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Abstract
Visualizations of Rayleigh–Taylor turbulent mixing layers are presented.
Three Navier–Stokes models are used: Boussinesq, anelastic and fully com-
pressible. Isosurfaces and slices of concentration, vorticity, Q-criterion, tur-
bulent kinetic energy, local Taylor-microscale Reynolds number, dissipation,
pressure and temperature are displayed. This gives an overall picture of the
Rayleigh–Taylor flows where common features and differences between results
obtained from these three models are emphasized. In particular, transition to
turbulence and compressibility effects, including asymmetry, are shown.

Keywords: visualization, Rayleigh–Taylor, turbulent mixing layers,
Q-criterion, compressible flows

(Some figures may appear in colour only in the online journal)

1. Introduction

Flow visualization is the set of methods and techniques making flow patterns visible. This is
one of the tools classically used to investigate complex fluid flows. This began in the laboratory
two centuries ago, and continues today, in particular with computational fluid dynamics, where
large-scale data sets are currently obtained on parallel computers (http://en.wikipedia.org/
wiki/scientific_visualization). Flow visualization allows us to consider fluid flows in their
entirety, and is the only way to have an overall view on a several-terabyte data set.
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Over the last decades, flow visualization for computer-generated data sets has become a
branch of computer science. Mathematical algorithms and various techniques have been
developed-and are being developed-for revealing flow characteristics. For a short review, see
for example, (Etiene et al 2013) and references therein. Flow visualization is used by both
fluid dynamic researchers and engineers as a tool, but at the same time their results come
close to being ‘image art’, and sometimes fine arts meet fluid dynamics (Hertzberg Sweet-
man 2005). In the particular case of Rayleigh–Taylor turbulent mixing layers, concentration
isosurfaces are widespread in the literature and on the web (see, for example, (http://en.
wikipedia.org/wiki/scientific_visualization)), but visualization does not go much beyond
such a scalar representation. However, understanding laminar and turbulent fluid flows
requires investigating various issues, such as vorticity and detection of vortices, velocity
vector fields, turbulent kinetic energy and dissipation.

A classical pitfall to avoid in visualization is the use of the nevertheless very popular
‘rainbow’ colour map, which is known to obscure and obfuscate the data to be displayed
(Borland and Taylor 2007, Moreland 2009). In contrast, it has been shown that a diverging
colour map generally performs well in visualizing scientific data (Moreland 2009). Diverging
colour maps have two major colour components; the center point of the map is important and
the data go above and below this point.

On the other hand, detection of vortices and coherent structures in turbulent flows is a
major concern since vorticity does not always correspond to vortices (Jeong and Hus-
sain 1995, Dubief and Delcayre 2000). Several criteria have been tested (minimum pressure,
the second eigenvalue of the vorticity tensor and the Q-criterion). The Q-criterion now seems
to be the consensus choice. The quantity Q refers to the second invariant of the velocity
gradient tensor ui j , Q S S1 2 ij ij ij ij( )= W W - , where Ω and S are respectively the anti-
symmetric and symmetric parts of ui j . Positive values of Q correspond to vortices, while
negative values are associated with shear.

The objective of this paper is to visualize laminar and turbulent Rayleigh–Taylor (RT)
mixing flows between miscible fluids. In other words, we present a contribution to a ‘Gallery
of Rayleigh–Taylor Fluid Motion’ coming from several large-scale numerical simulations.
These data have been obtained from the solution of three models, the Boussinesq and ane-
lastic approximations and the full compressible Navier–Stokes equations (NSE) (Schneider
et al 2015). By doing so, we give an insight into the structure of turbulence (vortical and
dissipative structures, small-scale intermittency, and homogeneity of compressible mixing
layers). Others researchers’ findings have already been reported (Glimm et al 1990, Mellado
et al 2005, George and Glimm 2005, Jin et al 2005, Livescu 2013).

A single-mode RT flow, i.e., the flow obtained with a single Fourier mode seed, is first
presented. This flow is obtained using the anelastic model with weak stratification, and these
patterns may be viewed as an elementary pattern constitutive of transient mixing layers. In a
second step images obtained from a simulation carried out with the Boussinesq approx-
imation, where only the vorticity Kovásznay mode is present (Chu and Kovásznay 1957), are
shown and taken as a reference. Visualization of simulations performed with the anelastic
approximation, where a rudimentary entropic mode is present in addition to the vorticity
mode, is detailed and common features and differences are emphasized. Finally, simulations
carried out with the full Navier–Stokes model, where the vorticity, entropic and acoustic
modes are present, are also visualized. The open-source application ParaView (http://www.
paraview.org/), which contains many standard flow visualization techniques, such as the Q-
criterion, is used. The default colour map is a diverging one. ParaView also allows high-
resolution images, so pictures displayed in this paper can be enlarged several times, as
suggested to the reader.
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2. The Rayleigh–Taylor instability between newtonian fluids

We consider the mixing of two miscible fluids under the action of the Rayleigh–Taylor
instability (RTI). The RTI is the potentially unstable superposition of a heavy fluid above a
lighter one in a slowly variable acceleration field. Each layer is stably stratified. Such a
phenomena on is present in many high-energy-density flows and plays a prominent role, for
example, in inertial-confinement fusion and in supernova explosions in astrophysics. It is also
a classical fluid dynamic problem (http://www.iwpctm.org/), (Schneider and Gau-
thier 2015), (http://www.tmbw.org/). RTI flow patterns depend strongly on the initial per-
turbation between the two fluids. Schematically for large-scale single perturbations, RT flows
produce mushroom-like patterns while for small-scale perturbations with a large number of
Fourier modes, RT flows may produce homogeneous turbulent mixing layers. At the initial
times of the RTI development, the mean density profile undergoes a sharp discontinuity (see
figure 1). This density jump decreases with time and at the end of the mixing process, the
density is one-dimensional with uniform concentration and temperature. The motion takes
place in a three-dimensional closed rectangular domain L L Lx y z´ ´ (L h hz H Lº - , where
hH∣ ∣ and hL∣ ∣ are the heights of the heavy and light fluid layers, respectively). The heavy and
light fluids are initially located in the upper and lower sides of the computational domain such
that z h0 H  and h z 0L   .

The single-fluid approximation is used and a single velocity field is defined. The mixing
is described by the classical thermodynamic model ‘partial pressures—partial densities’. It
reads p p pH L= + , H Lr r r= + and T T TH L= = , where p, ρ and T are the pressure,
density and temperature of the single fluid. The symbols H L,r and TH L, are the partial densities
and the temperatures of the heavy (H) and light (L) fluids, respectively. The expressions for
the partial pressures read p TH L H L H L H L, , , ,( ) r= . A fluid concentration c Hr r= is also
defined. The specific heats at constant volume and constant pressure are denoted Cv p H L, ; , .
Their ratio is H L,g . The adiabatic index of the mixing depends on the concentration
and is given by c C Cm p m v m, ,( )g = , the mixing specific heats being
C c c C c C1v p m v p H v p L, ; , ; , ;( ) ( )= + - . The reference concentration is chosen to be
c 1 At 2ref ( )= - , where the Atwood number is defined as

Figure 1. Mean density profiles vs. the vertical coordinate z. Initial density profile of a
RT homothermal configuration (full line) and final density profile in dashed line. Left:
unstratified profile, the stratification Sr 0= corresponding to the Boussinesq
approximation and the Atwood number At 0.1= . Right: unstable stack of two stable
exponentially stratified profiles with Sr 6= and At 0.25= , corresponding to a highly
variable density configuration.
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We also use the reference values C cv r ref, ( ) and cr m ref( )g g= .

2.1. The full Navier–Stokes equations

The full NSEs for a binary mixture may be written in a dimensionless form with the following
units. Ly (the horizontal width of the domain) is used for the unit of length, L gy

1 2( ) for time
where g is the acceleration due to gravity, the half-sum of densities on each side of the
pseudo-interface, z t z t1 2 0 , 0 0 , 0r H L( ) ( )r r r= = = + = =+ - , for the mass, and a
uniform temperature T T Tr H L= = . The stratification parameter is g L TSr y r( ) =
with 2 1 1r H L  = + . The full NSEs therefore (Schneider and Gauthier 2015)

u 0, 2t j j( ) ( )r r¶ + ¶ =

u u u p
1

Sr

1

Re
, 3t i j j i i j ij i3( ) ( )r s r d¶ + ¶ = - ¶ + ¶ -

e u e p u D1 1
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Re
4t i i r i i r ij ij( ) ( ) ( ) ( )r g g s¶ + ¶ = - - ¶ + -

T c T
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Sc Re Pr Re
, 5r
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ii,
2[ ] ( )g g
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-

¶ D ¶ + ¶
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1

Sc Re
, 6t j j ii

2( ) ( )r ¶ + ¶ = + ¶

p T c1 At 2 At , 7( ) ( )r= + -

where ui is the ith-velocity components. The viscous-stress tensor is
u u u2 3ij j i i j ℓ ℓ( )s m= ¶ + ¶ - ¶ , and D u u1 2ij j i i j( )= ¶ + ¶ is the rate-of-deformation

tensor. The difference of specific heats at constant pressure of the two species is
C C CH L p H p L v r, ,( )D = - . The dimensionless numbers, Re, Pr, Sc and Sr, are given by

g L C

D

g L

R T
Re , Pr , Sc , Sr , 8

y

r

p y

r

1 2 3 2

( )
m r

m
k

m
= = = =

where μ, κ and D are the coefficients of viscosity, thermal conduction and diffusion of
species, respectively. The initial equilibrium state is given by the hydrostatic equilibrium state
obtained from equations (2)-(7) by setting the velocity ui to zero and looking for a stationary
solution. This equilibrium state is therefore a potentially unstable stack of two stable
exponentially stratified profiles,

z z z z H z

z H z

1 At exp Sr

1 At exp Sr , 9
H L H

L

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

r r r= + = + -
+ - -

+

-

with Sr Sr 1 AtH L, ( )=  , H z H z1 2( ) ( ( ))=  , where H(z) is the Heaviside function.
The parameter Sr is called a ‘stratification parameter’ although the heavy and light fluids
undergo a stratification equal to SrH L, , respectively. The initial temperature profile is
uniform: T T 1H L= = .

The final equilibrium state, i.e., after the overturn of the fluids, is a new stable equili-
brium state, which depends only on the vertical z-coordinate. In this regime, velocities vanish
and density follows an exponential profile denoted zfin ( )( )r . Its expression is
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z z0 exp , 10fin fin( ) ( ) ( ) ( )( ) ( ) r r= -

where cSr 1 At 2 At fin 1( )( ) = + - - with c m m mfin
H H L( )( ) = + and

m m z z0 exp expfin
H L bot top

1( ) ( ) [ ( ) ( )]( )   r = + - - - - , mH L, being the mass of the
heavy and light fluids.

It is well known that the full set of NSEs (2)-(7) contains the three Kovásznay modes
(Chu and Kovásznay 1957), i.e., the acoustic, vorticity and entropic modes. In some situations
these effects and their coupling are important, but in other situations such complexity is not
needed. Moreover the acoustic mode forces a small time step through the CFL condition.
Simplified subsets of the full NSEs have been developed in the past for various flows. For the
RT flow, we have recently developed three low-Mach-number models for the mixing of two
Newtonian fluids (Schneider and Gauthier 2015), i.e., the anelastic, the quasi-isobaric and the
Boussinesq models.

The anelastic and Boussinesq models are briefly recalled below.

2.2. The anelastic approximation

The anelastic approximation is derived from the full Navier–Stokes equations with an
asymptotic analysis performed in terms of the small parameter Mar

2g , where Ma is a Mach
number. The following set of equations has been obtained for the momentum, energy and
concentration:

u u u pSr Re , 11t i j j i i j ij i
0 0 0 0 1 1 1 0 1

3( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )r s r d¶ + ¶ = - ¶ + ¶ -- -

with the constraint u 0i i
0 0( )( ) ( )r¶ = ;

e u e p u

T D

T c

1

Pr Re
1
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Sc Re
, 12

t i i r i i

r
ii r ij ij
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i i

0 1 0 0 1 1 0

2 1 0 0

, 0 0 1

( )

( )

[ ] ( )
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( ) ( ) ( )

( ) ( ) ( )

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g

g s

r

¶ + ¶ = - - ¶

+ ¶ + -

+
D

¶ ¶

where e 1( ) is the internal energy at first order;

c u c c
1

Sc Re
. 13t j j i i

0 0 0( ) ( ) ( )( ) ( ) ( )r r¶ + ¶ = ¶ ¶

‘The EOS

p

p
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, 14

1

0

1

0

1

0

1

0
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r
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which is defined for Atwood numbers strictly smaller than one, i.e., At 1< . The full
thermodynamic quantities read

c c c

p p p T T T

, ,

, . 15

0 1 0 1

0 1 0 1 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
r r r= + = +

= + = +

2.3. The boussinesq approximation

The simplest model for RT configurations, called the Boussinesq approximation, is
obtained in the limit of vanishing stratification and Atwood numbers and infinite ratio of
specific heats, rg . Physical quantities are expanded in powers of the Atwood number,
p p p pAt At ...0 1 2 2( ) ( ) ( )= + + + (Schneider and Gauthier 2015). One thus gets two
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equations:

u u u p u c

u

c u c c

Re 2 1 ,

and, with the constraint, 0,

Sc Re . 16

t i j j i i jj i i

i i

t j j ii
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( )

( ) ( ) ( ) ( )

d¶ + ¶ =- ¶ + ¶ - -

¶ =

¶ + ¶ = ¶

-

-

In the next sections, we report visualization of RT flows obtained with the Boussinesq and
anelastic models and with the full NSEs.

3. Numerical simulations

The numerical methods developed to solve these three models, within the framework of
spectral methods, have been previously detailed in (Gauthier et al 2005, Le Creurer and
Gauthier 2008, Schneider et al 2015). These methods have been implemented in the code
AMENOPHIS (Gauthier et al 2005, Le Creurer and Gauthier 2008), which uses a variable spatial
resolution. Therefore simulations are started with a low resolution and the resolution is
increased with the flow development. For example, simulation AF (see table 1) was started
with M8 32 256 172( )´ ´ = collocation points and after several Chebyshev-Fourier mode
number increases it reaches M20 48 600 3452( )´ ´ = (factor 20). The six simulations
reported in this paper are summarized in table 1. The simulation BF carried out within the
Boussinesq approximation is the reference used for the remainder of this paper. This is the
simplest model with no stratification, thermodynamics, or acoustics. A turbulent state has
been reached, attested to by the Reynolds number. Simulations are initialized with a sole-
noidal velocity vector field. Two different velocity perturbations are used and they are
characterized by their Fourier spectrum: single-mode (a single Fourier mode) or multi-mode.
The latter is built with a set of Fourier modes, k k,x y( ), whose amplitudes are chosen randomly

within the annulus k k k kx ymin
2 2

max + . As can be seen in table 1, only large wave
numbers are used. The perturbation is restricted to the vicinity of the plane z=0 through the
function zcosh 1( )d- , where δ is the thickness of the perturbation.

Table 1. Simulation definition. The first column refers to simulation names. The first
letter stands for the physical model, B for the Boussinesq model, A for the anelastic and
C for the full compressible case. The Reynolds and Atwood numbers, the stratification,
the amplitude and the wave numbers defining the initial condition, and the largest
spatial resolution used are given from left to right. The last column refers to the highest
Taylor z-microscale Reynolds number reached, Re kRe 2zzz

˜l=l , with
u u zzz z z

2 2 2⟨ ⟩ ⟨ ( ) ⟩l =  ¶  ¶ , where ⟨⟩ is the xyz mean value. The Favre fluctuation and
mean value are denoted  and ˜, respectively.

Name Re At Sr xinit k k,min max[ ] N N Nz x y´ ´ Re zl

AC 5.103 0.20 0.2 −0.010 [2 p, 2 p] 10 64 3842( )´ ´ ×
BF 3.104 0.10 0.0  [151, 182] 24 40 9402( )´ ´ 142
AF  0.25 2.0   20 48 6002( )´ ´ 131
AI  0.50    14 48 6002( )´ ´ 220
CF  0.25 6.0 −0.040  6 64 3842( )´ ´ 49
CG 6.104   −0.001  9 100 10002( )´ ´ 56
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3.1. Validation and verification

Validation against RT flow experimental data is limited since such data are fairly scarce and
are restricted to unstratified configurations. Such a validation has nevertheless been achieved
for the nonlinear growth rate ba and is detailed in (Mueschke et al 2006, Mueschke and
Schilling 2009, Glimm et al 2013). The algorithm for the Boussinesq approximation and the
numerical code used for the visualizations presented in this paper have been validated against
the Waddell et al laminar single-mode experiment (Waddell et al 2001). The nonlinear
growth rate ba of a turbulent RT mixing layer has also been computed and was found to be
close to 0.021ba = , which is in good agreement with experimental data (Schneider
et al 2015, Schneider 2015, Schneider and Gauthier 2015). More generally, this analysis gives
a coherent view of RT turbulence. On one hand, it agrees with other RT numerical simula-
tions for what it is known (mixing length, mixing fraction, etc) and on the other hand it agrees
with classical results on turbulent flows (spectra, PDFs, etc).

Some verification steps have also been carried out. Let us first recall that the algorithms
for the Boussinesq and the anelastic approximations and the fully compressible option are
embedded in the same code. In particular they share the same derivative operators and the
same auto-adaptive grid generation algorithm. We have shown within the anelastic option that
spectral accuracy is achieved by plotting Chebyshev coefficients versus the spatial frequency.
We have also shown that the error in the momentum divergence decays exponentially with
the number of Chebyshev modes. Temporal convergence has been studied and was found to
approach the second-order accuracy. The Boussinesq option is obtained from the anelastic
option by using a uniform mean density 0( )r . The compressible option has been first verified
against linear stability results (Le Creurer and Gauthier 2008) for a 2D single-mode simu-
lation. These results were obtained with a stability code analysis, based on the normal mode
method. The correct decay rate of the kinetic energy after overturn of the two fluids also
provides a verification of the accuracy((Le Creurer and Gauthier 2008), figure 21).

4. Single-mode anelastic simulation: AC

Visualization of RT flows begins with a numerical simulation seeded with a single Fourier
mode. Density and concentration take the form of the classical buoyancy pattern-a mush-
room-like structure or a plume-as shown in figure 2 (left). Due to the finite value of the
Atwood number (At 0.20= ) there is a slight compressibility effect, which results in a slight
asymmetry with respect to the plane z=0. Therefore, for clarity, the picture is given with
gravity directed upward. Consequently the heavy fluid goes from bottom to top of the image
while the light fluid moves in the opposite direction. The head of the mushroom of heavy fluid
is classically called the ‘spike’ and the light fluid pattern is called ‘bubble’. The pattern is
coloured to show the velocity divergence, ui i¶ , so that compressed regions are shown in red,
while expanded regions are shown in blue. The right part of the same figure displays the
isosurface of the x-component of the vorticity, xw . This helps in understanding the vortical
structure of a single-mode RTI. The x and y vorticity components are equal and are much
larger than the z-component. The vorticity norm leads to a toroidal isosurface (not represented
here), while the horizontal components lead to this ‘double-spoon’ pattern, one being posi-
tive, the other negative (figure 2, right). The y-component gives the same picture, in such a
way that the two ‘double-spoon’ patterns form a torus.

As we have already discussed, vortices are better detected by the Q-criterion. Figure 3
displays an isosurface of this Q-criterion coloured by concentration. A torus appears very
clearly in the center of the domain and four quarters of this ring also appear, one in each
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corner (the computation is periodic in the horizontal plane), with the heavy fluid inside and
the light fluid outside. In addition, four sets of two vortices are placed in such a way that they
form a stool. Stream lines at a given time (the flow is unsteady) have been added to this
picture (in one quarter), also coloured to show concentration. One thus clearly sees the heavy
fluid moving upward into the light fluid.

5. Boussinesq simulation: BF

This section is devoted to the Boussinesq simulation. Concentration, vorticity, Q-criterion,
velocity, turbulent kinetic energy, local Taylor-microscale Reynolds numbers and dissipation
are successively displayed and commented. Some of these features have already been
observed by other investigators (Young et al 2001, Ristorcelli and Clark 2004, Vladimirova
and Chertkov 2009).

5.1. Concentration

The two concentration isosurfaces of c=0.02 and c=0.98 are represented in figure 4. A top
view is used on the left (gravity directed downward) so that the c=0.98-isosurface appears
on the top, while a bottom view is used on the right (gravity directed upwards), so the
c=0.02-isosurface appears on the top. These isosurfaces are located close to the boundaries,
or are the frontiers themselves, of the turbulent mixing layer, where turbulence is vanishing.
As a result, flow is essentially made of large structures. In particular, the centers of mush-
rooms are minima of the vorticity according to the isovorticity-torus shape. Patterns on the top
and bottom of the layer look very similar. This symmetry is expected from the Boussinesq
approximation. Consequently only top views are given in this section, after figure 4.

Figure 2. Simulation AC. Left: concentration isosurface c=0.5, coloured based on the
velocity divergence ui i¶ . Right: 3xw =  x-vorticity component isosurfaces, coloured
by the sign of this quantity. Gravity is directed upward. Horizontal black lines are the
boundaries between the Chebyshev numerical subdomains.
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The concentration on the z=0-plane in figure 5 reveals unmixed (x, y)-regions although
turbulence is well developed and is at a maximum at this height. Heavy (resp. light) fluid
appears in red (resp. blue), and the higher the plane the larger the regions of pure heavy fluid.
On the z=0.35-plane, close to the mixing layer boundary, one distinguishes the twisted and
bent mushrooms visible in figure 4.

5.2. Vorticity

Vorticity is a vectorial quantity, so the norm and the three components may be displayed.
However, since the flow is homogeneous on a horizontal plane, the x- and y-components give
very similar or identical results. Moreover, within the Boussinesq approximation, heavy and
light fluid flows are symmetrical with respect to each other. Vorticity x-component iso-
surfaces are displayed in figure 6 at an intermediate time, before turbulence is fully devel-
oped. This picture clearly shows a multi-‘double-spoon’ structure, as identified in the single-
mode numerical simulation (figure 2), although the spoons are deformed by the growing
turbulence. The vorticity norm is displayed on the left side of figure 7 with a low value,

3∣ ∣w = , so that large structures, with the torus shape corresponding to mushroom-like

Figure 3. Simulation AC: Q-criterion isosurface with Q=10, with stream lines in a
quarter of the simulation domain. Isosurface and streamlines are coloured by the
concentration (heavy fluid in red and light fluid in blue). Gravity is directed upward.
Horizontal black lines are the boundaries between the Chebyshev numerical
subdomains.
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structures, appear clearly on the boundaries. For a larger isovalue of the vorticity norm,
20∣ ∣w = , on the right of figure 7, the RT patterns on the boundaries disappear, and iso-

surfaces become lighter and tend to be oblong or take the form of short filaments attached to
the mixture dominated either by the heavy (red) or by the light fluid (blue). At this level,
turbulence is expected to be more isotropic and more universal. These pictures show that the
vortical structure of RT turbulence is qualitatively similar to other turbulent flows. Large-
scales the mushroom-like structures bear the track of the instability that generates turbulence.
Intermediate scales are associated with random interactions while small scales have some
coherence as shown in the right part of figure 7 (She et al 1990). Figure 8 compares the x- and
z-vorticity components for the value 10x z,w = . The x-component appears to be stronger than
the z one and the double-spoon structure on the x-component is no longer visible.

Figure 9 (left) displays a slice of vorticity in a vertical (y, z)-plane, where the mushroom
shape is visible with some points of intense vorticity. The inhomogeneous character of the

Figure 4. Simulation BF: concentration isosurfaces, c=0.02 and c=0.98, coloured
by the vorticity (log scale, blue: 0.04w = , red: 4w = ). Final time of the simulation.
Left: top view; right: bottom view.

Figure 5. Simulation BF: concentration on the z=0-plane (left), z=0.2-plane
(middle) and z=0.35-plane (right). Heavy fluid is coloured red (c= 1) and light is
coloured blue (c= 0). Final time of the simulation.
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mixing layer should also be noted; some vorticity structures have escaped from the mixing
layer. In the same figure 9 (middle), in the z=0-plane, turbulence appears to be well
developed with a strong inhomogeneous vorticity distribution. Away from the center and
close to the boundary, figure 9 (right) exhibits only a few patterns. In figure 10, the velocity
vector field is superimposed on the vorticity field and a zoom is presented. A subset has been
extracted from the whole simulation domain by defining a small box such that

x y0 , 0.319< < and z0.117 0.133- < < . Figure 10 left is the horizontal (x, y)-plane at the
middle of the small box, while the right picture is the vertical (y, z)-mid-plane of the small
box. Positive (resp. negative) vorticity values appear in red (resp. blue). The velocity vector
field rolling round vortices of positive or negative values of vorticity can be seen clearly.

Figure 6. Simulation BF: vorticity x-component isosurfaces for 5xw = - and 5xw = .
Intermediate time at which the transition to turbulence is occurring. Red stands for
positive values and blue for negative ones.

Figure 7. Simulation BF: vorticity isosurface, top view. Left: 3∣ ∣w = . Right: 20∣ ∣w = ,
coloured by the concentration. Final time of the simulation.
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There are also some 3D effects, for example in the bottom right part of the left-hand picture,
where the fluid moves normally to the slice and along the gravity direction.

5.3. Q-criterion

The Q-criterion is displayed in figure 11 for two values Q=30, and Q = 50. On the left, the
small value of Q allows us to capture a large number of vortices. Some are close to the
boundaries and are made of pure fluid, either heavy (red) or light (blue). On the right, the
large value of Q selects more intense vortices, which are less dense. Actually, there is some
homothety between these two pictures. In both cases, it is worth noticing the oblong shapes of
the vortices.

Figure 8. Simulation BF. Left: isosurfaces of x-component of vorticity 10xw = - and
10xw = . Right: isosurfaces of x-component of vorticity 10zw = - and 10zw = . Blue

stands for negative vorticity values and red for positive ones. Final time of the
simulation.

Figure 9. Simulation BF: slices of vorticity. Left: vertical (y, z)-plane. Middle:
horizontal z=0-plane. Right: horizontal z=0.35-plane. Final time of the simulation.
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5.4. Velocity

Figure 12 displays, from left to right, the velocity norm, u∣ ∣ (u is the total velocity), and two
components, ux and uz. On the left, the velocity norm u∣ ∣ appears to be quite inhomogeneous
with some spots of intense velocity in red, while regions at rest are shown in blue. As
expected, the vertical velocity (right) is much stronger than the horizontal component
(middle), since the same colour scale has been used. We observe ascending and descending
fluid motion, and regions at rest appear in white.

Figure 10. Simulation BF: slices of vorticity with the velocity vector field. Left:
horizontal (x, y)-mid-plane. Right: vertical (y, z)-plane. These slices are extracted from
a subset of the total simulation box: x y0 , 0.319< < and z0.117 0.133- < < . Final
time of the simulation.

Figure 11. Simulation BF: isosurface Q-criterion coloured by the concentration (heavy
fluid in red and light fluid in blue). Left: Q=30. Right: Q=50. Final time of the
simulation.
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5.5. Turbulent kinetic energy

Figure 13 displays the turbulent kinetic energy, k u u 2i i= ¢ ¢ , k0 0.239  , in the z=0-
plane, at the final time. The Reynolds fluctuation of the i–th velocity component is ui¢. Notice
the disparity of levels between various regions of the flow; this is an indication of the
intermittency.

Figure 12. Simulation BF: velocity on z=0 plane. From left to right: u∣ ∣, ux, uz. From
blue to red, scales are [0; 0.22] for the velocity norm u∣ ∣, and [−0.22; 0.22] for the
components ux and uz. Final time of the simulation.

Figure 13. Simulation BF: turbulent kinetic energy k u u 2i i= ¢ ¢ on the z=0-plane.
Final time of the simulation.
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5.6. Taylor-microscale reynolds numbers Reλ

The local Taylor-microscale Reynolds numbers, Re D3
xxl and Re D3

zzl , in the horizontal and vertical
directions are displayed in figure 14, where the colour scale spans eight orders of magnitude.
Let us remark that the same colour scale has been used for these two images although the
global vertical Reynolds number is larger than the horizontal one. Consequently, there are
more red regions in the right picture than in the left one. Nevertheless the intermittency is
clearly revealed by these pictures: the blue corresponds to regions where the fluid is almost at
rest, while red corresponds to regions where the Reynolds number is close to 106.

5.7. Dissipation rate

The local dissipation rate is defined as u ui j i je =   , and the isosurface of this quantity is
given in figure 15 (left). Dissipative structures take the form of sheets, which are denser inside
the mixing layer than on the boundaries. On the right-hand side of the same figure, the 2D
representation of the dissipation bears a strong resemblance to the vorticity given in figure 9
(left). Figure 16 (left and right) emphasizes the differential dissipation at the altitude z=0
and close to the mixing layer boundary in the heavy fluid. Figure 16 (left) also has to be
examined in relationship with figure 14, where the local Reynolds number is displayed.

6. Anelastic simulations

Results obtained from two anelastic simulations are now displayed. The first, AF, uses
At 0.25= while the second, AI, uses a larger Atwood number, At 0.50= , all other para-
meters being equal.

6.1. Simulation AF: At=0.25

Since the anelastic model contains a rudimentary thermodynamic mode, pressure and
temperature are displayed in this section. Two pressure isosurfaces (figure 17) and two
temperature isosurfaces (figure 18) are displayed. The pressure isosurfaces do not exhibit a
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simulation.

Fluid Dyn. Res. 48 (2016) 015504 N Schneider and S Gauthier

15



particular pattern although some tori may be distinguished in the top view. Departures from
the homothermal initial state (T z 1initial ( )( ) = ), of the order of 10%, are induced by the RTI,
and the mushroom shape is also recovered for the temperature. Figure 18 left shows a top
view of the mixing layer with bubbles cooled, and the image on the right shows a bottom

Figure 15. Simulation BF. Left: 250e = local dissipation rate isosurface coloured by
the turbulent kinetic energy (log scale, blue for k 5 10 5= - and red for k 10 2= - ).
Right: dissipation on a (y, z)-plane on log scale. Final time of the simulation.

Figure 16. Simulation BF: local dissipation rate on the z=0-plane (left) and z=0.35-
plane (right). colour log scales are [10; 1,115] (blue to red). Final time of the
simulation.
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view with spikes slightly heated. The asymmetry between the size of the bubbles and the
spikes is also revealed by these two images (Mellado et al 2005, George and Glimm 2005,
Livescu 2013).

Figure 17. Simulation AF: isosurfaces of pressure fluctuation p 0.004¢ = - (blue) and
p 0.004¢ = (red). Left: top view; right: bottom view. Final time of the simulation,
where the transition to turbulence has already occurred.

Figure 18. Simulation AF: temperature isosurfaces T=0.97 (blue) and T=1.03 (red).
Temperature at rest is T=1. Left: top view; right: bottom view. Final time of the
simulation.

Figure 19. Simulation AI: concentration isosurfaces c=0.1 and c=0.9, coloured by
the velocity divergence ui i¶ (blue: u 0.53i i¶ = - , red: u 0.44i i¶ = ). Final time of the
simulation AI, where transition to turbulence is occurring. Left: top view; right:
bottom view.
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6.2. Simulation AI: At=0.5

For this simulation, only the concentration isosurfaces are displayed in figure 19 at a time
where the transition to turbulence is occurring. These surfaces are coloured by the velocity
divergence. One then sees on the left large bubbles where the fluid expands and on the right
small spikes compressed by the RTI. The larger the Atwood number, the larger the com-
pressibility effects and the larger the asymmetry (George and Glimm 2005, Mellado
et al 2005).

6.3. Mach number effect

The Mach number isosurfaces are displayed in figure 20 for these two anelastic simulations.
The strongest Mach number values are located on the boundaries of the mixing layer. On the
left, simulation AF is shown at its final time, after the transition to turbulence has occurred.
On the right, the simulation AI isosurface appears at its final time, lower than the AF one, and

Figure 20. Mach number isosurfaces coloured by the concentration. Left: simulation
AF (At 0.25= , Mach=0.12), final time of the simulation AF. Right: simulation AI
(At 0.50= , Mach=0.15), final time of the simulation AI.

Figure 21. Simulation CG: Q-criterion isosurfaces (Q= 5) coloured by the
concentration (heavy fluid in red and light fluid in blue)), at times t=1.83 (top
left), 3.05 (top right), 4.45 (bottom left) and 7.74 (bottom right). Vorticity first
increases and then decreases in the freely decaying regime. Top view in all four images.
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for a higher value of the Mach number . However, the isosurfaces look similar, which means
that compressibility effects grow with the Atwood number.

7. Compressible simulations

Two numerical simulations have been carried out with the full NSEs (Gauthier 2013), the
characteristics of which are summarized in table 1. The main feature of this configuration is
the stratification of the initial equilibrium state. The behavior of the Sr 6= RTI between two
stably stratified equilibrium states (see figure 1, right) is the following: first the instability
develops and transition to turbulence occurs, then a turbulent mixing layer begins to develop.
This is a classical RT regime, which does not seem to be affected by the stratification. Next,
the mixing layer starts to smooth the density jump and the effective Atwood number, based
on the horizontal mean density profile, decreases. The baroclinic source term and the tur-
bulence production also begin to decrease. During this second regime of stratified RT con-
figurations, the flow reaches a state of freely decaying turbulence in a stabilizing stratification.
Density stratification has already been identified as the dominant compressibility effect in
mixing layers (Jin et al 2005, Mellado et al 2005).

7.1. Simulation CF: Re ¼ 3� 104

7.1.1. Q-criterion. This behavior is illustrated in figure 21 with four images obtained from
simulation CF. Isosurfaces of the Q-criterion are shown at four different times: t=1.83,
where the pure RT regime ends; t=3.05, where the maximum vorticity occurs; t=4.45,
where the maximum of the Reynolds number is reached; and t=7.74, where the turbulence
is extinguished and the flow vanish. At t=1.83, large-scale vortices are clearly visible while
at t=3.05, less structured flow is occurring. At t=4.45 RT patterns are no longer visible
and the mixing layer appears as quite homogeneous in the two horizontal directions, while at
t=7.74 only a few vortices remain.

7.1.2. Acoustics. These two simulations carried out with the full NSEs exhibit strong
acoustic production, essentially in the heavy fluid, which is revealed by slices of the velocity

Figure 22. Simulation CF: velocity divergence, ui i¶ , on two (x, z)-planes at two
different y-locations. Acoustic wave arrays are visible and at the top, the acoustic wave
due to the initialization is also visible.
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divergence as shown in figure 22. In both the heavy and light fluids, acoustic wave arrays are
visible.

7.2. Simulation CG: Re ¼ 6� 104

This series of RT flow visualizations ends with the Q-criterion isosurfaces of the compressible
simulation CG. Only two isosurfaces are shown in figure 23, at the time where the maximum
vorticity occurs. Like the previous simulation, it shows an intricate set of vortices stirring the
heavy and light fluids. It is worth noticing that mixing layers generated between two stably
stratified equilibrium states are strongly homogeneous. Indeed if a blob of fluid escapes
upward the mixing layer, it is surrounded by lighter fluid, and by heavier fluid if the blob
moves downward. In both cases, acceleration acts as a restoring force.

8. Conclusion

We have visualized some Rayleigh–Taylor mixing flows between miscible fluids computed
with Boussinesq and anelastic models and with the full Navier–Stokes equations. This
visualization helps in understanding the structure—such as the vortical structure—of Ray-
leigh–Taylor flows. These visualizations also lead to some conclusions and remarks, which
may be summarized as follows:

(i) For a single-mode Rayleigh–Taylor instability, the vorticity norm leads to a toroidal
isosurface, while the horizontal components lead to a ‘double-spoon’ pattern. However
vortices are better detected by the Q-criterion, which has been used systematically in
this work.

(ii) Large vortical structures, with the torus corresponding to a mushroom pattern, appear
clearly on the boundaries. However, inside the mixing layer, the Rayleigh–Taylor patterns
disappear, and the vortical structures tend to be oblong or take the form of short filaments.

(iii) Turbulent kinetic energy and local Taylor-microscale Reynolds number clearly show
the intermittent character of the flow. In some regions the fluid is almost at rest, while in
others the Reynolds number is close to 106. As a result, there are some unmixed regions.

(iv) Dissipative structures take the form of sheets, which are denser inside the mixing
layer than on the boundaries.

(v) Anelastic simulations reveal the asymmetry between the sizes of bubbles and spikes at
an Atwood number equal to 0.25 and more clearly for Atwood number 0.50. They also show

Figure 23. Simulation CG: Q-criterion isosurfaces with Q=10 coloured by the
concentration (heavy fluid in red and light fluid in blue). Left: top view, right: bottom
view. Time at which the vorticity is at a maximum.
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the cooled expanded bubbles versus the heated compressed spikes. Moreover, the strongest
Mach number values are located on the boundaries of the mixing layer.

(vi) Simulations carried out with the full Navier–Stokes equations show a two-step
phenomenon: first turbulence and vorticity increase, which smooths out the density jump. In
the second step, turbulence is in a freely decaying regime.

(vii) Mixing layers generated between two stably stratified equilibrium states are strongly
homogeneous in the horizontal directions. A strong acoustic production is also observed.

Finally, let us suggest that the Rayleigh–Taylor instability deserves to be studied from the
point of view and with the tools of topological fluid dynamics (Bajer et al 2013).
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