.60 0.77 0.79 0.77 T
IS4B-1 200 231 45 552 45 1.10 0.79 61.00 0.95 0.59 0.92 T
IS4B-2 200 231 45 552 45 1.10 0.79 54.10 1.02 0.97 1.04 T
KD4B-1 200 231 40 513 49 1.10 0.73 59.70 0.98 1.10 0.93 T
KD4B-2 200 231 40 513 49 1.10 0.73 67.80 0.83 0.99 0.82 T
IS6B-1 200 231 45 552 45 1.64 1.19 76.60 0.91 0.87 1.06 Tb

IS6B-2 200 231 45 552 45 1.64 1.19 74.70 0.93 0.91 1.09 Tb

CB2B-1 200 253 52 618 38 0.71 0.63 57.90 0.96 0.94 0.95 T
CB2B-2 200 253 52 618 38 0.71 0.63 59.80 0.97 1.02 0.96 T
CB3B-1 200 253 52 618 38 1.07 0.95 66.00 0.95 0.99 0.97 T
CB3B-2 200 253 52 618 38 1.07 0.95 64.70 1.00 1.07 1.01 T
CB4B-1 200 253 52 618 38 1.52 1.35 75.40 1.15 1.09 1.29 Tb

CB4B-2 200 253 52 618 38 1.52 1.35 71.70 1.02 1.08 1.25 Tb

CB6B-1 200 253 52 618 38 2.27 2.02 84.80 1.10 1.14 1.34 Cc

CB6B-2 200 253 52 618 38 2.27 2.02 85.40 1.03 1.13 1.34 Cc

Wang and Belarbi
(2005)

P4G 178 229 48 690 41 2.13 3.51 51 0.88 0.79 1.08 Cc

P8G 178 229 48 552 41 3.17 3.60 47 1.10 0.89 1.21 Cc

F4G 178 229 30 690 41 2.13 4.71 46 0.83 0.72 0.89 Cc

F8G 178 229 30 552 41 3.17 4.83 40 1.09 0.84 1.18 Cc

Ashour (2006) Beam2 150 200 27.8 650 38 0.23 0.50 5.89 1.06 0.97 1.07 T
Beam4 150 250 27.8 650 38 0.17 0.37 7.85 0.99 0.95 1.00 T
Beam6 150 300 27.8 650 38 0.14 0.30 10.79 0.90 0.85 0.91 T
Beam8 150 200 50 650 38 0.23 0.34 5.89 1.08 0.99 1.08 T
Beam10 150 250 50 650 38 0.17 0.25 9.48 0.83 0.8 0.84 T
Beam12 150 300 50 650 38 0.14 0.21 16.75 0.90 0.78 0.90 T

Saikia et al. (2007) FG1SOC 180 200 54.2 972 49 0.78 1.53 36.59 1.27 1.24 1.32 N
FG1GOC 180 200 51.0 972 49 0.78 1.63 35.48 1.27 1.24 1.26 N
FG1SFPC 180 200 35.9 972 49 0.78 2.06 34.25 1.22 1.16 1.21 N
FG1GFPC 180 200 31.4 972 49 0.78 2.22 34 1.17 1.11 1.22 N
FG2SOC 180 200 33.4 464 49.6 1.41 1.00 40.86 1.06 1.11 1.20 N
FG2SFC 180 200 30.6 464 49.6 1.41 1.06 39.34 1.08 1.11 1.12 N
FG2GFC 180 200 30.6 464 49.6 1.41 1.06 39 1.09 1.12 1.14 N

Xue et al. (2009) I-3 150 175 21.65 400 41 0.54 1.00 9.30 1.00 0.77 0.98 T
I-4 130 175 21.65 400 41 0.62 1.15 7.90 1.17 1.33 1.17 Cc

I-5 148 175 21.65 400 41 0.82 1.52 12.80 1.09 1.12 1.06 Cc

I-6 134 175 21.65 400 41 0.91 1.69 12.90 1.09 1.05 1.04 Cc

II-2 130 175 20.12 400 41 0.62 1.22 7.90 1.17 1.37 1.16 Cc

II-3 117 175 20.12 400 41 1.00 1.96 9.30 1.10 1.26 1.06 Cc

III-1 120 175 28.59 400 41 1.3 1.81 19.40 0.85 0.85 0.88 Cc

IV-1 120 175 47.59 400 41 0.67 0.65 9.30 1.01 0.78 1.02 T
IV-2 120 175 47.59 400 41 1.35 1.31 21.10 0.92 0.97 0.88 Tb
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Appendix (Continued.)

Investigators Specimen
b

(mm)
d

(mm)
f 0
c

(MPa)
ffu

(MPa)
Ef

(GPa) ρf (%) ρf=ρfb
Mn;exp
ðkNmÞ

Mn;pred=Mn;exp

Failure
modea

This
study

ACI
440

FIB Task
Group

Lau and Pam
(2010)

G0.8-A90 280 340 36.6 593 40 0.83 1.18 158.80 0.80 0.85 1.00 Tb

G2.1-A90 280 340 41.3 582 38 2.07 2.76 237.93 0.87 0.84 1.01 Cc

G0.4-A135 280 340 42.3 603 40.2 0.35 0.47 80.40 0.85 0.81 0.83 T
G0.5-A135 280 340 42.5 603 40.2 0.47 0.63 107.30 0.85 0.81 0.83 T
G2.1-A135 280 340 33.9 582 38 2.07 3.12 236.78 0.81 0.77 0.90 Cc

Kassem et al.
(2011)

G1-6 200 285 39 617 40 1.6 1.5 77.47 1.12 1.16 0.92 Cc

G1-8 200 285 39 617 40 2.2 2.0 86.76 1.13 1.16 0.92 Cc

G2-6 200 285 39 747 36 1.4 1.9 71.00 1.14 1.17 0.91 Cc

G2-8 200 285 39 747 36 1.9 2.5 84.54 1.17 1.24 0.86 Cc

El-Nemr et al.
(2013)

N2#13G2 200 360 33.5 1,639 67 0.38 2.45 82.78 1.09 1.15 1.31 Cc

N3#13G1 200 360 33.5 817 48.7 0.56 1.31 81.34 1.10 1.22 1.37 Cc

H2#13G2 200 360 59.1 1,639 67 0.38 1.67 101.59 1.09 1.22 1.47 Cc

H3#13G1 200 360 59.1 817 48.7 0.56 0.90 82.58 1.24 1.30 1.38 T
N5#15G2 200 348 29 1,362 69.3 1.52 7.68 129.32 1.13 1.08 1.24 Cc

N6#15G1 200 348 33.5 762 50 1.82 3.67 118.73 1.22 1.19 1.41 Cc

H5#15G2 200 348 73.4 1,362 69.3 1.52 3.75 178.54 1.22 1.25 1.32 Cc

H6#15G1 200 348 73.4 762 50 1.82 2.02 177.73 1.11 1.14 1.20 Cc

N5#15G3 200 348 33.8 1,245 59.5 1.52 6.47 110.58 1.24 1.30 1.32 Cc

N2#25G3 200 360 33.8 906 60.3 1.51 3.57 115.93 1.23 1.32 1.26 Cc

H5#15G3 200 348 73.4 1,245 59.5 1.52 3.58 188.37 1.09 1.11 1.15 Cc

H2#25G3 200 360 73.4 906 60.3 1.51 1.98 189.06 1.13 1.18 1.26 Cc

— Mean — — — — — — — 1.01 0.94 1.05 —
Standard deviation — — — — — — — 0.15 0.19 0.18 —

Standard deviation for concrete beams in compression failure 0.11 — — —
aFailure modes: C = compression; T = tension; and N = not specified/not clear.
bIndicates disagreement between predicted and experimentally observed flexural failure modes.
cResults considered for calculation of the standard deviation for ultimate moment capacity of concrete beams.
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Notation

The following symbols are used in this paper:
Af = area of longitudinal GFRP reinforcement (mm2);
b = width of beam (mm);
c = distance from extreme compression fiber to the

neutral axis (mm);
cb = depth of compression zone at balanced strain

condition;
d = effective depth (mm);

Ec = modulus of elasticity of concrete (MPa);
Ef = modulus of elasticity of GFRP (MPa);
f 0
c = cylinder compressive strength of concrete (MPa);

fcd = design value of concrete compression strength
(MPa);

ff = stress in GFRP reinforcement in tension at failure
(MPa);

ffd = design value of tensile strength for GFRP (MPa);
ffu = ultimate tensile strength of GFRP (MPa);
j = coefficient of the lever arm of the couple force;

ku = ratio of the depth of the neutral axis to the effective
depth;

Mexp = experimental flexural strength (kN · m);
Mn = nominal flexural strength (kN · m);
x = neutral axis depth (mm);

α and β = compressive stress block parameters;
β1 = ratio of depth of equivalent rectangular stress block

to depth of neutral axis;
σc = concrete compressive stress (MPa);
εc = compressive concrete strain;
εcu = ultimate concrete strain;
εfu = ultimate GFRP strain;
ε0 = concrete strain at maximum strength;
ρf = = GFRP reinforcement ratio;
ρfb = balanced GFRP reinforcement ratio;

ρf;min = minimum GFRP reinforcement ratio;
ωf = reinforcement index (ρfffu=f 0

c);
λ = factor defining effective height of compression zone;
η = factor defining strength deduction factor; and
ξ = ratio of the neutral axis depth to the effective depth.
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