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a b s t r a c t

A novel framework for probabilistic-based structural assessment of existing structures, which combines
model identification and reliability assessment procedures, considering in an objective way different
sources of uncertainty, is presented in this paper. A short description of structural assessment applica-
tions, provided in literature, is initially given. Then, the developed model identification procedure,
supported in a robust optimization algorithm, is presented. Special attention is given to both experimen-
tal and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical
model is obtained from this process. The reliability assessment procedure, which considers a probabilistic
model for the structure in analysis, is then introduced, incorporating the results of the model identifica-
tion procedure. The developed model is then updated, as new data is acquired, through a Bayesian
inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is
validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structural assessment comprises all activities required to eval-
uate the condition of structures for future use, in particular, regard-
ing safety. During structural assessment of existing structures a
wide range of sources of uncertainty can be identified. In order
to consider them, reliability algorithms are commonly used. Struc-
tural safety is quantified through the reliability index, or the prob-
ability of failure, obtained from the comparison of resistance and
effect of loads probability density functions (PDFs) [1–3].

Several authors have used probabilistic-based safety assess-
ment procedures to assess existing structures, having shown that
the conclusions can be dramatically different from those obtained
using existing codes [4–10]. More recently, Bayesian inference was
introduced to improve the quality of probabilistic models for both
resistance and effect of loads, using data collected from the struc-
ture under analysis [11,12].

The use of nonlinear finite element analysis (NL FEA) methods
in structural assessment procedures, although computational
costly, enables a more realistic estimation of the structural
response, both in service and ultimate limit states. Bergmeister
et al. [13] introduced a probabilistic-based safety assessment con-
cept for reinforced concrete structures that integrates NL FEA soft-
ware with reliability-based algorithms.

For existing structures, the available information regarding
used materials (e.g. class of concrete or steel) and geometry is
always scarce. Moreover, the retrieval of samples for laboratory
tests is often restricted. As a result, the applicability of Bayesian
updating directly considering material and geometric properties
has limited applicability. Therefore, some authors used model
identification techniques to estimate structural parameters based
on performance measures. A review of these procedures is pro-
vided in [14]. Accordingly, Novák et al. [15] developed a complex
methodology for structural assessment of existing structures,
which combines structural analysis and reliability algorithms with
new modules for model identification.

In this paper, a novel framework for probabilistic-based
structural assessment of existing structures is presented. This
framework combines some of structural assessment techniques
above outlined with a new methodology to identify optimal
solutions, based on an evolutionary algorithm and a hybrid
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Fig. 1. Probabilistic-based structural assessment algorithm [14].
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decision-making procedure, and a Bayesian inference tool, provid-
ing the objective treatment of uncertainties. In the first step, model
parameters, in particular material (e.g. steel yield stress, concrete
strength), geometric and mechanic properties are estimated con-
sidering a minimization procedure between observed performance
and performance predicted using a non-linear finite element
model (NL FEM). A convergence criterion is defined considering
the expected accuracy of experimental and numerical data. The
minimization procedure yields a set of near optimal solutions,
from which the best model is selected considering the probability
of each solution occurring based on previous knowledge. If deemed
adequate, an expert judgment can be employed within this selec-
tion procedure. Once selected, the deterministic model is con-
verted into a probabilistic model by considering randomness in
model parameters, through the adoption of appropriate PDFs.
Bayesian inference is then used to update each model parameter
with new acquired data from material and geometric properties.
This way, the statistical uncertainty is explicitly considered. Struc-
tural safety is respectively assessed in a continuous basis through
this framework.

This framework can be classified, according to SAMCO report
[16], as a level 5 assessment class (model-based assessment of
existing structures), once it combines probabilistic simulation
methods, with a stochastic NL FEM and data from testing and mea-
surement of material properties and dimensions. Although this
methodology can be applied to new structures, its application aims
at better characterizing existing structures for which limited infor-
mation exists. The effectiveness of both model identification and
reliability assessment procedure, with an integrated Bayesian
inference approach, is supported in the reliability of such data.
Accordingly, the developed framework, which addresses different
sources of uncertainties, is tested and validated with a set of rein-
forced concrete beams, which were loaded up to failure in labora-
tory. This controlled experiment is crucial since, unlike real
structures, destructive tests can be extensively employed to evalu-
ate the accuracy of the prediction.
2. Probabilistic-based structural assessment

The proposed probabilistic-based structural assessment
methodology can be divided in two main steps, Fig. 1. In the first
step a deterministic analysis is used to estimate the most impor-
tant model parameters, based on the combination of numerical
methods and experimental data. This procedure, denoted as model
identification, searches for expected values of material, geometric
and mechanic structural properties. This data is then used to define
the probabilistic distributions of structural parameters, used in the
reliability assessment of the structure.

The main objective of model identification procedure is to
obtain the most likely values of model parameters, consistent with
observed structural performance. Within this procedure, numerical
results are fitted to collected data from real structure, by adjusting
model parameter values. This procedure is accomplished by using
an optimization algorithm, with the objective of minimizing the
difference between obtained numerical results and measured data,
expressed by a fitness function. The optimization procedure stops
when the improvement in this function is equal or lower than a
threshold value. The main result of this procedure is a structural
model that can, with acceptable accuracy, predict the structure
performance.

The aim of reliability assessment of the structure is to evaluate
its condition for future use, considering randomness in model
parameters. In order to do that, a prior distribution is assigned to
each model parameter. This distribution may be then updated
through a Bayesian inference procedure, with complementary data
obtained by visual inspection, non-destructive tests or permanent
monitoring systems. A posterior distribution is respectively com-
puted, being obtained an updated performance indicator for the
structure under evaluation.

The main drawback of this methodology is its computational
cost. In order to surpass this, an initial sensitivity analysis is recom-
mended. The main objective of this analysis is to identify the
parameters with a higher impact on the overall structural behav-
ior. This analysis consists in evaluating the fitness function varia-
tion with each input parameter. An importance measure, bk, is
obtained for each parameter, expression (1),

bk ¼
Xn
i¼1

ðDyk=ymÞ=ðDxk=xmÞ � CV ½%� ð1Þ

with Dyk the variation in structural response due to a deviation of
Dxk in input parameter mean value xm, ym the average response, n
the number of generated parameters and CV the parameter coeffi-
cient of variation.
2.1. Model identification

In a first step, and according to Fig. 1, model identification is
performed to obtain an updated deterministic numerical model.
During this procedure, model parameters are obtained from an
automatic adjustment process to measured data (Fig. 2). In the
model identification procedure, unknown variables were taken as
uncorrelated.



Fig. 2. Model identification procedure [14].
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For each set of values of the different parameters (e.g. steel yield
stress, concrete compressive strength), a NL FEM is defined and the
obtained results (ynumi ) are compared with the corresponding
experimental results (yexpi ), Fig. 3a, through the fitness function, f,
given by Eq. (2),

f ¼
Xn
i¼1

ynumi � yexpi

�� ��=maxðyexpÞ � 1=n ½%� ð2Þ

where n is the number of evaluated points from the real structure. It
is important to point out that this function is normalized and so, it
can be used with different transducers, measuring different param-
eters, placed in different sections of the structure in evaluation.

The adjustment procedure consists in minimizing the distance
between measured and numerical data, given by fitness function
(2). A wide range of optimization numerical methods can be used
to solve this problem. On one hand, gradient based methods are
usually less computationally expensive, but less robust, frequently
converging to local minima. On the other hand, non-gradient
methods, in particular, population-based meta-heuristic methods
tend to be significantly more robust, increasing the probability of
finding global minima and avoiding the need to compute gradients.
However, they are usually very computationally demanding.
Herein, a population-based method, described in [17] and denoted
as evolutionary strategies – plus version, was used. To further
enhance the robustness of the method, the algorithm was run mul-
tiple times, using different initial randomly generated populations
to avoid falling into local minima.

According to Fig. 2, the fitness function convergence criterion,
given by Eq. (3), may be used as an optimization algorithm stop-
ping criterion,

Df ¼ jf iþn � f ij 6 e ð3Þ
with f the minimum fitness function value from a population of
models for generation i and i + n, and n the defined gap between
Fig. 3. Fitness function: (a) d
these two generations. If the difference between these two values
is less than or equal to a pre-specified threshold value, e, the algo-
rithm stops, and all solutions repeating the criterion considered as
potential optimum. If this difference is higher than the threshold,
then the algorithm continues for further iterations.

In order to limit the probability of over fitting, optimization is
conducted, not to find the best solution, but a group of solutions
associated with a fitness under a given threshold. In fact, when
using such a model identification procedure, two sources of errors
must be considered: experimental and numerical errors [18–21].
Consequently, it is assumed that when computing the difference
between numerical and experimental data, according to fitness
function (2), results associated with a fitness below the expected
amplitude of errors are considered as optimal, Fig. 3b. The thresh-
old value, e, is then computed through the law of propagation of
uncertainty [22], combining both measurement and modeling
errors [14].

A population of models that respect the convergence criterion is
selected through this procedure. These models are then analyzed
by a hybrid process, based in the probability of occurrence of each
model and, potentially, expert judgment is used to select the most
likely result. The most likely model (i.e., the model with highest
probability of occurrence) is used in the following steps.
2.1.1. Errors
Errors play a major role in model identification. They may arise

from many sources, being the most significant the measurement
and modeling errors. Model identification is always limited by
the combination of these two sources of errors [18–21]. Accord-
ingly, numerical models are updated until a certain limit (thresh-
old value), obtained through the contribution of these two
components, is attained.

Measurement error, uexp, corresponds to the difference between
real and measured quantities in a single measurement. It usually
efinition; (b) errors [14].
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results from equipment and on-site installation limitations.
Accordingly, different sources may be defined for this type of error
[23–25]: (1) sensor accuracy, usually reported by the manufac-
turer; (2) stability (e.g. ambient vibrations); (3) robustness (e.g.
environmental effects due to temperature); (4) load positioning;
and (5) load intensity.

Modeling error, unum, corresponds to the difference between the
response of a given model and that of an ideal model which accu-
rately represents the structural behavior. It is possible to divide
this error in three main components, Fig. 4 [18,19,26]: (a) u1, dis-
crepancy between the behavior of a mathematical model and that
from the real structure; (b) u2, numerical error in solving the par-
tial differential equations (e.g. finite element method, mesh dis-
cretization); and (c) u3, inaccurate assumptions made during
simulation (e.g. boundary condition such as support characteris-
tics, applied load steps). Component u1 is extremely difficult to
quantify, as it is problem dependent and it can be minimized
through modeling expertise. Ravindram et al. [19] proposes to con-
sider this component as null when an ideal situation is assumed.

The component errors u2 and u3 can be computed by comparing
obtained results from numerical model, used in model identifica-
tion procedure, with a reference model which presents a more
refined mesh and a higher number of load steps [20]. This compar-
ison is established through Eq. (4),

u ¼
Xn
i¼1

ynum1
i � ynum0

i

�� ��=maxðynum0Þ � 1=n ½%� ð4Þ

where ynum0 is the reference model value, ynum1 is the obtained
value from numerical model, used in model identification, and n
the number of comparing points.

2.1.2. Convergence criterion
Different fitness function convergence criteria can be used in

model identification. Robert-Nicoud et al. [18] proposes a proce-
dure which considers as candidate models those that present a fit-
ness function value lower than a pre-specified threshold.
Considering y as the real value of a measurable quantity, yexp the
measured value and ynum the numerical value (Fig. 3b), the follow-
ing relationship can be defined, expression (5),

y ¼ yexp þ uexp ¼ ynum þ unum ¼ ynum þ ðu1 þ u2 þ u3Þ ð5Þ
Model identification procedure aims to minimize the absolute

value of the difference between ynum and yexp, known as residual,
q. Considering expression (5), and considering that both unum and
uexp might be positive or negative, the residual is given by Eq. (6),

q ¼ ynum � yexpj j () q 6 jynumj þ jyexpj 6 juj 6 junumj þ juexpj
6 ju1j þ ju2j þ ju3j þ juexpj ð6Þ
The proposed convergence criterion by Robert-Nicoud et al. [18]

may be reduced to expression (7),

f ðqÞ 6 u ð7Þ
where f(q) is the computed residual and u the global uncertainty.
Fig. 4. Modeling errors u1, u2 and u3 (ad
The convergence criterion, given by Eq. (3), defines that the
improvement in fitness function value, Df, from two models sepa-
rated of a pre-specified gap, n, should be lower than or equal to a
threshold value, e. Accordingly, considering the methodology pro-
posed by Robert-Nicoud et al. [18], the convergence criterion may
be reduced to expression (8),

Df ¼ jf iþn � f ij () Df ¼ jf iþnj þ jf ij 6 juiþnj þ juij 6 e ð8Þ
with fi and fi+n, and ui and ui+n, respectively, the fitness function value
and the global uncertainty, computed for generation i and i + n.

In order to compute the global uncertainty, u, it is necessary to
combine both measurement and modeling errors through the law
of propagation of uncertainty [22]. If errors are assumed indepen-
dent, the global uncertainty is given by expression (9),

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ð@f=@xiÞ2 � uðxiÞ2

q
ð9Þ

where u(xi) is the uncertainty associated with error source, xi, and
@f/@xi the partial derivative of the fitness function in order to each
error source, xi. The partial derivative evaluates the sensitivity of
the fitness function with relation to each source of error, and higher
values represent a strong contribution in the global uncertainty.

The fitness function, given by expression (2), is composed by
two terms, respectively, a numerical and an experimental. The par-
tial derivative, in relation to each term, can be obtained as of/o
ynum = of/oyexp = 1/max(yexp). In order to determine the global
uncertainty value, it will be necessary to separately compute the
measurement and modeling error.

According to expression (8), the threshold value, e, is computed
by taking into consideration the sum of global uncertainties from
two generations, ui and ui+n, as a superior limit. These uncertainties
are computed through expression (9). In this situation, the partial
derivatives oDf/oui+n and oDf/oui are unitary. Once the threshold
value is computed, it is used for: (i) defining potential solutions;
and (ii) establish the optimization algorithm convergence criteria.

2.1.3. Selecting of optimal solution
Global optimization algorithms, such as evolutionary strategies

[17], result in a population of optimal results. Due to the random
nature of these algorithms, it is common to run the same algorithm
several times, with randomly generated starting points, as to limit
the probability of underperforming results and avoid falling into
local minima.

From this near optimal population, the best result is taken as
that with higher probability of occurrence, eventually followed
by an expert judgment. Such algorithm is based on the assumption
that material, geometric and mechanic properties tend to be close
to the initial estimation, unless some exceptional situation is
detected.

2.2. Reliability assessment

In a second step, and according to Fig. 1, the reliability of the
structure is assessed, in order to evaluate, from a probabilistic
apted from Ravindram et al. [19]).
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point of view, its safety level. The updated numerical model from
model identification procedure, is converted into a probabilistic
model by introducing randomness in its model parameters.

The probabilistic models for the properties of most structural
materials, including concrete and steel, and for geometry of com-
mon elements (e.g. section dimensions and concrete cover) can
be found in the literature [3,4,27]. The correlation between these
parameters is established by proper coefficients, also given in bib-
liography [3,4,27].

A sampling procedure is thus incorporated to randomly gener-
ate the model parameter values [1,2]. Accordingly, an open source
Latin Hypercube Sampling (LHS) [28–30] toolbox is used in the
present work. There are some algorithms, such as the well-
known Iman and Conover [31] or the more advanced Simulated
Annealing [32] that might be used in sampling to consider the cor-
relation between parameters. In this case, Iman and Conover algo-
rithm was used since it was already incorporated in the LHS
toolbox.

Then, for each set of generated values, the updated numerical
model is analyzed with a NL FEA software, being the obtained
results statistically processed. In order to assess the structure
behavior, its resistance is compared with the effect of loads. A reli-
ability index, necessary to quantify the structural safety, is then
computed.

2.2.1. Bayesian inference
Bayesian methods can be used to incorporate external informa-

tion into data analysis process, with the aim of reducing the statis-
tical uncertainty [11,12,14]. This process starts with a given
distribution, designated as prior, whose parameters may be chosen
or estimated based on bibliography, experience or from experi-
mental data. As more data is collected, Bayesian analysis is used
to update the prior distribution into a posterior distribution. The
Bayes theorem, which weights the prior information with evidence
provided by new data, is the basic tool for the updating procedure.

Within the Bayesian approach, the choice of a prior distribution
is considered as an extremely important step. The use of a non-
informative prior is often useful when no prior information exists,
but it is always necessary to check if the obtained posterior
distribution is proper [30]. A common non-informative prior
is the Jeffrey’s prior. Although it is verified that traditional non-
informative priors are improper, in most situations, computed
posterior distributions are proper. When there is any information
regarding the interest parameter, an informative prior may be used
instead. This prior is not dominated by the likelihood and has an
impact on the posterior distribution.

Conjugacy corresponds to the property of a posterior distribu-
tion to follow the same parametric form of a prior distribution
[30]. The use of conjugate families is convenient from a mathemat-
ical point of view, once the posterior distribution presents a known
parametric form. In this case, obtained results are easy to under-
stand and can be often represented in its analytical form. However,
a more realistic prior may be used if there is information that
contradicts the conjugate family.

The Bayesian inference procedure involves passing from a prior
to a posterior distribution using the likelihood data function. Con-
sidering a Normal likelihood has the advantage of either conjugate
or non-informative priors resulting in proper posteriors [30].
Within the Bayesian approach, interest parameters are assumed
to follow certain probability distributions. Such distributions are
defined by one or more unknown statistical parameters. These
parameters are also considered to have given distributions. They
are further updated given the data and will be respectively used
to infer each interest parameter.

The aim of a Bayesian inference analysis is to obtain the poste-
rior distribution. In several situations, it is enough to obtain point
estimates that summarize the overall information (e.g. mean and
variance parameters). Sometimes, this can be performed by using
analytical closed form solutions, especially if prior distributions
are properly chosen. One other alternative is to infer it from simu-
lated distributions. According to Fig. 1, a Bayesian inference algo-
rithm is thus incorporated in the reliability assessment
procedure [14].

2.2.2. Reliability analysis
Once the PDF of all variables is known and updated based on the

experimental data, the simulation algorithm is used to generate
values for those variables, compute the structural response and
to evaluate each limit function [1,2]. From all these algorithms,
the stratified sampling procedures, in particular the LHS, was com-
monly used due to its lower computational cost [4,28,29]. Accord-
ingly, a LHS toolbox with an incorporated Iman and Conover [31]
algorithm, is respectively used for generating the correlated ran-
dom variables.

Structural safety is quantified through the comparison of resis-
tance, R, and effect of loads, S, PDF [3]. In this situation, if R and S
are independent random variables, the limit function g(X) is given
by Z(R,S) = R � S [1,2]. Accordingly, the failure probability, pf, is
expressed through Eq. (10),

pf ¼ PðZðR; SÞ 6 0Þ () PðR 6 SÞ () PðR� S 6 0Þ ð10Þ
The corresponding reliability index, b, is given by expression

(11),

b ¼ �/�1ðpf Þ ð11Þ
being U�1 the inverse cumulative distribution function for a stan-
dard Normal PDF. The safety assessment procedure consists in a
comparison between the computed and a target reliability index,
btarget, given in codes or bibliography [3,33].

3. Reinforced concrete beams

3.1. Experimental tests

Two reinforced concrete beams were tested, in laboratory, up to
failure. These hyperstatic beams present a roller support in one end
and a fixed support in the opposite side. Both beams present a rect-
angular cross section of 7.50 ⁄ 15.00 cm2, b ⁄ h, and a span, L, of
1.50 m. Two equal loads are applied at middle span, being the dis-
tance between them of 50 cm. Used materials are S500B reinforc-
ing steel and C25/30 concrete [34]. Each beam has a superior and
an inferior longitudinal reinforcing steel of, respectively, 2/8
(As = 1.005 cm2) and 3/6 (As = 0.848 cm2), and a transversal rein-
forcing steel of /4@0.03 (Asw/s = 8.378 cm2/m), near supports,
and of /4@0.08 (Asw/s = 3.141 cm2/m), at middle span. An inferior,
cinf, and superior, csup, concrete cover of 2.0 cm is considered.

During the tests, the applied load, the middle span displace-
ment and the roller support reaction, were continuously moni-
tored. The test results show that the fixed support is not perfect,
as rotation occurs, due to concrete accommodation. The failure
load and maximum bending moment at fixed support are, respec-
tively, of 30.52 kN and 7.38 kN m, for beam 1, and of 28.26 kN and
6.43 kN m, for beam 2.

3.2. Numerical analysis

The tested reinforced concrete beams were modeled using a NL
FEM in ATENA� [35]. Concrete and steel are modeled according to
stress–strain laws given in Fig. 5 [34,35]. The stress–strain law con-
sidered for concrete is defined by the elasticity modulus, Ec, the
compressive strain at compressive strength, ec, the compressive



Fig. 5. Material stress–strain law: (a) concrete; (b) reinforcing steel [34,35].
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strength, fc, the tensile strength, ft, the critical displacement, wd,
and the fracture energy, Gf. The stress–strain law for reinforcing
steel is described by the elasticity modulus, Es, the yield strength,
ry, the limit strain, elim, and the ultimate strength, ru. Reinforcing
steel is considered to be fully embedded in concrete. Vertical
springs were considered at fixed support to simulate the concrete
accommodation.

When performing several analysis of the same numerical
model, as in probabilistic-based structural assessment, the compu-
tational cost issue becomes very important. In order to overcome
it, the developed numerical model was simplified. Therefore, both
finite element and load step numbers were optimized considering
the model performance.

Fig. 6a shows the numerical model deformation, crack pattern
and horizontal strain of the modeled reinforced concrete beams.
A bending failure mode, with concrete crushing and yielding of
longitudinal reinforcing steel, is obtained. The collapse mechanism
is characterized by two plastic hinges, one positioned at fixed sup-
port and the other close to the load on the opposite end of the
beam. The numerical behavior of the analyzed reinforced concrete
beams was similar to that obtained in experimental tests (Fig. 6b).

3.2.1. Sensitivity analysis
Once the numerical model is developed, a sensitivity analysis

was carried out to define the most important model parameters,
and consequently reduce the computational cost. If the importance
measure, see Eq. (1), is higher than 10%, bk,lim, the parameter will be
considered as critical. This analysis was carried for both service
load and failure load scenarios.

For service loads, see Fig. 7a, the most significant parameters
are: concrete elasticity modulus, tensile strength, and fracture
Fig. 6. Collapse mechanism: (a) numeri
energy, inferior longitudinal reinforcing steel elasticity modulus
and area, and beam width and height. Considering the analysis
up to failure load (Fig. 7b), it is verified that the concrete compres-
sive strength, the inferior reinforcing steel yield strength and the
inferior concrete cover are also significant.

Two further parameters, spring stiffness at fixed support, k, and
load step in which the fixed support starts to work, were also con-
sidered in model identification. These parameters, although not
considered in the sensitivity analysis, have a strong impact on
the structural response. Accordingly, 9 and 12 parameters will be
respectively considered in the analysis until service and failure
loads.

3.3. Model identification

Once the numerical model and critical parameters are obtained,
the following step consists in the application of the model identi-
fication procedure. The fitness function, Eq. (2), is the quadratic
sum of two independent components, i.e., experimental and
numerical applied load, F, and roller support reaction, R, respec-
tively, for each registered middle span displacement, d, and bend-
ing moment at fixed support, M. A global optimization algorithm is
then used to minimize this value.

An evolutionary strategies optimization algorithm in its plus
version was used [17]. A parent population, l, and a parent for
recombination, q, of 10 individuals, as well as an offspring
population, k, of 50 individuals are used. This algorithm stops as
the fitness function convergence criterion or the maximum gener-
ation’s number (1000) is attained. The generation gap, n, used for
the fitness function criterion, Eq. (3), is established as 10% of the
maximum generation’s number. Therefore, the improvement on
cal model; (b) laboratory test [14].



Fig. 7. Importance measure, bk: (a) service load; (b) failure load [14].

Table 1
Errors: sources and quantification.

Sources Quantification method Error [%]

Experimental
errors

Sensor
accuracy

Manufacturer (includes
cable and acquisition
equipment losses)

0.10
(displacement
transducer);
0.10 (load cell)

Stability Static load test (no fatigue
problems detected)

? 0.00

Robustness Short term test
(environmental effects
neglected)

? 0.00

Load
positioning

Test assembly perfectly
controlled

? 0.00

Load
intensity

Manufacturer (includes
cable and acquisition
equipment losses)

0.10 (load cell)

Numerical
errors

Finite
element

Based on preliminary
study (by comparing to a

11.42 (d vs. F)a;
11.75 (M vs. R)a
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fitness value is evaluated from a gap of 100 generations. Once the
algorithm stops, a population, constituted by different individuals,
is obtained.

In case the convergence criterion is attained for any model, the
process stops and the model is selected. Accordingly, if in the final
population there are other models which accomplish this criterion,
these models will be also extracted to a pool of models. In order to
avoid falling into local minima, this algorithm is processed with
different, randomly generated, starting points. Then, the best
model selection is supported in a hybrid procedure which consists
in evaluating the probability of each solution occurring based on
previous knowledge followed by an expert judgment process.
Those models for which the assessed parameter values are far from
the initial ones, are placed in the lower part of the ranking. How-
ever, this does not mean that they are not chosen once the final
decision can be made by the expert, who selects the model that
provides more confidence.
method more refined mesh
model)

Inaccurate
assumptions

Based on preliminary
study (by comparing to a
shorter load step model)

5.91 (d vs. F)a;
6.16 (M vs. R)a

Model
exactitude

Model ‘‘as built” ? 0.00

Considered
hypothesis

Other hypothesis are
negligible

? 0.00

a Computed value for failure load [14].
3.3.1. Convergence criterion
In order to compute the threshold value, e, for the fitness func-

tion convergence criterion, Eq. (3), it is first necessary to identify
and quantify the different sources of errors (Table 1). When com-
puting this value, the two independent components i of the fitness
function, Eq. (2), d � F and M � R, are considered.

The following step consists in computing both experimental
and numerical errors, for each fitness function component, through
the law of propagation of uncertainty [22]. The standard error is
calculated considering that a uniform PDF (type B) is respectively
assigned to each source of error j [22], obtained from Table 1.
The partial derivative of the experimental and numerical results
with respect to each standard error is unitary. Tables 2 and 3 show
the experimental and numerical error computation for the analysis
until failure load.

Once the experimental and numerical errors are obtained, it
will be possible to compute the fitness function uncertainty for
each component i. In order to obtain this value, it is necessary to
calculate the fitness function partial derivative in relation to the
experimental and numerical results, by using expression (2). These
values vary with the tested beam k, as they are proportional to
maximum applied load and measured reaction. The law of propa-
gation of uncertainty is then used to compute the fitness function
uncertainty [22]. Table 4 presents the fitness function uncertainty
calculation for each tested beam.

The uncertainty in the fitness function improvement value and
the corresponding threshold value computation is shown in



Table 2
Experimental error computation [22].

Component, i Error, j [%] Type Standard error, uexp,ij [–] @yexp/@uexp,ij [kN] Experimental error, uexp,i [kN]

d � F 0.10 B (0.10/100)/
p
3 = 5.77 ⁄ 10�2 1

p
(12 ⁄ (5.77 ⁄ 10�2)2) = 5.77 ⁄ 10�4

M � R 0.10 B (0.10/100)/
p
3 = 5.77 ⁄ 10�2 1

p
(12 ⁄ (5.77 ⁄ 10�2)2) = 5.77 ⁄ 10�4

Table 3
Numerical error computation [22].

Component, i Error, j [%] Type Standard error, unum,ij [–] @ynum/@unum,ij [kN] Numerical error, unum,i [kN]

d � F 11.42 B (11.42/100)/
p
3 = 6.59 ⁄ 10�2 1

p
(12 ⁄ (6.59 ⁄ 10�2)2 + 12 ⁄ (3.41 ⁄ 102)2) = 7.42 ⁄ 10�2

5.91 B (5.91/100)/
p
3 = 3.41 ⁄ 10�2 1

M � R 11.75 B (11.75/100)/
p
3 = 6.78 ⁄ 10�2 1

p
(12 ⁄ (6.78 ⁄ 10�2)2 + 12 ⁄ (3.56 ⁄ 10�2)2) = 7.66 ⁄ 10�2

6.16 B (6.16/100)/
p
3 = 3.56 ⁄ 10�2 1
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Table 5. The fitness function criterion establishes that its improve-
ment should be less than or equal to the computed threshold value.
The threshold value for the analysis in service phase is obtained in
a similar way, resulting in expression (12),

Serv ice ! e ¼ 4:17 � 10�2 ¼ 4:17%
Failure ! e ¼ 4:58 � 10�2 ¼ 4:58%

(
ð12Þ

The threshold value can be understood as the model identifica-
tion procedure precision. Accordingly, it is not meaningful to
improve the fitness function to a value that is smaller than the
precision.

3.3.2. Results
Obtained model identification results are given in Table 6. These

results show that concrete and steel presents a lower strength than
that initially predicted. However, a higher steel area is also
obtained, balancing the ry ⁄ As value used in NL FEA software
[35]. Regarding geometric parameters, obtained value for concrete
cover is close to that initially predicted, while lower values were
identified for the beam dimensions.

In Fig. 8a, the applied load is plotted against the middle span
displacement, and in Fig. 8b the reaction at roller support is plotted
against the bending moment at fixed support. From the analysis it
is possible to conclude that the results from model identification
until failure load are those that best fit the experimental curve.

Table 7presents thefitness functionvalues obtainedby consider-
ing the initial values and those frommodel identification. It is veri-
fied that the fitness value obtained from the analysis until service
load is always lower than that obtained from the same analysis until
failure load, showing that the model is more accurate in service
region. This is due to a higher number of critical parameters as well
as of used points to compute the fitness function in this latter situa-
tion. However, for both situations, the developed procedure pro-
vided a considerable improvement in the performance estimates.

Table 8 provides both failure load and maximum bending
moment at fixed support, computed for initial values and those
from model identification in service phase and until failure load.
Obtained error from model identification until failure load is lower
than that given by initial values and by model identification in ser-
vice phase. These results show that the analysis until failure load
allows a significantly better prediction of the beam strength, as
when applying the methodology in service phase, the model iden-
tification is performed for this region, being not possible to guaran-
tee the curve fitting for failure region.

3.4. Reliability assessment

Once an updated numerical model is obtained from model
identification, the next step consists in computing the resistance
probability distribution of the assessed beam. During this analysis,
both material (concrete and steel) and geometric properties (sec-
tion dimensions and concrete cover) are considered as random
variables [36,37]. The mean value of all parameters is taken as
the result of model identification, while distributions and coeffi-
cient of variation are defined based on bibliography [3,4,27], as
presented in Table 9.

When complementary data is available, a Bayesian inference
[12,30] approach can be used to improve the reliability assessment
procedure. The updating process uses data collected from material
(concrete and steel) and geometric (concrete cover) tests [14]. An
informative and a non-informative (Jeffrey’s) prior were used in
the Bayesian inference procedure with the aim of computing the
posterior distribution. Of these two, the approach leading to a
lower standard deviation of the posterior distribution will be used.

In this case, an Iman and Conover algorithm [31] is integrated in
the LHS toolbox to generate samples of the correlated random vari-
ables [28,29]. Used correlation values (Table 10) are obtained from
bibliography [3,4,27]. A set of failure load values, FR, are obtained
from probabilistic analysis. These values are then statistically pro-
cessed, and a PDF is fitted to the resistance samples. From this
analysis it is verified that the Normal PDF presents an accurate fit-
ting for all phases of the analysis.

3.4.1. Characterization tests
Complementary tests were developed at laboratory in order to

characterize used concrete and steel as well as to control the con-
crete cover, as to provide means to quantify the accuracy of the
proposed methodology. Obtained results are given at Table 6. They
confirm the lower concrete quality and the closeness of the con-
crete cover to the initial value. However, it is verified that the lon-
gitudinal reinforcing steel quality is higher than the expected. In
fact, in terms of structural performance, the key parameter is ry

⁄ As, and the optimization algorithm provides several combinations
of ry and As which gives very good results, being very difficult to
distinguish between them and thus to identify the optimal
combination.

3.4.2. Bayesian inference
The new information regarding material and geometric param-

eters collected through testing can be also used for model updat-
ing. In this situation, Bayesian inference is applied to update each
model parameter distribution and consequently reduce the statis-
tical uncertainty [12,14,30]. Regarding prior distributions, both Jef-
frey’s and conjugate priors were considered in this analysis. Used
Bayesian inference methodology is exemplified here with an appli-
cation to concrete compressive strength, for the case when both
mean and variance are unknown.

In this situation, the following joint Jeffrey’s improper prior is
used, expression (13),

pðl;r2Þ / 1=r2; �1 < l < 1; r2 > 0 ð13Þ
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Using Bayes theorem [30], the posterior distribution given all
observations xi, is given by expression (14),

pðl;r2jxÞ / 1
r2

� �1=2

� exp �1
2
� l� �x
r=

ffiffiffi
n

p
� �2

" #
� 1
r2

� �ðn�1Þþ1
2

� exp �1
2
� S
2 � r2

� �
ð14Þ

where S = R(xi � �x)2 and n the number of samples (in this case
n = 5). It is possible to conclude that the posterior distribution of
l conditional on r2 is given by a Normal PDF with mean �x (in this
case equal to 30.79, Table 6) and variance r2/n, Eq. (15),

ljr2; x ! Nð�x;r2=nÞ ) ljr2;X ! Nð30:79;r2=5Þ ð15Þ
with the marginal posterior distribution of 1/r2, an inverse v2 dis-
tribution, expression (16),

ðn� 1Þ � s2
r2 ! v2

n�1 ) 2:52
r2 ! v2

n�1 ð16Þ

where s2 = R(xi � �x)2/(n � 1) the sample variance (in this case,
equals to 0.63). As r2 appears in conditional distribution l|r2, this
means that l and r2 are dependent. In this case the parameter
distribution values can be obtained by simulation, through the
application of expressions (15) and (16), or by analytical solutions
[30].

In this case, the natural conjugate prior has the following form,
Eq. (17),

pðl;r2Þ / n0

r2

� 	1=2
� exp � n0

2 � r2
0

� ðl� l0Þ2
� �

� 1
r2

� �v0=2þ1

� exp � S0
2 � r2

� �
ð17Þ

where n0 is the initial sample size (in this case, the same weight is
given to prior and likelihood data, with n0 = 5), S0 = R(xi � �x)2 is the
prior value for S, obtained from the prior standard deviation r0

(equals to 3.30), and l0 the prior mean value (equals to 33.00,
Table 6). The prior is thus a Normal-Gamma PDF or, in other words,
the product of an inverted Gamma PDF, with argument r2, and m0
(m0 = n0 � 1) degrees of freedom, by a Normal PDF with argument
l, being the variance proportional to r2. The prior distribution of
l conditional on r2 is thus a Normal PDF with prior mean l0 and
variance r2/n0 (r(l0)2), expression (18),

ljr2 ! Nðl0;r
2=n0Þ ) ljr2 ! Nð33:00;r2=5Þ ð18Þ

being the prior distribution of 1/r2 a Gamma PDF with parameters
m0/2 and S0/2, Eq. (19),

1=r2 ! Gammaðv0=2; S0=2Þ ) 1=r2 ! Gammað2;21:78Þ ð19Þ
The posterior distribution of l conditional on r2 is a Normal

PDF with mean l1 and variance r2/n1 (r(l1)2), with n1 = n0 + n
the total samples size, expression (20),

ljr2 ! Nðl1;r
2=n1Þ ) ljr2 ! Nð31:89;r2=10Þ ð20Þ

Being the marginal posterior distribution of 1/r2 a Gamma PDF,
Eq. (21),

1=r2jx ! Gammaðv1=2; S1=2Þ ) 1=r2;

x ! Gammað4:5;29:15Þ ð21Þ
with m1 = m0 + n the posterior degrees of freedom. The posterior
value for S1 is thus obtained from expression (22),

S1 ¼ S0 þ ðn� 1Þ � s2 þ n0 � n
n0 þ n

ð�x� l0Þ2 ) S1 ¼ 58:29 ð22Þ

Accordingly, the posterior sum of squares, S1, combines the
prior, S0, and the sample sums, s2, with the additional uncertainty
given by the difference between the sample and the prior mean. It



Table 6
Model identification results [14].

Numerical model PDF Experimental value Initial value Model
identification

Service Failure

Parameter Material Concrete Ec [GPa] Normal 28.01 31.00 30.34 29.07
ft [MPa] Normal 2.67 2.60 2.45 2.63
fc [MPa] Normal 30.79 33.00 33.00 30.74
Gf [N/m] Normal 103.91 65.00 63.40 67.00

Inferior longitudinal reinforcing steel Es [GPa] Normal 205.31 200.00 244.58 180.96
ry [MPa] Normal 582.94 560.00 560.00 548.28
As [cm2] Normal – 0.85 1.02 0.89

Geometric cinf [cm] Normal 2.30 2.00 2.00 2.04
b [cm] Normal – 7.50 7.04 7.15
h [cm] Normal – 15.00 12.16 13.59

Mechanic k [kN/m] Normal – 149.13 164.21 112.75
step [–] Normal – 30 26 25

(a)

(b)

Fig. 8. Model identification results [14].

Table 7
Fitness function value [14].

Numerical model Fitness function

Service Failure

Value
[%]

Improvement
[%]

Value
[%]

Improvement
[%]

Initial values 15.09 – 21.73 –
Model identification 6.75 55.26 15.50 28.69

Table 8
Failure load and maximum bending moment [14].

Numerical model Failure load Maximum bending
moment

Value
[kN]

Error
[%]a

Value
[kN m]

Error
[%]a

Initial values 29.01 1.29 6.04 12.46
Model identification Service 25.51 13.20 5.56 19.42

Failure 29.17 0.75 6.26 9.28

a Comparing with the real failure load and maximum bending moment.
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Table 9
Parameter values [14].

Parameter PDF Initial value Model identification (service) Model identification (failure)

l r l r l r

Ec [GPa] Normal 31.00 (30.10) 3.10 (4.79) 30.34 (29.68) 3.03 (4.51) 29.07 (28.76) 2.91 (3.36)
ft [MPa] Normal 2.60 (2.62) 0.52 (0.31) 2.45 (2.68) 0.49 (0.34) 2.63 (2.64) 0.53 (0.31)
fc [MPa] Normal 33.00 (30.79) 3.30 (1.38) 33.00 (30.79) 3.30 (1.38) 30.74 (30.69) 3.07 (1.16)
Gf [N/m] Normal 65.00 (104.61) 6.50 (15.83) 63.41 (104.61) 6.34 (15.83) 66.95 (104.61) 6.70 (15.83)
Es [GPa] Normal 200.00 (202.48) 10.00 (11.69) 244.58 (223.98) 12.23 (14.20) 180.96 (192.84) 9.05 (12.09)
ry [MPa] Normal 560.00 (579.59) 28.00 (27.85) 560.00 (579.59) 28.00 (27.85) 548.28 (579.59) 27.41 (27.85)
As [cm2] Normal 0.85 0.02 1.02 0.02 0.89 0.02
cinf [cm] Normal 2.00 (2.14) 0.40 (0.48) 2.00 (2.14) 0.40 (0.48) 2.04 (2.16) 0.41 (0.46)
b [cm] Normal 7.50 0.75 7.04 0.70 7.15 0.72
h [cm] Normal 15.00 1.50 12.16 1.22 13.59 1.36

Table 10
Correlation coefficients considered in the reliability analysis [14].

Ec ft fc Gf Es ry As cinf b h

Ec 1.00 0.70 0.90 0.50 0.00 0.00 0.00 0.00 0.00 0.00
ft 0.70 1.00 0.80 0.90 0.00 0.00 0.00 0.00 0.00 0.00
fc 0.90 0.80 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00
Gf 0.50 0.90 0.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Es 0.00 0.00 0.00 0.00 1.00 0.80 0.50 0.00 0.00 0.00
ry 0.00 0.00 0.00 0.00 0.80 1.00 0.50 0.00 0.00 0.00
As 0.00 0.00 0.00 0.00 0.50 0.50 1.00 0.00 0.00 0.00
cinf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.60
b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.10
h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.10 1.00

Table 11
Posterior distributions parameter values.

Parameter Jeffrey’s Conjugate

l0 – 33
r0 – 3.3
l1 30.79 31.89
r (l1) 0.56 0.91
r1 1.22 2.79
r (r1) 0.58 0.76
lpop 30.79 31.89
rpop 1.38 3.03

Fig. 9. Prior and posterior distributions.

Table 12
Failure load, FR [14].

Numerical model PDF l
[kN]

r
[kN]

Initial values Normal 28.49 3.79
Initial values + Bayesian inference Normal 31.69 4.19
Model identification (service) Normal 25.12 3.37
Model identification (service) + Bayesian

inference
Normal 27.82 3.66

Model identification (failure) Normal 27.79 3.71
Model identification (failure) + Bayesian

inference
Normal 29.07 3.84
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is possible to conclude that l and r2 are dependent once r2

appears in conditional distribution l|r2. Therefore, the parameter
distribution values can be obtained either by simulation, through
expressions (20) and (21), or by analytical solutions [30]. Table 11
and Fig. 9, respectively, present the posterior distributions param-
eter values and plot, obtained from the Bayesian inference analysis.

In this case, as the Jeffrey’s prior gives a lower standard devia-
tion value for concrete compressive strength (1.38 < 3.03), this dis-
tribution will be used in the reliability analysis. Table 9 presents
the mean and standard deviation value for all model parameters,
considering a Normal PDF [3]. The results from Bayesian inference
analysis are respectively provided between brackets [14,36]. In this
case, when sampling, the correlation coefficients provided in
Table 10 are used.

In this situation, both materials (concrete and steel) and geo-
metric (concrete cover) parameters were updated with data col-
lected from characterization tests. In respect to concrete, the
posterior mean values are close to the prior ones, with exception
of the concrete fracture energy. The Bayesian inference diminished
the standard deviation value for concrete compressive strength
and tensile strength. In respect to reinforcing steel elasticity mod-
ulus and yield strength, obtained mean values are close to prior
ones. Regarding the inferior concrete cover obtained mean value
increased with Bayesian inference.
3.4.3. Results
In this case, a set of failure load values, FR, is obtained from LHS

sampling. A curve fitting procedure is then developed in order to
determine the most suitable PDF. According to this process, the
Normal type is considered to be the PDF that better represents
the obtained results.

Obtained parameter values are given in Table 12. From the anal-
ysis of these results, it is possible to conclude that: (1) obtained
mean and standard deviation with initial values and with values
from model identification until failure load are higher than those
obtained with values from model identification in service phase;
(2) the Bayesian inference lead to an increase of the mean and a
decrease of the CV. Fig. 10 shows the resistance PDFs for these
parameter values (mean and standard deviation). Obtained curves
with initial values and with values from model identification until
failure load are very close.



Fig. 10. Obtained results for failure load, FR [14].
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3.5. Safety assessment of an existing reinforced concrete beam

The proposed framework is now applied in a simple example of
safety assessment. An existing reinforced concrete beam, with the
same characteristics of previous assessed beam and located in a
residential building floor is considered. This beam is subjected to
a loading that presents the same configuration as that from labora-
tory test, Fig. 6a. According to EN 1991-1-1 [38], and for residential
areas (category A), each of the two imposed loads, Qk, is defined by
a Gumbel PDF, being the characteristic value set to the 95th per-
centile for a reference period of 50 years. The imposed load magni-
tude is 3.00 kN, with a CV of 35%, corresponding to a mean value of
1.80 kN and a standard deviation of 0.63 kN [39].

This load is then compared to the failure load, FR, computed in
Section 3.4.3 and shown in Table 12. The resistance and load curve
are then compared through the limit state function, Z, which is
defined through Eq. (23),

Z ¼ R� S ¼ FR � FS ð23Þ
where FS is the applied load.

The probability of failure is computed by sampling this equation
using LHS resulting in the values shown in Table 13 for all phases
described in Table 12.

Through the analysis of Table 13, it is possible to conclude that
obtained b-value considering the values from model identification
until failure load is lower than the b-value obtained by considering
the initial values. A diminishment on b-value is verified when con-
sidering the values from model identification in service phase. An
increase on b-value is verified with Bayesian inference.

The developed framework considers real data when: (1) adjust-
ing the model parameter values to collected data from real struc-
ture, through the model identification procedure; (2) updating
the probabilistic model through a Bayesian inference procedure.
For these reasons, the model identification until failure with Baye-
sian updating provides the most accurate results. In this example,
the building is of class 2 (apartment building) and of class B (nor-
mal cost of safety measure), according to JCSS [3]. Therefore, a tar-
get reliability index, btarget, of 3.30 is recommended. This will allow
to conclude that the assessed beam is safe.
Table 13
Safety assessment [14].

Numerical model pf b

Initial values 2.33 ⁄ 10�10 6.23
Initial values + Bayesian inference 6.81 ⁄ 10�11 6.42
Model identification (service) 1.12 ⁄ 10�9 5.98
Model identification (service) + Bayesian inference 1.92 ⁄ 10�10 6.26
Model identification (failure) 3.41 ⁄ 10�10 6.17
Model identification (failure) + Bayesian inference 1.49 ⁄ 10�10 6.30
4. Conclusions

This paper presents an innovative framework for probabilistic-
based structural assessment of existing structures which explicitly
considers different sources of uncertainty. This methodology is
composed by two main steps. In the first step the numerical model
is updated through a model identification procedure. In a second
step, the updated deterministic model is converted into a proba-
bilistic model, by considering randomness in model parameters,
and a reliability assessment procedure is developed. Moreover,
each model parameter PDF may be then updated with complemen-
tary data, through a Bayesian inference algorithm. This way, the
statistical uncertainty is objectively addressed. The proposed
framework presents a high computational cost. In order to over-
come this, a previous sensitivity analysis, in which the most impor-
tant parameters are selected, is recommended.

The developed framework is tested and validated with a set of
reinforced concrete beams, which were loaded up to failure in lab-
oratory. A NL FEMwas respectively developed [35], being then per-
formed a sensitivity analysis in order to identify the critical
parameters. Some of these parameters were also characterized
through laboratory tests. A model identification procedure was
then executed in order to update the numerical model with mea-
sured data. A robust optimization algorithm, based in evolutionary
strategies in its plus version, was then used [17]. Both modeling
and measurement errors were considered in the optimization
algorithm fitness function stopping criterion. This process was
developed both in service and in failure region. A reliability assess-
ment procedure was then executed. In order to do this, a PDF was
respectively assigned to each critical parameter. Some of these dis-
tributions were updated through a Bayesian inference approach,
with results from laboratory tests. An updated resistance PDF for
applied load is then obtained from this procedure. This resistance
model is then used in a safety assessment example.

The main conclusions from developed framework and its appli-
cation are: (1) model identification until failure load gives very
good results, as errors less than 10% are obtained; (2) model iden-
tification in service phase gives good results only for service region,
being the obtained results for failure region less accurate. Comple-
mentary tests are thus recommended in this situation; (3) the most
accurate models are those with values from model identification
until failure load, being always recommended the development
of a model identification procedure before the reliability assess-
ment; (4) Bayesian inference increases the accuracy of probabilistic
models by reducing the statistical uncertainty [12,30]. Therefore,
this assessment procedure is always recommended when comple-
mentary data is available.

Although the case study presented consists in a set of new
structures tested in laboratory conditions, the methodology
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proposed is better suited to the assessment of existing structures,
for which limited information on materials and geometry exists
and capacity to perform semi-destructive tests is limited. The
results show that a significant improvement on the reliability esti-
mates can be obtained when using the proposed combination of
model identification and reliability analysis, allowing more
informed decisions regarding repair and retrofit of existing
structures. With this framework it will be possible to assess the
structural behavior through a more robust and accurate way.

References

[1] Melchers RE. Structural reliability analysis and prediction. John Wiley & Sons;
1999.

[2] Nowak AS, Collins KR. Reliability of Structures. McGraw-Hill: Thomas Casson;
2000.

[3] JCSS JCoSS. Probabilistic Model Code, 12th Draft. JCSS – Joint Committee on
Structural Safety; 2001.

[4] Henriques AAR. Aplicação de novos conceitos de segurança no
dimensionamento do betão estrutural. Ph.D. Dissertation. Porto (Portugal):
Universidade do Porto; 1998 [Portuguese].

[5] Enright MP, Frangopol DM. Reliability-based condition assessment of
deteriorating concrete bridges considering load redistribution. Struct Saf
1999;21:159–95.

[6] Faber MH, Val DV, Stewart MG. Proof load testing for bridge assessment and
upgrading. Eng Struct 2000;22:1677–89.

[7] Faber MH. Reliability based assessment of existing structures. Prog Struct Eng
Mater 2000;2:247–53.

[8] Enevoldsen I. Experience with probabilistic-based assessment of bridges.
Struct Eng Int 2001;11:251–60.

[9] Casas JR, Wisniewski D. Safety requirements and probabilistic models of
resistance in the assessment of existing railway bridges. Struct Inf Eng
2011;9:529–45.

[10] Caspeele R, Taerwe L. Influence of concrete strength estimation on the
structural safety assessment of existing structures. Constr Build Mater
2014;62:77–84.

[11] Strauss A, Frangopol DM, Kim S. Use of monitoring extreme data for the
performance prediction of structures: Bayesian updating. Eng Struct
2008;30:3654–66.

[12] Jacinto LA. Avaliação da Segurança de Pontes Existentes – Abordagem
Probabilística Bayesiana. Ph.D. Dissertation. Lisboa, Portugal: Universidade
Nova de Lisboa; 2011 [Portuguese].

[13] Bergmeister K, Novák D, Pukl R, Cervenka V. Structural assessment and
reliability analysis for existing engineering structures, theoretical background.
Struct Inf Eng 2009;5:267–75.

[14] Matos JC. Uncertainty evaluation of reinforced concrete and composite
structures behavior. Ph.D. Dissertation. Guimarães (Portugal): University of
Minho; 2013.

[15] Novák D, Pukl R, Strauss A. Reliability/risk assessment of concrete structures:
methodology, software and case study. In: First Middle East conference on
smart monitoring, assessment and rehabilitation of civil structures, Dubai,
UAE2011. p. 1–9.

[16] Rücker W, Hille F, Rohrmann R. F08a – Guideline for the Assessment of
Existing Structures. In: SAMCO, editor. Berlin (Germany): Federal Institute of
Materials Research and Testing (BAM); 2006. p. 48.

[17] Beyer H-G, Schwefel H-P. Evolution strategies – a comprehensive introduction.
Nat Comput 2002;1:3–52.
[18] Robert-Nicoud Y, Raphael B, Smith IFC. System identification through model
composition and stochastic search. J Comput Civil Eng 2005;19:239–47.

[19] Ravindram S, Kripakaran P, Smith IFC. Evaluating reliability of multiple-model
system identification. In: 14th EG-ICE workshop, Maribor, Slovenia; 2007.

[20] Goulet J-A, Michel C, Smith IFC. Hybrid probabilities and error-domain
structural identification using ambient vibration monitoring. Mech Syst
Signal Process 2013;37:199–212.

[21] Goulet J-A, Smith IFC. Structural identification with systematic errors and
unknown uncertainty dependencies. Comput Struct 2013;128:251–8.

[22] JCGM. Evaluation of measurement data – guide to the expression of
uncertainty in measurement. JCGM (GUM 1995 with minor corrections),
Technical Report: JCGM 100:2008; 2008. p. 132.

[23] Cabral P. Erros e incertezas nas medições. Relatório Técnico, IEP – Instituto
Eletrónico Português: Laboratório de Metrologia e Ensaios e ISEP – Instituto
Superior de Engenharia do Porto, Departamento de Física; 2004. p. 116.

[24] Goulet J-A, Kripakaran P, Smith IFC. Langesand Bridge in Lucerne, Results from
Phase-I Static-Load Tests. Lausanne, Switzerland: EPFL – École Polytechnique
et Fédérale de Lausanne; 2009. p. 37.

[25] Goulet J-A, Kripakaran P, Smith I. Multimodel structural performance
monitoring. J Struct Eng 2010;136:1309–18.

[26] Goulet J-A, Kripakaran P, Smith IFC. Estimation of modelling errors in
structural system identification. In: Proceedings of 4th international
conference on structural health monitoring of intelligent infrastructure
(SHMII-4), Zurich, Switzerland 2009. p. 359.

[27] Santa U, Bergmeister K, Strauss A. Discussion of stochastic models in structural
engineering. In: Fib Symposium 2004, Avignon, France; 2004.

[28] Olsson A, Sandberg G, Dahlblom O. On Latin hypercube sampling for structural
reliability analysis. Struct Saf 2003;25:47–68.

[29] Shields MD, Teferra K, Hapij A, Daddazio RP. Refined stratified sampling for
efficient Monte Carlo based uncertainty quantification. Reliab Eng Syst Saf
2015;142:310–25.

[30] Bernardo JM, Smith AFM. Bayesian theory. Chichestc (England): John Wiley &
Sons, Ltd; 2004.

[31] Iman RL, Conover WJ. A distribution-free approach to inducing rank
correlation among input variables. Commun Stat – Simul Comput
1982;11:311–34.

[32] Vořechovský M, Novák D. Statistical correlation in stratified sampling. In:
Proceedings of 9th international conference on applications of statistics and
probability in civil engineering–ICASP, Millpress, Rotterdam, San Francisco
(USA); 2003. p. 119–24.
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