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The traditional Extended Kalman filter (EKF) is a useful tool for structural parameter identification with
limited observations. It is, however, not applicable when the excitations on the structure are unknown or
the excitation locations are not monitored. A novel Extended Kalman filter approach referred to as the
General Extended Kalman filter with unknown inputs (GEKF-UI) is proposed to estimate the structural
parameters and the unknown excitations (inputs) simultaneously. The proposed GEKF-UI gives an analyt-
ical EKF solution dealing with the more general measurement scenarios with the existing EKF methods as
its special cases. Existing constraints on sensor configuration have been removed enabling more general
application to complex structures. Simulation results from a 3-storey linear damped shear building, an
ASCE benchmark structure and a two-storey planar frame structure are used to validate the proposed
method for both time-invariant and time-varying system identification.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The simultaneous state and unknown input estimation using
Kalman filtering

The Extended Kalman filter (EKF) [1] is a simple but powerful
tool for the identification of structural parameters such as stiffness,
damping and nonlinear parameters with limited measurements for
structural health monitoring (SHM) of structures [2–5]. Existing
EKF approaches treat the unknown structural parameters as part
of the states to be estimated. To track the evolution of the esti-
mates, all the external excitations (inputs) should be known or
measured. However, some inputs may not be measured or known
in practice, such as the seismic excitations, the ambient wind loads,
the moving traffic loads, etc. Therefore, an EKF approach which can
deal with unknown inputs is in need. Though theoretical study on
linear filtering with unknown inputs has been extensively studied
during the past few decades [6–12], yet their nonlinear counter-
parts, the EKF method with unknown inputs have not been broadly
investigated. Wang and Haldar [13] proposed an iterative
least-squares procedure in conjunction with the traditional EKF
to estimate the states and unknown inputs off-line with limited
observations. Lately, Al-Hussein and Haldar [14] improved the
method by replacing the EKF formulation with the more recent
unscented Kalman filter (UKF) to obtain improved performance
of structural health assessment (SHA). However, the drawbacks
in the numerical procedure of the off-line original method [13]
are still retained. To track the evolution of the structural parame-
ters (damages of the structures) on-line, an extended Kalman filter
with unknown inputs (EKF-UI) was derived analytically by
minimizing a least-squares objective function [15]. More recently,
a method which sequentially estimates the unknown inputs with
the least-squares estimation and the states with the traditional
EKF was proposed [16,17] for both linear and nonlinear structures.
Other than the identification of external excitations, it has been
shown that the EKF with unknown inputs can be extended to a
large structural system [16] based on a decomposition method.
The intra-connection effect between structural elements is
regarded as unknown input to the substructures. The measure-
ments at the sub-structural interface degrees-of-freedom (DOFs)
are not necessary as a result, and the number of sensors in the
SHM system for a large scale structure is thus reduced. These serve
as good justifications for the development of a new EKF approach
with unknown inputs.

For the above-mentioned EKF approaches [13–16], all inputs are
required to be present in the observation equations, which imposes
constraints on the number and location of the sensors required. For
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instance, the sensors should be installed at all the DOFs corre-
sponding to the external excitations in Lei et al. [16]. Moreover,
if the measurements are not in the form of accelerations, extra sig-
nal processing is needed with additional computation effort. For
example, before the application of the EKF-UI approach [15], dou-
ble numerical differentiations have to be made with the aid of low-
pass digital filter to obtain the accelerations from the measured
displacements of a 3-storey nonlinear shear building subjected to
unknown earthquake. To reduce these restrictions Pan et al. [18]
have proposed an EKF with unknown inputs without direct feed-
through (EKF-UI-WDF) approach where all the unknown inputs
are in the model equations whereas none of them are explicitly
shown in the observation equations.

1.2. Weakness with existing Kalman filtering approaches with
unknown inputs

To the best of the authors’ knowledge, literature on Kalman Fil-
ter with unknown inputs is mainly divided into two categories: (I)
those with the unknown inputs included in both the model equa-
tions and the observation equations [9,11–17]; and (II) those with
the unknown inputs found only in the model equations [6,8,10,18].
The coefficient matrix of unknown inputs in the observation equa-
tions of the first group should be of full column rank [15]. The same
coefficient matrix for the latter group is a zero matrix, which
results in one step delay in the estimation of the unknown inputs.

To demonstrate the differences more clearly, an ASCE bench-
mark 4-storey structure [19] subjected to two white noise excita-
tions at the 2nd and 4th floors is adopted in the following
discussion. Numerical analysis on this example is given in Section 4
of this paper.

By introducing the extended state vector Z ¼ fxT; _xT; hTgT into
the equations of motion of the structure, the model equation
becomes _ZðtÞ ¼ gðZ; f�; tÞ where x; _x; h are vectors of the storey dis-
placements, velocities and unknown structural parameters, respec-

tively. f�ðtÞ ¼ ½f 2ðtÞf 4ðtÞ�T is the unknown input vector. Cases with
different measurement scenarios are discussed as follows:

Case (i) When the measurements are accelerations from all sto-
ries at t ¼ ðkþ 1ÞDt (k = 0, 1, 2, . . .), i.e., ykþ1 ¼
½€x1;kþ1€x2;kþ1€x3;kþ1€x4;kþ1�T. The observation equations
become ykþ1 ¼ hðZkþ1; f

�
kþ1; kþ 1Þ where f�kþ1 ¼

½f 2;kþ1f 4;kþ1�T. Since the rank of the coefficient matrix
with unknown inputs D�

kþ1jk ¼ ½@hkþ1=@f
�
kþ1� ¼

0 1 0 0
0 0 0 1

� �T
is two and it is of full column rank, the

condition of estimation [14] holds. Therefore, Category
I EKF approaches are applicable for the solution [15–17].

Case (ii) When the measurements are displacements from all
stories at t ¼ ðkþ 1ÞDt (k = 0, 1, 2, . . .), i.e.,
ykþ1 ¼ ½x1;kþ1x2;kþ1x3;kþ1x4;kþ1�T. The observation equa-
tions become ykþ1 ¼ hðZkþ1; kþ 1Þ where no unknown
input exists. The rank of D�

kþ1jk ¼ ½@hkþ1=@f
�
kþ1� ¼

0 0 0 0
0 0 0 0

� �T
is zero and is not full rank, and the con-

dition of estimation [15] does not hold. The Category I
EKF approaches are not applicable as a result while Cat-
egory II approaches [18] can deal with this case.

Case (iii) When no sensor is installed on the second floor, i.e.,
ykþ1 ¼ ½x1;kþ1x3;kþ1x4;kþ1�T, the rank of D�

kþ1jk ¼

½@hkþ1=@f
�
kþ1� ¼

0 0 0
0 0 1

� �T
is unity which is less than

full rank. Therefore, both Categories of EKF approaches
discussed above are not applicable. In other words, the
simultaneous estimation of the states and inputs with
this scenario of measurement cannot be solved with
any existing EKF approaches.

As a summary,

(a) For the simultaneous estimation of the state and unknown
inputs, Cases (i) and (ii) above show that the EKF approaches
in different forms are needed for different measurement sce-
narios, which brings unnecessary inconvenience for the
computation.

(b) Case (iii) shows that for a general measurement scenario
where only partial inputs are present in the observation
equations, with 0 < rankðD�

kþ1jkÞ < r, where r is the full col-
umn rank, no existing EKF approaches is applicable.

In this paper, a novel EKF approach referred to as the General
EKF with unknown inputs (GEKF-UI) is proposed to identify struc-
tural parameters and unknown inputs simultaneously. It is an EKF
approach with partial measurement and unknown inputs covering
the case of 0 6 rankðD�

kþ1jkÞ 6 r, which is more general than exist-
ing approaches that require rankðD�

kþ1jkÞ ¼ r or rankðD�
kþ1jkÞ ¼ 0.

There is no need to measure the responses at all of the DOFs on
which the unknown inputs are acting as a result.

The recursive solutions of the GEKF-UI are formulated with the
least-squares estimation of an extended state vector with the aid of
matrix decompositions. The unknown inputs at all time instants
and the current states are combined as the extended state vector
whose dimension increases with time. The relationship between
the extended state vectors at two consecutive time instants is
derived to form a recursive solution on the extended state vector.
Matrix decomposition is then applied to obtain the extended state
vector.

Simulation results from the following examples are used to val-
idate the proposed method: (a) a three-degrees-of-freedom (DOFs)
linear damped shear building subjected to an unknown earthquake
excitation; (b) the Phase I ASCE benchmark building for structural
health monitoring subjected to two unknown white noise excita-
tions; and (c) a 2-storey plane frame with 12 DOFs subjected to
unknown inputs with abrupt reduction of stiffness.

The layout of this paper is given as follows. The problem formu-
lation is given in Section 2. The recursive solutions for the proposed
GEKF-UI approach are derived and presented in Section 3 with dis-
cussions. To verify the proposed method, three numerical exam-
ples are presented in Section 4. Section 5 gives the conclusions.
Detailed derivations on the solutions in Sections 3 are given in
Appendices A and B.
2. Problem formulation

When the external excitations are not measured (unknown),
the equations of motion of a m-DOFs linear damped structure
can be expressed as:

M€xðtÞ þ Fc½ _xðtÞ� þ Fs½xðtÞ� ¼ g�f�ðtÞ þ gfðtÞ ð1Þ

where f�ðtÞ ¼ ½f �1ðtÞ; . . . ; f �r ðtÞ�T is the set of r-unknown (or unmea-
sured) excitations; Matrix g� is a mapping matrix associated with

f�ðtÞ; fðtÞ ¼ ½f 1ðtÞ; f 2ðtÞ; . . . ; f sðtÞ�T is the set of s-known (measured)
excitations; and g is a (m� sÞ mapping matrix associated with fðtÞ.

Consider an extended unknown state vector with a dimension
of (2mþ nÞ,

ZðtÞ ¼ fxT; _xT; hTgT ð2Þ
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where h ¼ ½h1; h2; . . . ; hn�T is a n-unknown parameter vector with hi
(i = 1, 2, . . ., nÞ being the ith unknown parameter of the structure,
such as damping, stiffness, nonlinear and hysteretic parameters.
When _hi ¼ 0 (i = 1, 2, . . ., nÞ is assumed, i.e., the unknown parame-
ters are constants, and one can transform Eq. (1) into a nonlinear
state equation as

_ZðtÞ ¼ gðZ; f; f�; tÞ þwðtÞ ð3Þ
where Z(tÞ, f(tÞ, and f�ðtÞ are (2mþ nÞ-state vector, s-known input
vector andr-unknown input vector, respectively, w(tÞ is the model
noise vector (uncertainty) with zero mean and a covariance matrix
Q ðtÞ. The discretized observation vector (measured responses) with
a dimension of l can also be expressed as

ykþ1 ¼ hðZkþ1; fkþ1; f
�
kþ1; kþ 1Þ þ vkþ1 ð4Þ

where ykþ1;Zkþ1; fkþ1 and f�kþ1 are the l-observation (measured) out-
put vector, (2mþ n)-state vector, s-known input vector andr-
unknown input vector respectively at t ¼ ðkþ 1ÞDt respectively
and Dt is the sampling time interval. vkþ1 is a Gaussian measure-
ment noise vector with zero mean and a covariance matrix
E½vkvT

j � ¼ Rkdkj where dkj is the Kroneker delta.
Both the equation of motion in Eq. (3) and the observation

equation in Eq. (4) are nonlinear in the unknown state vector Z
and the unknown input vector f�. These equations will be lin-
earized with respect to the estimated and predicted state vectors

at t ¼ kDt and t ¼ ðkþ 1ÞDt; Ẑkjk and Ẑkþ1jk respectively, and the

estimated unknown input vector at t ¼ kDt; f̂�kjk, as follows,

gk � ĝkjk þ GkjkðZk � ẐkjkÞ þ B�
kjkðf�k � f̂�kjkÞ ð5Þ

hkþ1 � ĥkþ1jk þHkþ1jkðZkþ1 � Ẑkþ1jkÞ þ D�
kþ1jkðf�kþ1 � f̂�kjkÞ ð6Þ

in which the Jacobian matrices Gkjk;B
�
kjk;Hkþ1jkD

�
kþ1jk are given by

ð7Þ

ð8Þ

Hkþ1jk ¼ ½@hkþ1=@Zkþ1�Zkþ1¼Ẑkþ1jk ;f
�
kþ1¼f̂�

kjk
¼

@ĥ1;kþ1
@z1;kþ1

@ĥ1;kþ1
@z2;kþ1

� � � @ĥ1;kþ1
@z2mþn;kþ1

@ĥ2;kþ1
@z1;kþ1

@ĥ2;kþ1
@z2;kþ1

� � � @ĥ2;kþ1
@z2mþn;kþ1

� � � � � � � � � � � �
@hl;kþ1
@z1;kþ1

@ĥl;kþ1
@z2;kþ1

� � � @ĥl;kþ1
@z2mþn;kþ1

2
66666666664

3
77777777775
ð9Þ
D�
kþ1jk ¼ ½@hkþ1=@f

�
kþ1�Zkþ1¼Ẑkþ1jk ;f

�
kþ1¼f̂�

kjk
¼

@ĥ1;kþ1
@f �1;kþ1

@ĥ1;kþ1
@f �2;kþ1

� � � @ĥ1;kþ1
@f �r;kþ1

@ĥ2;kþ1
@f �1;kþ1

@ĥ2;kþ1
@f �2;kþ1

� � � @ĥ2;kþ1
@f �r;kþ1

� � � � � � � � � � � �
@ĥl;kþ1
@f �1;kþ1

@ĥl;kþ1
@f �2;kþ1

� � � @ĥl;kþ1
@f �r;kþ1

2
6666664

3
7777775

ð10Þ
with

gk ¼ gðZk; fk; f
�
k; kDtÞ; hkþ1 ¼ hðZkþ1; fkþ1; f

�
kþ1; kþ 1Þ

ĝkjk ¼ gðẐkjk; fk; f̂�kjk; kDtÞ; ĥkþ1jk ¼ hðẐkþ1jk; fkþ1; f̂�kjk; kþ 1Þ
and

@ĝi;k

@zj;k
¼ @gi;k

@zj;k

����
Zk¼Ẑkjk ;f

�
k¼f̂�

kjk

;
@ĝi;k

@f �q;k
¼ @gi;k

@f �q;k

�����
Zk¼Ẑkjk ;f

�
k¼f̂�

kjk

@ĥp;kþ1

@zj;kþ1
¼ @hp;kþ1

@zj;kþ1

�����
Zkþ1¼Ẑkþ1jk ;f

�
kþ1¼f̂�

kjk

;
@ĥp;kþ1

@f �q;kþ1
¼ @hp;kþ1

@f �q;kþ1

�����
Zkþ1¼Ẑkþ1jk ;f

�
kþ1¼f̂�

kjk

where gi;k is the ith component of the vector gk for i = 1, 2, . . .,

2m; ĥp;kþ1 is the pth component of the vector hkþ1 for p = 1, 2, . . .,
l; zj;k and zj;kþ1 are the jth components of the state vectors Zk and
Zkþ1 respectively for j = 1, 2, . . ., 2mþ n, and f �q;k and f �q;kþ1 are the

qth components of the unknown input vectors f�k and f�kþ1 respec-
tively for q = 1, 2, . . ., r.

It is observed from Eqs. (7)–(10) that the Jacobian matrices
Gkjk;B

�
kjk;Hkþ1jkD

�
kþ1jk are obtained by calculating the first order par-

tial derivative of the vectors gk and hkþ1 with respect to the pre-
dicted states and unknown inputs at t ¼ ðkþ 1ÞDt. This requires
the analytical first derivatives of the component of gk and hkþ1 with
high dimensions, say, more than 10, and this is very time consum-
ing. Moreover, the inaccuracy of the calculation of the above Jaco-
bian matrices may result in the divergence and instability of the
EKF methods. To overcome this problem, a reasonably small sam-
pling time interval Dt is required, e.g., Dt ¼ 0:001 s [14]. Also, tak-
ing the numerical integral of the nonlinear function gðZ; f; f�; tÞ in
Eq. (3) over the time interval [kDt; ðkþ 1ÞDt] to obtain a more accu-

rate predicted state vector Ẑkþ1jk (see [2,15,18]) may help to
improve the computation accuracy of Gkjk;B

�
kjk;Hkþ1jkD

�
kþ1jk. Both

of the above computation techniques have been used in the imple-
mentation of the proposed GEKF-UI in this paper. This will of
course incur heavy computation inevitably due to the higher sam-
pling frequency and the numerical integration at each time step.

Substituting _ZðkDtÞ ¼ ðZkþ1 � ZkÞðDtÞ�1 into the left side of Eq.
(3), and together with Eqs. (5)–(10), the discrete state observation
equations can be written as

Zkþ1 ¼ Ukþ1;kZk þ B�
kf

�
k þ ukjk þwkþ1 ð11Þ

ykþ1 ¼ Hkþ1jkZkþ1 þ D�
kþ1jkf

�
kþ1 þ ~ukþ1jk þ vkþ1 ð12Þ

where Ukþ1;k ¼ Iþ Dt Gkjk is the state transition matrix, B�
k ¼ DtB�

kjk
and

ukjk ¼ ½gðẐkjk; fk; f̂�kjk; kDtÞ � GkjkẐkjk � B�
kjkf̂

�
kjk�Dt ð13Þ

~ukþ1jk ¼ ĥkþ1jk �Hkþ1jkẐkþ1jk � D�
kþ1jk f̂

�
kjk ð14Þ

When no entries of the unknown inputs are present in the
observation equation (i.e., D�

kþ1jk ¼ 0 or rankðD�
kþ1jkÞ ¼ 0Þ, Eq. (12)

becomes
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ykþ1 ¼ Hkþ1jkZkþ1 þ ~ukþ1jk ð15Þ
It is noted that the unknown inputs with one step delay, f�k,

instead of f�kþ1, are involved in the measurements ykþ1 of Eq. (15).
Based on Eqs. (11) and (15), an EKF-UI-WDF approach has been
proposed by Pan et al. [18] to obtain the estimates for the states

Zkþ1 and the unknown inputs f�k at t ¼ ðkþ 1ÞDt, i.e., Ẑkþ1jkþ1 and

f̂�kjkþ1, respectively. There is no doubt that the cases with

rankðD�
kþ1jkÞ ¼ r [14] and rankðD�

kþ1jkÞ ¼ 0 [18] are special cases of
the general problem 0 6 rankðD�

kþ1jkÞ 6 r where some entries of
the unknown inputs are missing in the observation equations
and the corresponding columns of D�

kþ1jk in Eq. (12) become zeros.
However, to the best knowledge of the authors, no report is found
in the literature on the solutions of this more general problem.

The general problem 0 6 rankðD�
kþ1jkÞ 6 r will be investigated

belowwith formulation of a novel EKF approach with the unknown
inputs. Inspired by the formulation of the EKF-UI-WDF [18] where
an unknown input is not present in the observation equation, the
estimation problem has one-step delay from the current measure-

ment time i.e., f̂�kjkþ1 instead of f�k is estimated at t ¼ ðkþ 1ÞDt. The
unknown input vector to be estimated at t ¼ ðkþ 1ÞDt for the gen-
eral problem is chosen as

ð16Þ

where ~f�k ¼ ~f�ðt ¼ kDtÞ is the ~r-unknown input vector at t ¼ kDt
which is not in the observation equations but in the model equa-
tions. �f�kþ1 ¼ �f�ðt ¼ ðkþ 1ÞDtÞ is the �r-unknown input vector which
is found in both the observation and model equations at

t ¼ ðkþ 1ÞDt. (It should be noted that ~f�ðtÞ and �f�ðtÞ are sub-
vectors of the unknown input vector f�ðtÞ in Eq. (3), i.e.,

f�ðtÞ ¼ ~f�TðtÞ �f�TðtÞ
h iT

, with the dimension relationship r ¼ ~r þ �rÞ.
Correspondingly, the coefficient matrix of the unknown inputs
D�

kþ1jk in Eq. (6) is partitioned as

ð17Þ

where �D�
kþ1jk is a (l� �rÞ matrix with full column rank �r.

Let Ẑkþ1jkþ1 and be the estimates

of Zkþ1 and f�e;kþ1 at t ¼ ðkþ 1ÞDt, respectively. The problem
to be solved is then summarized as: The recursive solutions of

Ẑkþ1jkþ1 and f̂�e;kþ1jkþ1 are estimated given the observations
ðy1; y2; . . . ; ykþ1Þ.
3. The recursive solutions for the proposed GEKF-UI approach

A least-squares objective function Jkþ1 is given as follows:

Jkþ1 ¼
Xkþ1

i¼1

DT
i R

�1
i Di ¼ �DT

kþ1Wkþ1
�Dkþ1 ð18Þ
where

Di ¼ yi � hðZi; f i; f
�
i ; iÞ; �Dkþ1 ¼ ½DT

1;D
T
2; . . . ;D

T
kþ1�

T ð19Þ
and Di is the l-error vector between the measurement yi and the lin-
earized output value hðZi; f i; f

�
i ; iÞ at t ¼ iDt. Vector hðZi; f i; f

�
i ; iÞ can

be obtained from Eq. (6) by replacing k + 1 with i (i = 1, 2, . . ., k
+ 1). Wkþ1 is a [lðk+1)�lðk+1)] diagonal matrix with R�1

i as the main

diagonal components i.e., Wkþ1 ¼ diagðR�1
1 ;R�1

2 ; . . . ;R�1
kþ1Þ;Ri ¼

E½vivT
i � and vi is the l-measurement noise vector at t ¼ iDt.

The objective function Jkþ1 is a quadratic function of the
unknown extended vector Ze;kþ1. Assuming that the dimension of
the observation vector, l, is greater than the number of unknown

excitations, r, i.e., l > r, the estimated Ẑe;kþ1jkþ1 of Ze;kþ1 at
t ¼ ðkþ 1ÞDt can be obtained by minimizing Jkþ1 as

Ẑe;kþ1jkþ1 ¼ Pe;kþ1½AT
e;kþ1Wkþ1Ykþ1�; Pe;kþ1

¼ ½AT
e;kþ1Wkþ1Ae;kþ1�

�1 ð20aÞ

Detailed derivations of matrices Ykþ1 and AT
e;kþ1 can be found in

Appendix A. With the observations (y1; y2, . . ., ykþ1Þ,

ð20bÞ
is the estimate of Ze;kþ1. Appendix A is referred.

Detailed derivations of the recursive solutions of the

least-squares estimate of Zkþ1 and f�e;kþ1, i.e. Ẑkþ1jkþ1 and

are shown in Appendices A and B and

they are given as follows:

Ẑkþ1jkþ1 ¼ Ẑkþ1jk þ KZ;kþ1½ykþ1 � hðẐkþ1jk; fk; �̂f�kþ1jkþ1; kþ 1Þ� ð21Þ

~̂f�kjkþ1 ¼ Skþ1;12
�D�T
kþ1jkR

�1
kþ1ðIl �Hkþ1jkKZ;kþ1Þðykþ1 � ĥkþ1jk

þ �D�
kþ1jk

�̂f�kjkÞ þ Skþ1;11
~B�T
k HT

kþ1jkðIl �Hkþ1jkKZ;kþ1Þðykþ1

� ĥkþ1jk þHkþ1jk~B�
k
~̂f�k�1jkÞ ð22Þ

�̂f�kþ1jkþ1 ¼ Skþ1;22
�D�T
kþ1jkR

�1
kþ1ðIl �Hkþ1jkKZ;kþ1Þðykþ1 � ĥkþ1jk

þ �D�
kþ1jk

�̂f�kjkÞ þ Skþ1;12
~B�T
k HT

kþ1jkðIl �Hkþ1jkKZ;kþ1Þ

� ðykþ1 � ĥkþ1jk þHkþ1jk~B�
k
~̂f�k�1jkÞ ð23Þ

where

Ẑkþ1jk ¼ Ẑkjk þ
Z ðkþ1ÞDt

kDt
gðẐtjk; f; f̂�tjk; tÞdt; f̂�tjk ¼ ~̂f�tjk

�̂f�tjk

h i
ð24Þ

KZ;kþ1 ¼ PZ;kþ1jkH
T
kþ1jk½Hkþ1jkPZ;kþ1jkH

T
kþ1jk þ Rkþ1��1 ð25Þ
ð26Þ
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Matrix Skþ1 is the error covariance matrix of the estimated

unknown excitation vector f̂�e;kþ1jkþ1, with Skþ1 ¼ Efðf�e;kþ1� f̂�e;kþ1jkþ1Þ
ðf�e;kþ1� f̂�e;kþ1jkþ1Þ

Tg. The full derivation of this matrix is given in
Appendix B.

Matrix ~B�
k above is the ½ð2mþ nÞ � ~r� sub-matrix of the input

coefficient matrix B�
k with full column rank ~r, i.e., B�

k ¼ ~B�
k

�B�
k

h i
with B�

k ¼ DtB�
kjk. Vector Ẑtjk in Eq. (24) is the solution of Eq. (3)

within time interval (kDt 6 t 6 ðkþ 1ÞDtÞwith the initial condition

Ẑkjk and w ¼ 0. Matrix f̂�tjk is the estimate of f�ðtÞ within time inter-

val kDt 6 t 6 ðkþ 1ÞDtð Þ. Vector ĥkþ1jk represents

hðẐkþ1jk; fkþ1;
�̂f�kjk; kþ 1Þ in Eqs. (22) and (23) and KZ;kþ1 is the Kal-

man gain matrix, and Hkþ1jk is given by Eq. (9). �D�
kþ1jk is given by

Eq. (17), and matrix PZ;kþ1jk ¼ EfðZkþ1 � Ẑkþ1jkÞðZkþ1 � Ẑkþ1jkÞ
Tg is

the state error covariance matrix of Ẑkþ1jk given by

PZ;kþ1jk ¼ Ukþ1;kPZ;kjkU
T
kþ1;k þ Q kþ1 ð27Þ

where Q kþ1 is the variance matrix of the model error at
t ¼ ðkþ 1ÞDt;Ukþ1;k ¼ Iþ DtGkjk is the state transition matrix of
the linearized system. According to the discussion of Jazwinski

[1], the matrix PZ;kþ1jkþ1 is the error covariance matrix of Ẑkþ1jkþ1,

with PZ;kþ1jkþ1 ¼ EfðZkþ1 � Ẑkþ1jkþ1ÞðZkþ1 � Ẑkþ1jkþ1Þ
Tg. PZ;kjk in Eq.

(27) is given by

PZ;kjk ¼ ðI� KZ;kHkjk�1ÞfPZ;kjk�1 þ ~B�
k�1 HT

kjk�1R
�1
k

�D�
kjk�1

h i
� Sk ~B�

k�1 HT
kjk�1R

�1
k

�D�
kjk�1

h iT
ðI� KZ;kHkjk�1ÞTg

ð28Þ

where KZ;k and Sk are obtained respectively from Eqs. (25) and (26)
by replacing k + 1 with k. The analytical solutions derived in Eqs.
(21)–(28) is referred to as the General Extended Kalman Filter with
Unknown Inputs (GEKF-UI) which is new and original.

Further remarks:

(1) Configuration of the proposed GEKF-UI approach
Similar to the traditional Kalman filter [20], the proposed
GEKF-UI approach can be divided into two parts—the Mea-
surement Update (Correction) and the Time Update (Predic-
tion). In the first part, Eqs. (21)–(23) and (25) are on the
estimation of states with the unknown inputs updated by
the current measurements as well as the gain matrix for
the states. Eqs. (26) and (28) are on the error covariance
matrices for the unknown inputs with the states updated
by current measurements. In the second part, Eqs. (24) and
(27) represent the estimation and the error covariance
matrices for the states predicted by previous information.

(2) Comparison between the proposed GEKF-UI with existing
EKF approaches
It is noted from Eqs. (21)–(28) that the solutions of the pro-
posed GEKF-UI collapse to (i) the solutions of the classical
EKF [1], when all the inputs are known, i.e., B�

kjk ¼ 0 and
D�

kþ1jk ¼ 0; (ii) the solutions of EKF-UI [15] when all the
unknown inputs are presented in the observation equations,
i.e., D�

kþ1jk ¼ �D�
kþ1jk where �D�

kþ1jk has full column rank; and (iii)
the solutions of EKF-UI-WDF [17], when none of unknown
inputs exists in the observation equations, i.e., D�

kþ1jk ¼ 0
while B�

kjk has full column rank. Therefore, the proposed
GEKF-UI forms a general EKF approach covering different
scenarios of unknown input. A detailed comparison of the
above EKF formulations is shown in Table 1.

(3) Advantages of the proposed GEKF-UI over the combined tra-
ditional EKF and LSE methods
Methods can be found combining the traditional EKF and LSE
method [13,16,17] to estimate the states and the unknown
inputs sequentially. They form a special case of the proposed
GEKF-UI with the final solutions similar to that of EKF-UI. It
was claimed by Lei et al. [16] that the formulation of the
sequential method is more concise than that of EKF-UI. More
discussion on the advantages of the proposed GEKF-UI
approach compared to the traditional EKF and LSE methods
is given below. The latter method is referred to as the com-
bined method:
(i) The proposed GEKF-UI is derived by minimizing an

objective function of Eq. (18), which is the same as that
for the traditional EKF (e.g., [1]). The mathematical basis
of the GEKF-UI is more rigorous based on global opti-
mization instead of local optimization in the combined
method. The combined methods [13,16] are obtained
by embedding the LSE solution for unknown inputs into
the traditional EKF approach at each time instance. The
resulting solutions are locally optimal but the global
optimality is not guaranteed. On the other hand, the
proposed GEKF-UI is obtained by minimizing the global
objective function with respect to the states and all the
unknown inputs with a global optimality implication.

(ii) It is noted from Eq. (28) that the updated solution of the
state error covariance matrix PZ;kjk is not only related to
the previous state error covariance matrix PZ;kjk�1, but
also to the input error covariance matrix Sk. This is con-
sistent with the common belief that the estimation
errors of the current states are affected by the errors
of both the previous states and the current unknown
inputs. The combined methods [13,16] just directly
adopt PZ;kjk of the traditional EKF without considering
the error introduced by the estimated unknown inputs.
The updated solution of the state error covariance
matrix is the same as that for the traditional EKF incor-
porating no new information on the current unknown
inputs. The omission of influence of the unknown inputs
may result in unexpected instability or inaccuracy of the
estimation.

(iii) Lastly, the proposed GEKF-UI can provide the state and
unknown input estimation for the general case when
the unknown inputs are partially presented in the
observation equations (i.e. 0 < rankðD�

kþ1jkÞ < rÞ. To the
best of the authors’ knowledge, this scenario of
measurement cannot be handled by other existing
EKF-based methods.

4. Numerical examples

To demonstrate the effectiveness and accuracy of the proposed
GEKF-UI approach, simulation results from (a) a 3-DOFs linear
damped shear building; (b) the Phase I ASCE benchmark for struc-
tural health monitoring; and (c) a 2-storey plane frame with abrupt
stiffness reduction (damage) will be presented herein. All the
‘‘measured” responses are simulated from the theoretically com-
puted quantities superimposed with 5% RMS white noise in the fol-
lowing studies except otherwise stated.

To quantitatively evaluate the performance of the proposed
GEKF-UI in above numerical examples, the error of estimation is



Table 1
Comparison of the proposed GEKF-UI with existing EKF approaches.

EKF methods Model and measurement equations Measurement update (correction) Time update (prediction)

Traditional
EKF [1]

(1) Model equation (1) Estimation for states (1) Prediction for states

_ZðtÞ ¼ gðZ; f; tÞ þwðtÞ Ẑkþ1jkþ1 ¼ Ẑkþ1jk þ KZ;kþ1½ykþ1 � hðẐkþ1jk; fk; kþ 1Þ� Ẑkþ1jk ¼ Ẑkjk þ
R ðkþ1ÞDt
kDt gðẐtjk; f; tÞdt

(2) Measurement equation (2) Estimation for unknown inputs in the observation equations (2) Prediction of error covariance
matrix of states

ykþ1 ¼ hðZkþ1; fkþ1; kþ 1Þ þ vkþ1 Not available PZ;kþ1jk ¼ Ukþ1;kPZ;kjkUT
kþ1;k þ Q kþ1

(3) Condition for the estimation of unknown inputs (3) Estimation for Unknown inputs only in the model equations
Not available Not available

(4) Gain matrix for state estimation

KZ;kþ1 ¼ PZ;kþ1jkH
T
kþ1jk½Hkþ1jkPZ;kþ1jkH

T
kþ1jk þ Rkþ1�

�1

(5) Correction of error covariance matrix of states
PZ;kjk ¼ ðIn � KZ;kHkjk�1ÞPZ;kjk�1

(6) Error covariance matrix of unknown inputs
Not available

EKF-UI [15] (1) Model equation (1) Estimation for states (1) Prediction for states
_ZðtÞ ¼ gðZ; f; f�; tÞ þwðtÞ Ẑkþ1jkþ1 ¼ Ẑkþ1jk þ KZ;kþ1½ykþ1 � hðẐkþ1jk; fk; �̂f�kþ1jkþ1; kþ 1Þ� Ẑkþ1jk ¼ Ẑkjk þ

R ðkþ1ÞDt
kDt gðẐtjk; f; f̂�tjk; tÞdt

(2) Measurement equation (2) Estimation for unknown inputs in the observation equations (2) Prediction of error covariance
matrix of states

ykþ1 ¼ hðZkþ1; fkþ1; f
�
kþ1; kþ 1Þ þ vkþ1 f̂�kþ1jkþ1 ¼ Skþ1D

�T
kþ1jkR

�1
kþ1ðIl �Hkþ1jkKZ;kþ1Þðykþ1 � ĥkþ1jk þ D�

kþ1jk f̂
�
kjkÞ PZ;kþ1jk ¼ Ukþ1;kPZ;kjkUT

kþ1;k þ Q kþ1

(3) Condition for the estimation of unknown inputs (3) Estimation for Unknown inputs only in the model equations
D�

kþ1jk has full column rank. Not available

(4) Gain matrix for state estimation

KZ;kþ1 ¼ PZ;kþ1jkH
T
kþ1jk½Hkþ1jkPZ;kþ1jkH

T
kþ1jk þ Rkþ1�

�1

(5) Correction of error covariance matrix of states
PZ;kjk ¼ ðIn � KZ;kHkjk�1Þ½PZ;kjk�1þ
ðHT

kjk�1R
�1
k D�

kjk�1ÞSkðHT
kjk�1R

�1
k D�

kjk�1Þ
TðIn � KZ;kHkjk�1ÞT�

(6) Error covariance matrix of unknown inputs

Skþ1 ¼ D�T
kþ1jkR

�1
kþ1ðIl �Hkþ1jkKZ;kþ1ÞD�

kþ1jk
h i�1

EKF-UI-WDF
[18]

(1) Model equation (1) Estimation for states (1) Prediction for states

_ZðtÞ ¼ gðZ; f; f�; tÞ þwðtÞ Ẑkþ1jkþ1 ¼ Ẑkþ1jk þ KZ;kþ1½ykþ1 � hðẐkþ1jk; fk; �̂f�kþ1jkþ1; kþ 1Þ� Ẑkþ1jk ¼ Ẑkjk þ
R ðkþ1ÞDt
kDt gðẐtjk; f; f̂�tjk; tÞdt

(2) Measurement equation (2) Estimation for unknown inputs in the observation equations (2) Prediction of error covariance
matrix of states

ykþ1 ¼ hðZkþ1; fkþ1; f
�
kþ1; kþ 1Þ þ vkþ1 Not available PZ;kþ1jk ¼ Ukþ1;kPZ;kjkUT

kþ1;k þ Q kþ1

(3) Condition for the estimation of unknown inputs (3) Estimation for Unknown inputs only in the model equations
B�
kjk has full column rank and D�

kþ1jk ¼ 0 f̂�kjkþ1 ¼ Skþ1B
�T
k HT

kþ1jkðIl �Hkþ1jkKZ;kþ1Þ
ðykþ1 � ĥkþ1jk þHkþ1jkB

�
k f̂

�
k�1jkÞ

(4) Gain matrix for state estimation

KZ;kþ1 ¼ PZ;kþ1jkH
T
kþ1jk½Hkþ1jkPZ;kþ1jkH

T
kþ1jk þ Rkþ1�

�1

(5) Correction of error covariance matrix of states

PZ;kjk ¼ ðIn � KZ;kHkjk�1Þ½PZ;kjk�1 þ ~B�
k�1Sk

~B�T
k�1ðIn � KZ;kHkjk�1ÞT�

(6) Error covariance matrix of unknown inputs

Skþ1 ¼ B�T
k HT

kþ1jkR
�1
kþ1ðIl �Hkþ1jkKZ;kþ1ÞHkþ1jkB

�
k

h i�1
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ĥ
kþ

1j
k
þ
H

kþ
1j
k
~ B
� k~̂ f

� k�
1j
k
Þ

P
Z;
kþ

1j
k
¼

U
kþ

1;
k
P
Z;
kjk
U

T kþ
1;
k
þ
Q

kþ
1

(3
)
C
on

di
ti
on

fo
r
th
e
es
ti
m
at
io
n
of

u
n
kn

ow
n
in
pu

ts
(3
)
Es

ti
m
at
io
n
fo
r
U
n
kn

ow
n
in
pu

ts
on

ly
in

th
e
m
od

el
eq

u
at
io
n
s

D
� kþ

1j
k
¼

0 l
�~ r

� D
� kþ

1j
k

h
i an

d
B
� k
¼

~ B
� k

� B
� k

h
i w

h
er
e
� D
� kþ

1j
k
h
as

fu
ll
co

lu
m
n
ra
n
k
� r

an
d
~ B
� k
h
as

fu
ll
co

lu
m
n
ra
n
k
~ r.

~̂ f� kjk
þ1

¼
S k

þ1
;1
2
� D
�T kþ

1j
k
R
�1 kþ

1
ðI l

�
H

kþ
1j
k
K

Z;
kþ

1
Þðy

kþ
1
�
ĥ
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quantified with the mean normalized 2-norm of the estimation
error time history ei [21] as

ei ¼ 1
N

XN
j¼1

Pn
k¼1½ziðkÞ � ẑi;jðkÞ�2Pn

k¼1½ziðkÞ�2
" #1=2

ð29Þ

where ziðkÞ is the ith theoretical states (inputs) and ẑi;jðkÞ is the
corresponding estimate from jth random simulation; N is the
number of random simulations and n is the number of time steps
in simulation.

In the formulation of the proposed GEKF-UI as described in
Eqs. (21)–(28), the matrix Rk in Eq. (28) is theoretically defined
as the covariance matrix of the zero mean Gaussian measurement
noise vector vk;E½vkvT

k � ¼ Rk to quantify the measurement
uncertainties. It has significant effect on the performance of the
proposed GEKF-UI. However, the real unknown vector vk consid-
ers errors from both measurement noise and modeling error due
to the linearization of the nonlinear functions, and thus it is not a
zero mean Gaussian vector any more. As a result, matrix Rk was
empirically chosen as a constant positive diagonal matrix, i.e.,
Rk ¼ R ¼ aIl (usually with 0 < a 6 1Þ in the literature [1–5],
rather than being obtained directly from its theoretical definition.
In this paper, an iterative procedure is applied to determine Rk by
(i) tentatively choosing a Rk ¼ a0Il which leads to convergence of
the proposed GEKF-UI; and (ii) smoothly adjusting the value of a
from a0 to minimize the mean normalized 2-norm of the estima-
tion error of the structural parameters obtained from Eq. (29),
until a satisfactory Rk ¼ aIl is obtained. The major limitation of
this method is that it is a trial and error procedure where the
optimality of the Rk obtained is not guaranteed. This is a chal-
lenging problem for further research associated with the EKF
approaches. Similarly, the matrix Q kþ1 in Eq. (27) is also chosen
as Q kþ1 ¼ Q ¼ bI2mþn (usually with 0 < b 6 1Þ and the associated
discussion is omitted herein.

4.1. DOFs linear structure

Considering a 3-storey (3-DOFs) linear damped shear building
subjected to El Centro seismic excitation with acceleration €x0. The
equations of motion are given by

m1ð€x1þ€x0Þ¼�c1 _x1þc2ð _x2� _x1Þ�k1x1þk2ðx2�x1Þ
m2ð€x2þ€x0Þ¼�c2ð _x2� _x1Þþc3ð _x3� _x2Þ�k2ðx2�x1Þþk3ðx3�x2Þ
m3ð€x3þ€x0Þ¼�c3ð _x3� _x2Þ�k3ðx3�x2Þ ð30Þ

where xi is the relative displacement of the ith storey with respect
to the base. m1 ¼ m2 ¼ m3 ¼ 1000 kg, c1 ¼ c2 ¼ c3 ¼ 0:6 kN s/m,
k1 ¼ 120 kN/m, k2 ¼ 120 kN/m, k3 ¼ 60 kN/m. The natural fre-
quencies of structure are x1 ¼ 0:73 Hz, x2 ¼ 1:74 Hz, and
x3 ¼ 2:93 Hz.

The seismic excitation €x0 with a peak ground acceleration of
1.0 g is applied to the structure. The ‘‘measured” inter-storey
drifts of the 1st, 2nd and 3rd stories, i.e., d1 ¼ x1; d2 ¼ x2 � x1
and d3 ¼ x3 � x2 are simulated by adding to the theoretically
computed responses with 5% RMS white noise. The sampling fre-
quency is 500 Hz.

Unknown quantities to be identified are: (i) the state variables
(the displacements and velocities of three stories); (ii) the struc-
tural parameters k1; k2; k3; c1; c2 and c3; and (iii) the unknown
earthquake ground acceleration €x0ðtÞ. Given the measurement

vector y ¼ ½d1d2d3�T, the coefficient matrix D�
kþ1jk ¼ 0 0 0½ �T is

obtained.
The initial values of the state variables are assumed to be

zeros, and the initial values for k1; k2; k3; c1; c2 and c3 are taken
as c1;0 ¼ c2;0 ¼ c3;0 ¼ 0:4 kN-s/m, and k1;0 ¼ k2;0 ¼ 100 kN/m,
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k3;0 ¼ 50 kN/m, and the diagonal elements of the initial error
covariance matrix of the extended state vector PZ;0j0 are

½1;1;1;1;1;1;108;108;108;108;108;108�T. The covariance matrices
of both the measurement noise vector v(t) and the system noise
vector w(t) are chosen to be R = 0.1I3 and Q = 10�2I12, respectively,
where the subscript denotes the dimension of the unity square
matrix.

The proposed GEKF-UI approach is conducted and the identified
parameters (ki and ci for i = 1, 2, 3) are presented in Fig. 1. All the
curves are overlapping except in the first two seconds. The identi-
fied earthquake ground acceleration f �e ¼ €x0 is presented in Fig. 2.

The estimation error df �e ¼ f̂ �e;kþ1jkþ1 � f �e given in Fig. 2 is small
except in the first 0.2 s. These results show that the proposed
method is accurate.

The velocity response and damping parameter of the 2nd storey
estimated by GEKF-UI and traditional EKF are presented in Fig. 3.
Large error is noted in the parameter estimates of the traditional
EKF where the unknown input is taken as null.

Using measurements with time segment of 5 s (between t = 3
and 8 s) with a sampling intervals Dt ¼ 0:002 s from 100 random
simulations (i.e., N = 100 and n = 2501) and under 5% and 10%
RMS noise, the mean estimation errors (Eq. (29) ) with traditional
EKF and GEKF-UI are presented in Table 2. The errors are noted
very small compared to those from the traditional EKF.
4.2. ASCE Phase I benchmark structure

This benchmark structure consists of four storeys three dimen-
sional steel frame. Two white noise excitations are applied at the
2nd and 4th floors in the weak direction of the building. Due to
symmetry, the structure is reduced to a 4-DOFs shear-beammodel.
The masses of floors are m1 ¼ 3:4524 tons, m2 ¼ m3 ¼ 2:6524 tons
and m4 ¼ 1:8099 tons, and the stiffness for all stories are
identical, with k1 ¼ k2 ¼ k3 ¼ k4 ¼ 67:9 MN/m. The damping
matrix C is assumed to be proportional to the stiffness matrix K,
i.e. C ¼ 1� 10�4 K. Hence, the damping coefficient of each storey
unit is c1 ¼ c2 ¼ c3 ¼ c4 ¼ 6:79 kN s/m. The natural frequencies
xi are: x1 ¼ 9:41 Hz, x2 ¼ 25:54 Hz, x3 ¼ 38:66 Hz, and
x4 ¼ 48:01 Hz.

To show the capability of the proposed GEKF-UI, only the
absolute accelerations of the 1st, 3rd and 4th floors are measured.

As a result, the measured output vector is y = ½€x1€x3€x4�T and the
coefficient matrix corresponding to the unknown input vector

f�e ¼ f �2 f �4
� �T is D�

kþ1jk ¼
0 0 0
0 0 1

� �T
. Matrix

is partitioned with �D�
kþ1jk ¼ 0 0 1½ �T according to Eq. (17).

The white noise excitation at the 2nd and 4th floors are not
measured. The sampling frequency is 1000 Hz. Other than the state
variables, the unknown quantities to be identified include the
structural parameters ci and ki (for i = 1, 2, 3, 4) and the white noise
excitations f 2 and f 4 at the 2nd and 4th floors.

The initial values for the state variables are assumed zero and
the initial guesses for c1; c2; c3; c4, and k1; k2; k3; k4 are respectively:
c1;0 ¼ c2;0 ¼ c3;0 ¼ c4;0 ¼ 4:0 kN-s/m and k1;0 ¼ k2;0 ¼ k3;0 ¼ k4;0 ¼
40:0 MN/m. The initial error covariance matrix of the extended
state vector is taken to be the diagonal matrix PZ;0j0 with diagonal
elements [1,1,1,1,1,1,1,1]. The covariance matrices of both the
measurement noise vector v(t) and the model noise vector w(t)
are chosen to be R ¼ 0:1I3 and Q ¼ 10�3I16, respectively.

Based on the proposed GEKF-UI, the estimated parameters for a
time duration of 10 s are presented in Fig. 4. The estimated stiff-
ness parameters are almost identical while the estimated damping
curves are almost overlapping. The errors in the estimated
structural parameters are noted small while results (not shown)
from the traditional EKF diverge without convergence.

The identified unknown white noise excitations f 2 and f 4 within
the time duration between 3 and 3.1 s are presented in Fig. 5.

The estimation errors df 2 ¼ f̂ 2;kjkþ1 � f 2 and df 4 ¼ f̂ 4;kþ1jkþ1 � f 4 are
also shown in the figure. The errors of estimation calculated
from Eq. (29) are given in Table 3 for responses with 5% and 10%
noise.
4.3. Time-varying estimation with a 2-storey steel plane frame

Consider a 2-storey plane steel frame [22] with 6 members, 4
nodes and 12 DOFs in the finite element model. All members are
of the same uniform cross-section. White noise excitations f 1 and
f 2 are applied on Nodes 1 and 2 horizontally and vertically, respec-
tively. The dynamic effect of the second force is small and it is spe-
cially selected for illustration of the effectiveness of the proposed
method. The equation of motion of the plane steel frame is given
as follows

M€xðtÞ þ C _xðtÞ þ KxðtÞ ¼ gf�ðtÞ ð31Þ

where xðtÞ ¼ ½z1x; z1y; z1h; . . . ; z4x;z4y;z4h�T ¼ ½x1; x2; . . . ; x12�T and zjx; zjy
and zjh are the translational displacements relative to the
ground, and rotational displacements of the jth node (j = 1, 2, 3, 4)
respectively; M, C and K are (12�12) global mass,
damping and stiffness matrices for the finite element structure,

respectively; f� ¼ f �1 f �2
� �T is the external excitation vector; and

g ¼ 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 �1 0 0 0 0 0 0 0

� �T
is (12�2) map-

ping matrix for the excitation.
Consistent mass matrix is adopted and the equivalent stiffness

parameter ki ¼ EiIi
Li

for each member is adopted for the estimation,

where Ei; Ii, and Ai are the Young’s modulus, moment of inertia,
and area of the cross-section of the ith element, respectively. The
stiffness matrix is represented as the summation of the elemental
matrices as

K ¼
X6
i¼1

~Ki ¼
X6
i¼1

kiSi ð32Þ

where Si is the (12�12) mapping matrix of the ith element.
Rayleigh damping is assumed and the damping matrix C is

expressed as

C ¼ aMþ bK ð33Þ

where a is the mass-proportional damping coefficient and b is the
stiffness-proportional damping coefficient.

The physical and material parameters of members are:
Ai ¼ 1:34� 10�2 m2, Ii ¼ 4:87� 10�4 m4 (i = 1, 2, . . ., 6), mass per
unit length of member, �mi ¼ 10:71 kg/m (i = 1, 2, . . ., 6),
ki ¼ 10:65 MNm (i = 1, 2), ki ¼ 26:61 MN-m (i = 3, 4, 5, 6),
a ¼ 1:94 s�1, and b ¼ 3:19� 10�4 s. The first natural frequency
and the corresponding damping ratio of this frame are 33.08 Hz
and 3.79%, respectively. The sampling frequency is 1000 Hz.

Unlike the previous two numerical examples with constant
parameters, a damage pattern is considered with the stiffness
parameter in Element 6 in the first storey changes abruptly at
t = 3 s, i.e., k6 is reduced from 26,611 kN-m to 22,619 kN-m (15%
reduction). Other parameters are constant throughout the time
duration studied. Besides the state variables, the unknown
parameters to be identified are: ki (i = 1, 2, . . ., 6), a and b, and
the excitations f 1 and f 2.
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Fig. 1. Estimated parameters for a 3-storey shear building. (Unit of ki in kN/m and ci in kN-s/m (i = 1, 2, 3).) (—— estimated; ------ theoretical).
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To track the abrupt reduction of k6 on-line, an adaptive
technique proposed by Yang et al. [14] is used by replacing
PZ;kþ1jk in Eq. (27) with the following equation,

PZ;kþ1jk ¼ Kkþ1½Ukþ1;kPZ;kjkU
T
kþ1;k�KT

kþ1 þ Q kþ1 ð34Þ

where Kkþ1 is an (32�32) adaptive factor matrix. The matrices
Ukþ1;k and Q kþ1 have been defined in Section 2.

The observation vector Y =7 ½€x2; €x3; €x4; €x5; €x6; €x7; €x8; €x9; €x10; €x11�T
has 10 elements. The subscripts denote the dofs. The acceleration
in the horizontal direction of 1st node where the unknown
input f �1 is acting, i.e. €x1 is not measured. This implies
0 < rankðD�

kþ1jkÞ ¼ 1 < 2 ðfull column rankÞ. The coefficient matrix
corresponding to the unknown input vector f�e ¼ f �1 f �2
� �T is

and �D�
kþ1jk ¼ 0 0 0 �1 0 0 0 0 0 0½ �T

according to Eq. (17).
The initial values for the state variables are assumed zero and

the initial guesses for ki(i = 1, 2, 3, 4, 5, 6 ), a and b are
k1;0 ¼ k2;0 ¼ 8:00 MN/m, k3;0 ¼ k4;0 ¼ k5;0 ¼ k6;0 ¼ 20:00 MN/m,

a0 ¼ 1 m2/s and b0 ¼ 2� 10�4 s, respectively. The (32� 32) initial
error covariance matrix of the extended state vector is partitioned

as . The covariance matrices of both the

measurement noise vector v and the system noise vector w are
chosen to be R = 0.1I10 and Q = 10�7I32, respectively.



Table 2
Comparison of the mean normalized 2-norm estimation errors for a 3-storey linear shear-beam building with traditional EKF and GEKF-UI.

Noise level Method c1 (%) k1 (%) c2 (%) k2 (%) c3 (%) k3 (%) f �e (%)

5% Traditional EKF 184.13 92.25 169.81 88.21 207.74 90.57 N/A
GEKF-UI 1.55 1.13 1.85 0.88 2.11 0.99 1.87

10% Traditional EKF 281.36 151.92 228.33 125.56 332.77 141.41 N/A
GEKF-UI 2.65 2.17 4.84 1.51 3.92 2.23 3.26

Note: N/A = not applicable as the tradition EKF cannot estimate the unknown inputs.
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Table 3
The mean normalized 2-norm estimation errors for ASCE benchmark building with
GEKF-UI.

Noise
level

c1
(%)

k1
(%)

c2
(%)

k2
(%)

c3
(%)

k3
(%)

c4
(%)

k4
(%)

f 2
(%)

f 4
(%)

5% 1.46 1.27 1.34 1.11 1.69 1.24 1.58 1.77 2.59 3.77
10% 3.12 2.93 3.02 2.45 3.37 2.77 3.31 3.65 5.48 7.12

Fig. 6. Two-storey finite element model of planar frame structure.
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Fig. 8. Identified Unknown Inputs for the two-storey planar frame structure. (Unit
of f �1ðtÞ and f �2ðtÞ in kN.) (—— estimated; ------ theoretical).
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Based on the tracking technique with the tolerance value
d ¼ 10�2 for the optimization procedure to obtain the adaptive
matrix Kkþ1 in Eq. (34) of Yang et al. [5]. The estimated parameters
are presented in Fig. 7. The identified unknown excitations are pre-
sented in Fig. 8. Results from both figures indicate that the pro-
posed technique is capable of tracking satisfactorily the system
parameters and their changes as well as the unknown excitation.

4.4. Discussions on the simulation studies

(1) Results in Figs. 1–8 and Tables 2 and 3 demonstrate that the
proposed GEKF-UI approach is capable of identifying the
structural parameters and unknown inputs simultaneously
from relative displacements and absolute acceleration
measurements.
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theoretical).
(2) Fig. 3 and Table 2 also show that the estimation using tradi-
tional EKF has large errors with noisy measurements.

(3) In the example with the 3-storey shear building, the applica-
tion of EKF-UI [15] requires computation for the relative
accelerations from the noisy inter-storey drifts by numerical
differentiations and digital noise filters, which have to be
executed off-line with additional errors. In this paper, the
measured inter-storey drifts can be directly used on-line
with the proposed GEKF-UI avoiding errors introduced in
the numerical procedures.

(4) In the example with the ASCE benchmark building, the DOFs
with excitations have to be measured according to Yang
et al. [15], whereas only one DOF with excitation is mea-
sured with the proposed GEKF-UI. The GEKF-UI works well
as noted in Figs. 4,5.
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(5) The example with the two-storey planar frame structure
demonstrates that the proposed GEKF-UI not only can deal
with time-invariant parameter estimation, but it can also
track the abrupt parameter variation by adopting an adap-
tive technique [5].

(6) Future research will include the application of the proposed
GEKF-UI in structural health monitoring (SHM) systems,
especially those for complex structures formulated with
finite-element method.

5. Conclusions

A General Extended Kalman Filter with Unknown Inputs (GEKF-
UI) approach is proposed to estimate the states and the unknown
inputs simultaneously for the general case when the DOFs with
unknown inputs are partially measured. The analytical recursive
solution of GEKF-UI is derived by minimizing an objective function.
The approach can be simplified into existing EKF approaches, such
as the traditional EKF (e.g., [1]), the EKF-UI [15], and the EKF-UI-
WDF [18], with different input scenarios. The proposed GEKF-UI
is theoretically more flexible for different combinations of number,
type and location of the sensors for the estimation of the structural
parameters (as partial states) and the unknown inputs, compared
with existing approaches [13–17]. Simulation results of a 3-DOFs
linear damped shear building, the ASCE benchmark building, and
a two-storey planar frame structure demonstrate the effectiveness
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of the proposed approach in identifying time-invariant and time-
varying structural parameters as well as unknown inputs with dif-
ferent measurement scenarios with or without measurements at
the excitation DOFs.
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Appendix A. Derivation of the recursive solution for Ẑe;kþ1jkþ1

Following the pattern of formulation in [15], the states at ith
time instant, Zi (i = 1, 2, . . ., kÞ can be expressed in terms of Zkþ1

at (iþ1) th time instant through repeated applications of the
inverse transition relation in Eq. (11) as
Zi ¼ U�1
kþ1;iZkþ1 �

Xk

j¼i

U�1
jþ1;i½B�

j f
�
j þ ujjj�

( )
; i ¼ 1;2; . . . ; k ðA1Þ

where Uq;i ¼ Pq�1
j¼i Ujþ1;j (q = i + 1, . . ., k + 1) and ujjj are given by Eq.

(13) by replacing k with j.
Substituting the linearized hðZi; f i; f

�
i ; iÞ, which is given by Eq. (6)

by replacing k + 1 with i for i = 1, 2, . . ., k + 1), and Zi from Eq. (A1)
(for i = 1, 2, . . ., k ) into the first equation of Eq. (19), we have

�Dkþ1 ¼ Ykþ1 � Ae;kþ1Ze;kþ1 ðA2Þ
where Ze;kþ1 is a ½ð2mþ nÞ þ �rðkþ 1Þ þ ~rk�-extended unknown vec-
tor at t ¼ ðkþ 1ÞDt;Ykþ1 is a l(k + 1)-known vector, and Ae;kþ1 is a
½lðkþ 1Þ � ðð2mþ nÞ þ �rðkþ 1Þ þ ~rkÞ� known matrix, given by

ðA3Þ
�yijkþ1 (i = 1, 2, . . ., k + 1) in Eq. (A3) is as follows where
~Lkþ1; ~Mkþ1; ~Hkþ1 are given by
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; ~Hkþ1 ¼ Hkþ1jk 0

� � ðA4Þ

where corresponding to (i = 1, 2, . . .,

k + 1).
The following shows the derivation of the analytical recursive

solutions for Ẑkþ1jkþ1 and f̂�e;kþ1jkþ1, from the recursive solution for

Ẑe;kþ1jkþ1 (i.e., the relationship between Ẑe;kþ1jkþ1 at t ¼ ðkþ 1ÞDt
and Ẑe;kjk at t ¼ kDtÞ. The estimation Ẑe;kjk for Ze;k at t ¼ kDt can

be obtained from Ẑe;kþ1jkþ1 in Eq. (20a) where k + 1 is replaced by
k, as

Ẑe;kjk ¼ Pe;k½AT
e;kWkYk�; Pe;k ¼ ½AT

e;kWkAe;k�
�1 ðA5Þ

where
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ðA6Þ

where Wk ¼ diagðR�1
1 ;R�1

2 ; . . . ;R�1
k Þ with Ri ¼ E½vivT

i � (i = 1, 2, . . ., kÞ.
With the analysis of the matrix structure, the relationship

between Ae;kþ1 and Ae;k can be found for k = 1, 2, . . . as

ðA7Þ
The relationship between Ykþ1 and Yk, as well as Wkþ1 and Wk can
be found in a similar manner as

ðA8Þ
It follows from Eq. (20) that, Pe;kþ1 is the inversion of matrix

AT
e;kþ1Wkþ1Ae;kþ1. With the aid of two matrix decomposition formu-

las [15], Pe;kþ1 in Eq. (20) can be transformed as follows in a similar
way,
ðA9Þ
where

�Pe;kþ1 ¼ ½I� Ke;kþ1
~Hkþ1�~Pe;kþ1 ðA10Þ

Skþ1 ¼fðD�
kþ1jk� ~Hkþ1

�MkÞ
T½Rkþ1þ ~Hkþ1

~Pe;kþ1
~HT
kþ1�

�1ðD�
kþ1jk� ~Hkþ1

�MkÞg
�1

ðA11Þ
where

~Pe;kþ1 ¼ U�
kþ1;kPe;kU

�T
kþ1;k ðA12Þ

Ke;kþ1 ¼ ~Pe;kþ1
~HT
kþ1½Rkþ1 þ ~Hkþ1

~Pe;kþ1
~HT
kþ1�

�1 ðA13Þ

ðA14Þ

where �Bk is given by Eq. (A7) and Pe;k is given by Eq. (A5).
Substituting Eqs. (A9)–(A14) into the first equation of Eq. (20),

one obtains the recursive solution for Ẑe;kþ1jkþ1 as

ðA15Þ
where

�Ze;kþ1 ¼ ðU�
kþ1;kẐe;kjk þ ~FkÞ þ Ke;kþ1½�ykþ1jkþ1

� ~Hkþ1ðU�
kþ1;kẐe;kjk þ ~FkÞ� ðA16Þ

f̂�e;kþ1jkþ1 ¼ Skþ1
�D�T
kþ1jkR

�1
kþ1ð�ykþ1jkþ1 � ~Hkþ1

�Ze;kþ1Þ
þ Skþ1

�MT
k
~P�1
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kþ1;kẐe;kjk þ ~FkÞ�
ðA17Þ
Appendix B. Derivation of the recursive solution for Ẑkþ1jkþ1 and

f̂ �e;kþ1jkþ1

The recursive solution for the estimate Ẑe;kþ1jkþ1 has been
derived in Appendix A. It should be noted that the dimension of

Ẑe;kþ1jkþ1 increases rapidly as the time instant k increases with
increasing computational effort. In this Appendix, the recursive

solutions for Ẑkþ1jkþ1 and f̂�e;kþ1jkþ1 are derived from the recursive

solution for Ẑe;kþ1jkþ1 obtained in Appendix A with further
decompositions.

From the definition of Ẑe;kþ1jkþ1 given in Eq. (20b), Ẑe;kþ1jkþ1 can
be partitioned as follows.
ðB1Þ

where . Compar-

ing Eq. (B1) and Eq. (A15), one obtains

ðB2Þ

where f̂�e;kþ1jkþ1 is given by Eq. (A17).

Thus, the recursive solution for Ẑkþ1jkþ1 can be obtained from the
top (2mþ nÞ elements of the right side of Eq. (B2). Further, the

recursive solution for f̂�e;kþ1jkþ1 has been obtained from Eq. (A17),
which can be further simplified. To decompose the right side of

Eq. (B2) and to simplify f̂�e;kþ1jkþ1 in Eq. (A17), Ẑe;kjk and Pe;k in Eq.
(A5) are partitioned as
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ðB3Þ

where is rk-vector

and PZ;kjk is [(2mþ nÞ�(2mþ nÞ] matrix.
With the aid of Eq. (B3), the decompositions for

~Pe;kþ1;Ke;kþ1; �Ze;kþ1 and �Pe;kþ1 [15] can be executed and the recursive

solution for Ẑkþ1jkþ1 and can be obtained by

substituting the decomposed quantities into Eqs. (B2) and (A17),
respectively.

Also, KZ;kþ1 in Eq. (25) can be obtained by changing only the

notation ~Pe11;kþ1 to the notation PZ;kþ1jk in the top set of partitioned
equations of Eq. (B3), i.e., introducing the new quantity PZ;kþ1jk as

PZ;kþ1jk ¼ ~Pe11;kþ1 ¼ Ukþ1;kPZ;kjkU
T
kþ1;k þ Q kþ1 ðB4Þ

where PZ;kþ1jk is a [(2mþ nÞ�(2mþ nÞ] matrix.
The recursive solution PZ;kþ1jk presented in Eq. (B4) involves

PZ;kjk which is a sub-matrix of Pe;k in Eq. (A5). The recursive solution
for PZ;kjk can be obtained from the recursive solution of PZ;kþ1jkþ1 by
replacing k + 1 by k.

Similar to Eq. (B3), Pe;kþ1 in Eq. (20) is further partitioned as
follows

ðB5Þ

where PZ;kþ1jkþ1 is a [(2mþ nÞ�(2mþ nÞ] matrix corresponding to
Zkþ1. It is observed from Eqs. (B5) and (A9) that Pe;kþ1 has been par-
titioned into different sub-matrices with different dimensions. Let
the upper-left sub-matrix of Eq. (A9) be denoted by Pe11;kþ1, which
is a [((2mþ nÞ+rk)�((2mþ nÞ+rk)] matrix, i.e.,

Pe11;kþ1 ¼ �Pe;kþ1 þ �Pe;kþ1ð~HT
kþ1R

�1
kþ1

�D�
kþ1jkSkþ1

�D�T
kþ1jkR

�1
kþ1

~Hkþ1

þ ~P�1
e;kþ1

�Bkþ1Skþ1
�BT
kþ1

~P�1
e;kþ1

þ ~HT
kþ1R

�1
kþ1

�D�
kþ1jkSkþ1

�BT
kþ1

~P�1
e;kþ1

þ ~P�1
e;kþ1

�Bkþ1Skþ1
�D�T
kþ1jkR

�1
kþ1

~Hkþ1Þ�Pe;kþ1 ðB6Þ
A comparison of the dimension of PZ;kþ1jkþ1 in Eq. (B5) with that

of Pe11;kþ1 in Eq. (B6) indicates that PZ;kþ1jkþ1 is the upper-left
sub-matrix of Pe11;kþ1. Then, the recursive solution for PZ;kþ1jkþ1 is
obtained by substituting the decomposed �Pe;kþ1 into Eq. (B6)
and extracting the [(2mþ nÞ�(2mþ nÞ] upper-left sub-matrix,
PZ;kþ1jkþ1, from the resulting Pe11;kþ1.
Finally, Skþ1 in Eq. (A11) can be simplified by using the
decomposed �Pe;kþ1 and ~Hkþ1. As a summary, the derivation for the
analytical recursive solution for GEKF-UI has been completed as
shown in Eqs. (21)–(28).
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