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This paper  reports  on a simulation-based  study  that  investigated  the  demand  response  potential  of  a
model  predictive  controller  (MPC)  for  space  heating  defined  to  minimize  a weighted  sum  of  electricity
costs  and  CO2 emissions.  The  performance  of  the  MPC  was  compared  to a traditional  controller  and
the  results  showed  that  an  MPC  with  no  weight  on CO2 emissions  reduced  the  total  electricity  costs,
shifted  consumption  from  high  to  low  load  periods  and  reduced  consumption  in the hour  with  the  yearly
maximum  grid  load;  but  it could  also  cause  an increase  in CO2 emissions.  Contrary,  the MPC  with  no
weight  on  electricity  costs  reduced  CO2 emissions;  but  it only  reduced  total  costs  marginally,  it  could
odel predictive control
pace heating
arbon dioxide emissions

cause  a  shift  of consumption  from  low  to  high  load  periods  and  it increased  consumption  in the hour
with  the  yearly  maximum  grid  load.  Finally,  if the MPC  used  a weighted  sum of  electricity  costs  and  CO2

emissions  a range  of  intermediate  results  were  obtained.  The  weighting  factor  can  thus  be used  either  to
balance  the performance  of  the  MPC with  respect  to  all performance  indicators  or  to  maximise  it  with
respect  to  one  indicator  of  particular  interest.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

A characterizing feature of the electricity grid is that there
lways has to be an instantaneous balance between demand and
upply. This is currently ensured by adjusting electricity production
nd network facilities to meet demands. However, sheer supply-
ide management of the balance becomes an increasing challenge
s more renewable energy sources (RES) are introduced into the
ystem because the production from the RES is intermittent and
ncontrollable by nature. There is, therefore, a growing interest in
xploring the potential of Demand Responses (DR) [1–7]. DR refers
o actions on the demand side in response to certain conditions in
he electric grid [7] and can be used to serve a variety of purposes.
R can lower peak demands and hence reduce the need for expen-

ive peak load capacity and network facilities or it can serve as a
eans to flatten the demand profile to obtain efficient operational

onditions for the generators [3,4,6,7]. DR can also be used to shift
emands from one period to another, i.e. to achieve cost savings or

o increase the utilization of supply from RES.

Households account for 26% of the total gross energy consump-
ion in the European Union [8] whereof 50% is used to operate

∗ Corresponding author.
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S. Petersen).

ttp://dx.doi.org/10.1016/j.enbuild.2016.04.053
378-7788/© 2016 Elsevier B.V. All rights reserved.
heating, ventilation and air conditioning (HVAC) systems for space
conditioning [9]. Energy consumption for household HVAC thus
constitutes a large DR potential if it can be made flexible e.g.
through the concept of model predictive control (MPC) [10–15].
Nevertheless, household electricity loads are seldom used for DR,
mainly because the DR potential is distributed over a large num-
ber of small loads. This requires investment in a large number of
meters, communication and control devices, and a management
system that coordinates and aggregates the small individual loads
into a DR resource of significant size to electric system planners
and operators (PO). However, this is likely to change as equipment
costs decrease and the PO introduce demand response programs
that facilitates participation of small household loads [5].

1.1. Demand response programs

DR can be established through different types of DR programs
and are often divided into direct and indirect control programs
[1,4,5]. In direct control programs the consumer give the PO direct
control of electrical loads while in indirect control programs the
consumer retains full control of the electrical loads and the PO can

only try to change the consumption pattern indirectly. An example
of indirect control is price-based DR programs where the flexibility
demand from the PO is reflected in a data signal containing future
time-varying electricity prices. This is an attempt to motivate con-

dx.doi.org/10.1016/j.enbuild.2016.04.053
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2016.04.053&domain=pdf
mailto:mdk@eng.au.dk
mailto:stp@eng.au.dk
dx.doi.org/10.1016/j.enbuild.2016.04.053


rgy and Buildings 125 (2016) 196–204 197

s
c
h

i
m
O
d
p
p
n
s
a
p
t
p
b
m
o
R
o
c
p
t
e

m
m
A
i
t

1

c
a
C
p
i
h
o
e
l
u
t
a
t
m
o
a
d
a
o
o
c
w
s
t

e
i
t
i
d
d

M. Dahl Knudsen, S. Petersen / Ene

umers to perform DR by enabling them to save money by reducing
onsumption in high price periods or by shifting consumption from
igh to low price periods.

It is common to subdivide price-based DR programs accord-
ng to their pricing structure which is either static, dynamic or a

ixture of both. One example of a static pricing structure is Time-
f-Use (TOU) tariffs which divide a day or a week into periods with
ifferent average electricity prices [1,2,16]. The objective of such
rograms is to flatten out consumption and reduce peaks [1]. DR
rograms based on TOU tariffs are relatively simple as there is no
eed for an ongoing communication of a price signal to the con-
umers. However, TOU tariffs are not guaranteed to always have an
ppropriate effect on consumption because an average electricity
rice does not reflect the actual state and needs of the electric sys-
em in periods that diverge significantly from the average. Dynamic
ricing, on the other hand, has no pre-fixed price for specific time
locks. Instead they vary dynamically over short time periods, e.g.
inutes or hours, and can, therefore, better indicate the actual state

f the grid. An example of a dynamic pricing structure is day-ahead
eal-Time Prices (RTP) where the wholesale prices are announced
ne day ahead in time [1]. Price-based DR programs can also be a
ombination of static and dynamic price structures and one exam-
le of this is Critical Peak Pricing (CPP) which is based on static TOU
ariffs but dynamically adds an additional peak price during critical
vents or very high wholesale prices [1,17].

A limitation of a dynamic price signal based solely on the spot
arket price is that it does not necessarily reflect the environ-
ental impact of the power production in a given time block [18].
n additional data signal containing the future time-varying CO2

ntensity of the available electricity could be used as a supplement
o the price signal to take environmental impact into account.

.2. Related work and aim of this paper

Several studies make use of price-based DR in relation to space
onditioning, e.g. [12–15], but there are, to the knowledge of the
uthors, no reported studies involving a combination of price and
O2 signals. The few studies found that investigate the use and
otential of applying a combination of price and CO2 signals in

ndirect DR programs are related to electricity consumption in
ousehold appliances. Tsagarakis et al. [19] solve a bi-objective
ptimization problem where the objectives are to minimize daily
lectricity costs and CO2 emissions associated with residential wet
oad appliances (dishwasher, washing machine and dryer). They
se day-ahead RTP data from the United Kingdom and find that
here is a trade-off between costs and CO2-emissions: When a rel-
tively high weight is assigned to one of the objectives, it will reduce
he saving on the other. A similar study by Paridari et al. [20] applies

ixed integer linear programming to optimize the daily scheduling
f wet loads and charging/discharging of a battery. Their objectives
re to minimize electricity costs and CO2 emissions using Swedish
ata for CO2 intensity and RTP from Nordpool [21]. They also find

 trade-off effect between electricity costs and CO2 emissions, but
ne that is more significant than in Tsagarakis et al. [19] as their
ptimized controller will perform worse on one of the objectives
ompared to a non-optimized baseline when a sufficiently large
eight is put on the other. This means that a controller that seeks

olely to minimize costs can lead to a performance that increase
he total CO2 emissions compared to a traditional control strategy.

However, the indicated existence of a trade-off effect between
lectricity costs and CO2 emissions in DR programs for electric-
ty consumption in household appliances cannot immediately be

ransferred to control of space heating. The reason is that schedul-
ng of appliances is optimized using a prediction horizon of a single
ay whereas MPC  of space heating probably needs a longer pre-
iction horizon due to the time constant of the thermal capacity
Fig. 1. Geometry of the EnergyPlus model (internal dimensions).

of the building constructions. The aim of this paper is, therefore,
to report on a simulation-based study that investigated the perfor-
mance of an MPC  for space heating when applying a combination of
RTP and CO2 signals. Various performance indicators were used. It
was investigated whether there was  any trade-off effect between
electricity costs and CO2 emissions using the MPC  with different
prediction horizons compared to more traditional controllers. The
RTP and CO2 signals used in the study were from the Danish elec-
tricity grid which has a large share of wind power. It was therefore
also investigated whether an MPC  using a combination of RTP and
CO2 signals would shift consumption towards periods with a high
share of wind power production. Finally, the ability of the MPC
using RTP and CO2 signals to flatten out load profiles, cutting off
peaks, and induce a lower usage of non-RES was compared to more
traditional space heating control systems.

2. Method

The study reported in this paper is based on results from co-
simulations of a test case modeled in EnergyPlus (EP) [22] and a
heating system controlled by an MPC  defined in MATLAB [23]. The
EP model and the MPC  are connected and exchange data in run-time
via the Building Controls Virtual Test Bed [24,25]. The simulations
are carried out for the period January 1 to February 14 in 2013 and
2014, respectively, which is within what is considered to be the
general heating season in Denmark. The following sections explain
the applied models in more details.

2.1. EnergyPlus model

The test case is featuring a dormitory apartment in the Grundfos
Dormitory located in Aarhus, Denmark and modeled in EP. Fig. 1
shows the geometry of the apartment.

The model consists of a single thermal zone. All surfaces are
internal and assumed to be adiabatic except for the south-facing
wall which also has a low-energy window with no recess. The
mechanical ventilation is always active with a constant airflow rate
of 1.1 h−1 and a heat recovery of 75%. The infiltration rate is set to
0.05 h−1. The heat source is assumed to be an electric baseboard
with no thermal capacity. There are included no other internal heat
loads to make the results easier to interpret. The Conduction Finite
Difference algorithm is used to calculate the construction heat bal-
ances which induce the need for a small time step; we  therefore

apply 60 s time steps. The applied weather data is the EP weather
file for Copenhagen [26]. Table 1 provides the details regarding the
building constructions.
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Table  1
Data for constructions used in the EnergyPlus model.

Construction type Material Properties

Window Low-e coated clear double glazing w. argon in cavity4–14(Ar)-4(LowE) U = 1.1 W/(m2 K), g = 0.63
Frame: Vinyl (width = 0.06 m) U = 1.7 W/(m2 K)

External wall 0.100 m concrete (exterior) � = 1.1 W/(m K), c = 736 kJ/(m3 K)
0.250  m insulation � = 0.037 W/(m K), c = 52 kJ/(m3 K)
0,200  m concrete (interior) � = 1.1 W/(m K), c = 736 kJ/(m3 K)

Internal walls 0.180 m concrete � = 1.1 W/(m K), c = 736 kJ/(m3 K)
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Ceiling/Floor 0.025 m wood floor 

0.050  m air space 

0.220  m concrete

.2. Control model

The MPC  uses a state space model (SSM) of the EP model to
redict future output and to find the optimal sequence of control

nputs. It is assumed that a linear time-invariant SSM can approx-
mate the EP model since the EP room model has a constant air
hange. The advantage of this assumption is that the identification
f the SSM and the MCP  optimization becomes relatively simple to
erform. This study applies the following discrete time linear SSM

n the controller:

k+1 = Axk + Buk + Edk (1) State equation

k = Cxk (2) Output equation

here xk is a 5-by-1 vector with the state variables in time step k,
nd xk+1 contains the state variables in the following time step
k + 1). uk is a scalar with the controllable heat input from the
lectric heater, dk is a 2-by-1 vector with the uncontrollable dis-
urbances (outdoor air temperature and solar irradiation) while yk

s a scalar with the room temperature in time step k. A is a 5-by-5
tate transition matrix, B is a 5-by-1 input matrix, E is a 5-by-2 dis-
urbance matrix, and C is a 1-by-5 output matrix. The time step Ts

etween k and k + 1 is one hour.
A pseudo random binary sequence [28] excited the EP model and

he resulting room temperatures were registered and used for iden-
ification of the dimensions and parameters of A,B,E and C using the
4SID method in the MATLAB System Identification Toolbox [29].

n this specific case, a fifth order model turned out to be suitable to
apture the dynamics of the EP model. This is a so-called black box
dentification process and it is therefore not possible to give a direct
hysical interpretation of the states xk or the matrix parameters.

The MPC  solves a minimization problem in each time step k to
nd the optimal sequence of control inputs for a finite prediction
orizon of N time steps but it only executes the first input in the
P model. In the next time step k + 1, the optimization problem is
olved again but with the prediction horizon shifted one time step
orward. This is called a receding horizon procedure [27,30] and
t enables the controller to implement feedback from measure-

ents of e.g. room temperature and apply continuously updated
orecasts on weather, price and CO2 signals. Feedback regarding
oom temperature in the EP model to the MPC  goes into a Kalman
lter state observer to correct the states from prediction errors in
ach time step. The optimization problem solved can be described
s a deterministic linear program:

in
u

J =
N∑

k=1

skuk (3) Cost function

ubject to
x̄k+1 = Ax̄k + Buk + Ed̄k

}
(3.a) System dynamics
yk = Cx̄k

¯0 = x̂ini (3.b) Initial condition

 ≤ uk ≤ 500 (3.c) Control input
� = 0.15 W/(m K), c = 991 kJ/(m K)
R = 0.095 (m2 K)/W
� = 1.1 W/(m K), c = 736 kJ/(m3 K)

yk ≥ yk,min (3.d) Output

The cost in time step k is the product of the heat input,uk, and
the combined price and CO2 signal, sk (see Section 2.3). The total
cost J Eq. (3) is thus the sum of the cost in each time step for the
entire prediction horizon of N time steps and the objective is to find
the control sequence, uopt , that minimize J. Any feasible solution is
subject to four types of constraints Eq. (3-a-d). The system dynamic
constraints Eq. (3-a) force the solution to comply with the system
dynamics described by the SSM model in Eqs. (1)–(2). The initial
condition constraint Eq. (3-b) sets the initial condition equal to the
initial states estimated by the Kalman filter. The control constraint
Eq. (3-c) ensures that the solution only applies physical sensible
heat inputs which, in this study, lie in the interval [0 W,  500 W].
Finally, the output constraint Eq. (3-d) forces any feasible solution
to produce an indoor temperature,yk, that lies above a minimum
set point temperature which, in this study, is 21 ◦C during daytime
and 18 ◦C from 12:00 am to 7 am.  We  also apply slack variables
as described by Halvgaard et al. [13] to ensure that a feasible solu-
tion is always available, but the above formulation does not include
these for the sake of simplicity. In this study, the weather fore-
casts are assumed to be perfect but forecast uncertainties could be
incorporated e.g. as a stochastic MPC  formulation [31,32].

2.3. RTP and CO2 intensity signals

The combined signal s used in this study is composed of two
separate signals, c and e, where c = [c1, c2, . . .,  cN]T is the prediction
of RTP and e = [e1, e2, . . .,  eN]T is the prediction of the CO2 intensity
associated with the electricity production. The problem is really
a bi-objective optimization problem, but a simple and often used
approach is to transform this into a single-objective problem by
taking a weighted sum of each objective [19,20]. This study applies
the following weighted sum:

sk = (1 − �) ck + �ek (4)

The combined signal, s, is thus a weighted sum of the two  origi-
nal signals, c and e, and � is a weighting constant. One must typically
assign a �-value between [0,1]where � = 0 means that all weight is
put on the RTP signal while � = 1 means that all weight is put on the
CO2 intensity.

The Danish electricity market is divided into two price areas
and the RTP data applied in this study are hourly day-ahead RTP
from Western Denmark [21] and are made available by the Danish
TSO, Energinet.dk [33]. The CO2 intensity data are calculated by
Energinet.dk based on the actual mix  of electricity production in
Denmark and corrected for net import or export to neighbouring
countries [34]. Fig. 4 (bottom) depicts an example of RTP and CO2
data for a week in the simulation period in 2013.

Table 2 shows the mean values and standard deviations for the

two simulation periods. Notice that the mean values are of the
same order of magnitude as the standard deviations, which makes
it reasonable to apply c and e directly in Eq. (4) without any prior
normalization.
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Table  2
The mean value and standard deviation for RTP and CO2 intensity.

2013 2014

RTP
[DKK/MWh]

CO2

[kg/MWh]
RTP
[DKK/MWh]

CO2

[kg/MWh]

Mean 299 416 223 291
Standard deviation 88 86 74 68
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Table 3
Correlation coefficients between RTP, CO2 intensity, wind power production and
total electricity demand in the grid.

2013 2014

RTP CO2 Wind Demand RTP CO2 Wind Demand

RTP 1 0.41 −0.48 0.67 1 0.57 −0.34 0.62
CO2 intensity 1 −0.79 −0.05 1 −0.81 0.13
Wind 1 0.04 1 0.09
ig. 2. The scaled cumulated periodograms of fluctuations in the RTP and CO2 inten-
ity time series with respect to mean values. Top: 2013, bottom: 2014.

However, there are differences in the frequency content of the
TP and CO2 intensity time series, which is seen in Fig. 2 displaying
he cumulated periodograms as a function of frequency measured
n oscillations per hour. There is jump in the RTP plot at a frequency
f 1/24 h−1 revealing that the RTP has a relatively high content of
iurnal oscillations. This is not the case for the CO2 intensity. Fig. 2
lso shows that the CO2 intensity time series have a relatively high
ontent of frequencies below 1/24 h−1 compared to the RTP and
hat can help us understand some of the phenomena observed in
he simulation results (see Section 3).

The bars in Fig. 3 indicate the standard winter load periods as
efined by Energinet.dk [34,36] and include low, high and peak

oad periods. It will, generally, be advantageous to shift consump-
ion from peak to low load periods and a reasonable performance
riterion of a controller is its ability to perform these shifts. The line
lots in Fig. 3 depict the hourly mean values in the simulation period
or the total electricity consumption in Western Denmark (the grid
oad), RTP and CO2 intensity, respectively. The values are normal-
zed with respect to the yearly maximum values. Notice that the

ean of RTP and the total consumption in the grid have very similar
aily profiles and are in accordance with the standard load periods.

n contrast, the mean CO2 intensity has no diurnal pattern. The hour
t which the maximum RTP, CO2 intensity and total consumption
ccur is also indicated in Fig. 3. The maximum consumption in the
lectricity grid (circle) is located at 6 p.m. in January for both years
nd the maximum RTP (cross) is located at 6 p.m. and 7 p.m. in
013 and 2014, respectively, and are thus in good agreement. In
ontrast, the maximum CO2 intensity (square) is located at 4 a.m.
nd at midnight which are low load periods. These observations
uggest that RTP is a good indicator of the load in the electricity
rid while CO2 intensity is not.

Table 3 shows the correlation coefficient r in the two  simula-
ion periods between the RTP and CO2 intensity as well as the time
eries for the generation of wind power and the total electricity

emand in Western Denmark [33]. There is a strong positive cor-
elation between RTP and the total electricity demand in the grid
uggesting that it is a good indicator of the grid load. On the other
and, there is only a moderate negative correlation between RTP
Demand 1 1

and supply from wind turbines suggesting that it is a less good indi-
cator of the amount of wind power in the grid. In contrast, the CO2
intensity is not correlated with the total electricity demand, but
there is a very strong negative correlation between CO2 intensity
and the generation of wind power. This suggests that the CO2 inten-
sity is a poor indicator of the grid load but a good indicator of the
amount of wind power.

Based on the above analysis we can expect that an MPC  based
on RTP alone will do a good job at shifting consumption away from
periods with high loads on the grid, but it will not necessarily shift
towards periods with a high production of wind power or reduce
CO2 emissions. In contrast, an MPC  based solely on CO2 intensity is
expected to shift consumption towards periods with a high share
of wind power, but it will not necessarily shift away from peak load
periods or reduce costs.

2.4. Prediction horizon

The MPC  determines the optimal sequence of control inputs for
N future time steps, see Section 2.2 for details, and N is therefore
the number of time steps in the prediction horizon. A proper choice
of prediction horizon length depends on a number of conditions
such as thermal characteristics of the building (i.e. the time con-
stant) and characteristics of the RTP and CO2 signals. In this study,
we apply a prediction horizon of six days to ensure a full utiliza-
tion of the thermal capacity of the building. However, the reliability
of weather, RTP, and CO2 forecasts for a prediction horizon of six
days is currently questionable and often not even available. Out-
puts from simulations with a prediction horizon of six days can,
therefore, be regarded as a theoretical performance bound, i.e. a
benchmark for evaluating the performance of more realistic pre-
diction horizon scenarios. We  shall refer to this as the ideal MPC.
A currently more realistic prediction horizon length is, according
to Nordpool [21], approx. one day and simulations with a one-day
prediction horizon are therefore also made. Furthermore, simula-
tions are also executed with a prediction horizon of six days but
where only the first day is assumed available as a perfect forecast
and the remaining five days are obtained through the following
coarse extrapolation:

s [k] = s [k  − 24] (5)
where the unknown value s [k] is set equal to the value 24 h earlier.
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Fig. 3. Normalized hourly gross consumption, CO2 intensity and RTP. Data is normalized with respect to maximum value in the periods. The light grey bars visualize the
standard tariff periods; low, high and peak periods.
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ig. 4. One week of simulation results for the PID, the PID with night setback and
ntensity for the given period (the tick marks on the x-axis are placed at 12.00 a.m.)

. Results

The MPC  simulation results were compared with two
roportional-integral-derivative (PID) controllers [35]; one with a
onstant set point temperature of 21 ◦C and one with a 3 ◦C night
etback from 12 am to 7 am.  Notice that the minimum temperature
onstraints of the MPC  Eq. (3-d) are the same as the temperature

et points of the PID with night setback thus allowing the MPC  to
pply night setback if optimal.
e different ideal MPC  control strategies. The bottom graph plots the RTP and CO2

Fig. 4 depicts one week of simulation results for the PID with
constant set point, the PID with night setback and the ideal MPC
for three different weighting constants (�), respectively. The PID
with a constant set point had a relatively steady heat consumption
while the PID with night setback boosted heating in the morning to
raise the night temperature to the daytime set point. The MPC  with
no weight on the CO intensity (� = 0) minimized cost by boost-
2
ing heat consumption in periods with a relatively low RTP to use
less in later periods with high RTP. In contrast, the MPC that solely
minimized CO2 emissions (� = 1) boosted the heat consumption in
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Fig. 5. Summary of the cost-emission trade-off for the different controllers in 2013. The number labels in the graph indicate the �-value for the associated result.

2014.
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Fig. 6. Summary of the cost-emission trade-off for the different controllers in 

eriods with a low CO2 intensity to use less in periods with a high
O2 intensity. The MPC  that put equal weight on costs and CO2
missions (� = 0.5) boosted heating when both RTP and CO2 inten-
ity were relatively low. Fig. 4 also shows that the economic MPC
� = 0) often did not reduce the night temperatures even though
his would reduce the total heat consumption. The reason is that
he nighttime RTP is often lower than the daytime RTP and the

PC  therefore often found it more cost-effective to boost tempera-
ure during night time to save expensive electricity during daytime.
n the other hand, when CO2 emissions were given a high weight
� = 1), night setback was often applied because CO2 emissions did
ot have the same strong diurnal pattern as the RTP signal (see
 The number labels in the graph indicate the �-value for the associated result.

Figs. 2 and 3) and are, in general, not low at night and high during
daytime.

Figs. 5 and 6 depict the performance of the different controllers
with respect to the accumulated electricity costs and CO2 emissions
for the simulated periods in 2013 and 2014, respectively. The PID
controller with a constant set point temperature was used as base-
line and is therefore placed at the origin while the performance of
the other controllers is plotted relative to this baseline. The con-
trollers within the third quadrant dominated the baseline PID with
respect to both objectives. The PID controller with night setback is

in the fourth quadrant because it had lower accumulated CO2 emis-
sions than the baseline PID but higher accumulated costs. None of
the two PID controllers can therefore be said to dominate the other.
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Fig. 7. Electricity consumption for different controllers. The dark bars are the total electricity consumption for space heating compared to the baseline PID and the light gray
bars  are the amount of the total electricity consumption covered by other generators than wind turbines.
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ig. 8. Change in electricity consumption for space heating for different controlle
lectricity consumption in the low load periods compared to the baseline, the grey
eak  periods. The plus signs show the changes in the maximum peak hour.

In 2013 there is a more profound trade-off effect compared to
014 for the ideal MPC  (six days of perfect forecasts). The reason is
hat there was a higher correlation between RTP and CO2 intensity
n 2014 than in 2013 (Table 3). In 2014 the ideal MPC  dominated
he baseline regardless of the chosen �, while the ideal MPC  in 2013
ad higher emissions than the baseline when only a small weight
as put on CO2 (� ≤ 0.2).

For the MPC  with a prediction horizon of just one day there
as almost no trade-off to consider because, generally, the perfor-
ance was improved for both objectives with decreasing weight on
O2 emissions (except for � ≈ 0). The reason is that the CO2 inten-
ity varied at a slower rate compared to the RTP signal (Fig. 2) and
here was, consequently, often only a small difference between the
pared to the baseline PID with constant set point. The black bars are changes in
are changes in the high load periods and the light grey bars are the changes in the

minimum and maximum values during a prediction horizon of one
day. A high weight on CO2 emissions would therefore not induce
large shifts in heat consumption. In contrast, there was  often a sig-
nificant RTP difference within a day, and a high weight on RTP
would, consequently, make the MPC  shift significant amounts of
heat consumption from high to low RTP periods. These shifts often
also resulted in reduced CO2 emissions because of the moderate
positive correlation between RTP and CO2 intensity (Table 3).

Reducing the horizon length from six to one day significantly
decreased the obtainable savings and moved the trade-off front

away from the third quadrant. However, the MPC  that only applied
forecasts for a single day but extrapolates the remaining five days
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as able to approximate the theoretical performance bound of the
ix days prediction horizon of perfect forecasts.

Fig. 7 depicts the total electricity for space heating (dark bars)
onsumed by the different controllers and the total amount cov-
red by other generators than wind turbines (light gray bars). The
alues are accumulated over the simulation periods in 2013 and
014, respectively, and are relative to the baseline PID. The MPC
enerally used more energy than the baseline PID even though it
as allowed to reduce the temperature at night. However, the MPC

ontrollers also consumed less electricity from non-wind genera-
ors in all cases except for � ≤ 0.1 in 2013. This means that the MPC
ffectively invested wind power to shift consumption away from
eriods with a low share of wind power production. Both the extra
otal consumption and the usage of other sources than wind power
ecreased significantly when more weight was put on CO2 emis-
ions (� increase). Notice that the PID controller with night setback
as the only strategy that used less energy than the baseline PID

ut it achieved only a small reduction in the usage of non-wind
roduced electricity.

Fig. 8 shows how the controllers shifted consumption with
espect to the three standard load periods (Fig. 3) compared to
he baseline PID. The red plus signs indicate how the controllers
hanged consumption in the hour with the yearly maximum grid
oad (critical peak). When high weight was put on RTP (� ≈ 0), the

PC  managed to shift consumption from the high/peak load peri-
ds to the low load periods and significantly reduce consumption
n the critical peak hour. As more weight was put on CO2 emis-
ions, the shift from high/peak load periods to low load periods was
educed. In 2013, high weight on CO2 intensity (� > 0.5) resulted in

 total shift from low to high/peak load periods and an increased
onsumption in the critical peak hour. The reason is that the MPC
ith high weight on CO2 intensity often applied night setback and
ence shifted consumption from night to daytime. This was  not so
uch the case in 2014 because of the relatively high correlation

etween RTP and CO2 intensity. Notice that the PID with night set-
ack in general shifted consumption from low to high/peak load
eriods and increased the consumption in the maximum hour.

. Conclusion

This paper presents results from a simulation-based study that
nvestigated the performance of an MPC  that applied different
ombinations of RTP and CO2 intensity signals for space heating
ontrol compared to conventional PID control. The following per-
ormance indicators were used: Costs, CO2 emissions, ability to shift
onsumption from high to low load periods, ability to reduce con-
umption in the critical peak hour and, finally, the ability to reduce
he consumption of non-wind generated electricity. Simulations
ere performed using electricity system data for a specific period

1 January–14 February) in the Danish heating season in 2013 and
014, respectively.

The results indicate that an economic MPC  (� = 0) will effec-
ively reduce the total costs, shift consumption from high to low
oad periods, and reduce the hourly maximum consumption. How-
ver, it may  cause an increase in the usage of non-wind generated
lectricity and a total increase in CO2 emissions because price and
O2 intensity were not very strongly correlated which is other-
ise often assumed. In contrast, a CO2-minimizing MPC  (� = 1) will

ffectively reduce the usage of non-wind generated electricity and
ence reduce CO2 emissions. However, it will only reduce the total
osts marginally, potentially cause a shift in consumption from

ow to high load periods, and increase consumption in the criti-
al peak hour. If the MPC  uses a weighted sum of RTP and CO2
ntensity (0 < � < 1), a range of intermediate results can be obtained

ith diverging performance with respect to the different perfor-
d Buildings 125 (2016) 196–204 203

mance indicators. The performance of the MPC  is thus sensitive to
the choice of � which can be carefully chosen to either dominate
PID in terms of all performance indicators or to make the MPC  max-
imise performance with respect to certain performance indicators.
The results indicate that it may  be a good idea to put at least a small
weight on CO2 intensity (� ≥ 0.2) because this will give a relatively
large reduction in CO2 emissions compared to a pure economic MPC
and only lead to a very small increase in cost (see Figs. 5 and 6). Like-
wise, a small weight on RTP (� ≤ 0.8) can give large cost reductions
compared to a pure CO2 minimizing MPC  and leads to only a very
small increase in CO2 emissions.

The simulation results also showed that the potential of the
MPC  is improved by applying a prediction horizon longer than a
single day. To do this the MPC  needs forecasts beyond what is typi-
cally available, but the simulation results also showed that a simple
extrapolation of daily forecasts can be used without a noticeable
reduction of performance potential.

Future work is to investigate if other signals could supplement
or replace the RTP and CO2 intensity signals to further improve the
MPC performance. For instance, a signal with information about
critical peak periods may  help an MPC  with high �-values to
reduce consumption in the maximum hour. Reproduction of the
analysis for periods later than 2014–and maybe even for future
scenarios—may also be of interest because the electricity system
keeps evolving, e.g. more wind-power is constantly introduced. The
analysis could also be repeated for energy systems with a different
composition of RES as conclusions are likely to be different for sys-
tems with e.g. a large share of solar power. Furthermore, the study
reported in this paper should be considered as a potential study fea-
turing a very simple case building using perfect weather forecasts
and no upper limit for thermal comfort. Future work could be to
investigate the MPC  performance in more realistic case buildings,
including the use of uncertain weather forecasts and occupancy
data as well as an upper limit for thermal comfort. Finally, it would
be interesting to investigate how different features of the building
envelope, e.g. insulation level, would impact the performance of
the MPC.
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