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The nonlinear free vibration behavior of functionally graded carbon nanotube reinforced composite flat
panel is investigated using temperature dependent material properties for different grading. The carbon
nanotube reinforced composite flat panel model has been developed mathematically using the higher-
order shear deformation theory and Green-Lagrange nonlinearity. The present mathematical model has
included all the nonlinear higher-order terms for the sake of generality. Further, the responses are
computed numerically using the direct iteration method in conjunction with the finite element method.
The validity and the convergence behavior of the present nonlinear model have been checked and the
effect of different design parameters on the nonlinear vibration responses are discussed in detail.
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1. Introduction

Carbon nanotube (CNT) was discovered by lijima [1] when he
was working in the laboratory to determine the crystal structure
of the nanotubes synthesized from carbon molecules. It is a special
arrangement of carbon atoms in cylindrical form, and it possess
excellent mechanical, thermal, electrical and chemical properties
as compared to other available conventional and advanced materi-
als. Due to its high strength, thermal stability and corrosion resis-
tance, CNT finds its applications in the industries like aerospace,
nuclear plant and marine structures [2]. In order to achieve the
desired strength in high-performance engineering structure, the
functionally graded carbon nanotube reinforced composites (FG-
CNTRCs) are regarded as the substitute for the available functional
materials. It is also a fact that a small amount of the CNT (2-5%)
can also improve a considerable value of the stiffness and strength
of the composite material [3,4].

Researchers have already devised various methods and formula-
tion for the evaluation of the effective material properties of CNT
and/or CNT reinforced composites namely, molecular dynamic
(MD) simulation [5-7], representative volume element (RVE)
method [8,9], extended rule of mixture [10,11] and Mori-Tanaka
scheme [12,13] and so on. Further the structural responses such as
vibration, bending and buckling behavior are computed using the
available numerical and analytical or 3D elasticity method. In this
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regard, some of the significant contributions are discussed herewith
to make the article self-explanatory. The FG-CNTRC plate is graded in
the thickness direction [14,15] and/or longitudinal directions [16] to
achieve the tailor-made properties. Rokni et al. [ 17] investigated the
free vibration behavior of axially functionally graded multi-wall car-
bon nanotube (MWCNT) reinforced polymer composite beams using
the modified couple stress theory. The stability behavior of the
single-wall carbon nanotube (SWCNT) beam using Timoshenko
beam theory (TBT) in conjunction with nonlocal elasticity investi-
gated by Murmu and Pradhan [18]. Formica et al. [19] were com-
puted the free vibration responses of the CNTRC, and the effective
material properties are evaluated using Mori-Tanaka scheme.

The nonlinear responses (vibration, bending and buckling) of
the composite structure are analyzed using different nonlinear
kinematics (von-Karman and Green-Lagrange) in the framework
of the available shear deformation and classical theories. The ther-
mal buckling and the post-buckling responses of the FG-CNTRC flat
panel analyzed by Shen and Zhang [20] using TBT and von-Karman
geometric nonlinearity. Shen and Xiang [21] further investigated
the nonlinear bending, vibration and post-buckling behavior of
the FG-CNTRC beam resting on elastic foundations using the
higher-order shear deformation theory (HSDT). Shiau and Kuo
[22] investigated the thermal buckling behavior of the sandwich
panel using first-order shear deformation theory (FSDT). Zhu
et al. [23] used FSDT model for investigating the free vibration
and the bending behavior of the FG-CNTRC plate. Shen [24]
investigated the thermal post-buckling behavior of the CNTRC
cylindrical shells based on the HSDT and von-Karman type nonlin-
ear kinematics. Free vibration responses of the CNTRC beam is
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Nomenclature

Eq1, E>> and Es; effective Young’s modulus of the composite flat
panel in x, y and z direction respectively

EQNT and ESYT Young's modulus of the CNT in x and y direction
respectively

E™ Young’s modulus of the matrix

Venr total volume fraction of the CNT

p™ and p™NT  density of the matrix and the CNT

Venr and V,, effective volume fraction of the CNT and matrix

11, N, and n; effectiveness parameters of the CNT

VT, ™ and vy, Poisson’s ration of the CNT, matrix and compos-
ite respectively.

[T"] and [T™] linear and nonlinear thickness coordination matrix

{0} and [Q] stress vector and reduced stiffness matrix, respec-

tively
N; interpolating function of the ‘ith’ node
U total strain energy
War total work done due to thermal load
T kinetic energy

studied by Lin and Xiang [25] using von-Karman's geometric non-
linearity. Yas and Samadi [26] investigated the free vibration and
buckling behavior of the functionally graded SWCNTs reinforced
composite flat panel resting on the elastic foundation using TBT.
Mehrabadi et al. [27] examined the buckling behavior of function-
ally graded SWCNTs reinforced rectangular flat panel using the
FSDT kinematic model. The FSDT kinematics is utilized by Kerur
and Ghosh [28] to investigate the active control of the geometri-
cally nonlinear transient responses of the laminated composite flat
panel integrated with active fibre composite and PVDF layer. Lei
et al. [29] presented the free vibration of FG-CNTRC cylindrical
panels based on the FSDT shell theory using the element free kp-
Ritz method. Alibeigloo and Liew [30] investigated the bending

AN

behavior of the FG-CNTRC rectangular flat panel with simply sup-
ported boundary conditions based on the 3D elasticity theory.
Later, the low-velocity impact behavior of sandwich plates based
on FSDT and HSDT model was investigated by Mohammadi et al.
[31]. Szekrenyes [32] investigated the stress distribution on the
delaminated orthotropic composite plates using Reddy’s third-
order shear deformation theory (TSDT). Wattanasakulpong et al.
[33] analyzed the thermal buckling and the vibration behavior of
the functionally graded beam using the TSDT kinematics. Ferreira
et al. [34] reported the free vibration behavior of the functionally
graded structure using the meshless method in the framework of
the HSDT. Shen and Xiang [35] computed the nonlinear bending
behavior of two type functionally graded CNTRC cylindrical panel

(b) FG-X

AN

— b

Fig. 1. The geometry and configuration of FG-CNTRC flat panels for different grading (a) UD, (b) FG-X, (c) FG-O and (d) FG-V.
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resting on elastic foundation using von-Karman geometrical non-
linearity. Few studies are also focused on the method of solution
for the computation using the numerical and semi-analytical
methods. Lei et al. [36] reported the buckling responses of the
FG-CNTRC flat panel based on the FSDT flat panel theory using
the element free kp-Ritz method. Ayatollahi et al. [37] used a
molecular model in conjunction with the finite element method
(FEM) to compute the nonlinear mechanical properties of the arm-
chair and the zigzag SWCNTs. Panigrahi and Zhang [38] computed
the 3D stress of tee joint made by laminated composite using non-
linear FEM. Shi et al. [39] investigated the static and dynamic
behavior of the space truss structures using FEM by considering
geometrical and material nonlinearity of the structure. Free vibra-
tion behavior of the laminated FG-CNTRC plate investigated by Lei
et al. [40] using the FSDT kinematics with the help of kp-Ritz
method. Brischetto [41] used continuum approach to investigate
the vibration behavior of the SWCNT. Tornabene et al. [42] investi-
gated the effect of CNT agglomeration on the free vibration
response of the FG-CNT reinforced laminated composite panel
using the generalized differential quadrature (GDQ) method. A
broad review of the mechanical behavior of the CNTRC is presented
by Liew et al. [43]. Brischetto et al. [44] examined the free vibration
behavior of the SWCNT and double wall carbon nanotube
(DWCNT) using the refined 2D GDQ shell methods and an exact
3D shell model. Cinefra et al. [45] also incorporated the refined
shell model to examine the vibration behavior of the DWCNT.

It is clear from the above review that the numerous attempts
have already been made in the past to analyze the linear and non-
linear free vibration responses of the FG-CNTRC flat/curved panels
based on available shear deformation and classical theories. How-
ever, we note that most of the works are based on the FSDT kine-
matics and von-Karman type nonlinear strain. Based on the
author’s knowledge, no study has been reported yet on the nonlin-
ear free vibration behavior of the FG-CNTRC plate using the HSDT
kinematics and Green-Lagrange nonlinear kinematics including
the temperature dependent properties due to the uniform temper-
ature rise. In this study, the authors aim to compute the nonlinear
vibration behavior of the FG-CNTRC flat panel using the HSDT kine-
matics and Green-Lagrange nonlinearity under uniform thermal
environment. The material properties of the FG-CNTRC flat panel
are assumed to be temperature-dependent and graded using vari-
ous grading rule through the thickness. The present model
included all the nonlinear higher order terms to capture the exact
strain under sever nonlinearity. The governing equation of the FG-
CNTRCs flat panel is obtained using Hamilton’s principle and dis-
cretized using a nine-noded quadrilateral Lagrangian element with
nine degrees of freedom per node. The desired nonlinear frequency
responses are computed using the direct iterative method [46].
Finally, the influence of the material and the geometrical parame-
ters on the nonlinear frequency responses are highlighted by
computing several numerical examples for the volume fractions,
the thickness ratios and the support conditions under elevated
thermal environment.

2. Theory and general formulation

For the investigation purpose, the FG-CNTRC flat panel configu-
ration is considered, and the dimensions are, length a, width b and
thickness h as shown in Fig. 1. The CNTs are assumed to align along
the length of the panel. In this analysis four types of CNT configu-
rations are assumed as in Fig. 1, namely, uniformly distributed
(UD), FG-X (CNT volume fractions are higher at the top and the
bottom surfaces of the plate), FG-O (CNT volume fractions are
higher at the mid-plane) and FG-V (CNT volume fractions varies
low to high from the bottom to the top surface of the plate). The

mathematical expression of the effective volume fractions for each
type of FG-CNT configurations are expressed as [23]:

. UD
VG’\"T ( )
2[M] V. (FG-X)
h CNT
V.. = = 1
or(?) 2@—3EQKL- (FG-0) W
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where, Vg, is the total volume fraction of CNT, weyr is the mass

fraction of the CNT, and p™ and p™' are densities of the matrix
and CNT respectively.

2.1. Kinematic model

The mathematical model of FG-CNTRC flat panel is developed
using the higher-order mid-plane kinematics as [32]:

U(X,J’% t) = UO(XJC t) +Z(PX(X,y, t) +Zzl//x(x7ya t) +Z30X(X7ya t)
v(X,Y,2,t) = vo(X,¥,8) + 20, (X,, 1) + 2, (X, ¥, t) + 220, (%, 1)
W(x7y727 t) = WO(X7.Y7 t)

(2)
where, u, v and w are the displacement of any point within the
panel along x, y and z directions, respectively. ug, 7, and wy are
the mid plane displacement of any point along x, y and z directions,
respectively. ¢, and ¢, are the rotation of normal to the mid-plane
about the y and x-axis, respectively. The functions v, ¥, 6x and 0y
are higher order terms of Tayler series expansion in the mid-plane
of the flat panel.

Now, the Eq. (2) is rearranged in the matrix form and conceded
as:

{4} = [f{ 0} 3)

where, {}, [f] and {4} are the global displacement vector of any
point, thickness coordinate matrix, and nodal displacement vector
within the mid-plane respectively. The details of each matrix and
the vectors are provided in the Appendix (A.1).

2.2. Strain-displacement relations
The following equation defines the strain-displacement relation

which is commonly known as Green-Lagrange strain for any gen-
eral material continuum [47]

b Uy L(wn)® + (02 + (Wa)?]
&y vy 3wy)® + (25)° + (wy)’]
{ei} =< T p = Q Uyt Vx 0T Uslly + U 0y +Wew,
Vax Uz + Wy U Uy + U Ux + W Wy
Vyz Vz+Wy Uy + VU Vy + W, Wy

(4)

Eq. (4) can be rewritten in the further notation of the linear and
the nonlinear strain in the following manner

{eg} = {e} + {em} (5)

By substituting the values of the displacement field Eq. (4), the
strain vector is expressed as:
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Exx & &l ky ks
Eyy & & k; k;
{ei} = Ty =9 & ¢ 3 &y ¢ 283 ky ¢+ Kiy
Vax &, & k!, k2,
Tz &) L& K)ok
K K
k; ko
+28 KPS ke,
I, kS
Ky, ko,
kK k! I K ki
k> k; K k) k,’
28 ke o+ Ky oo HZ Ky 0200 Ky 0 +204 Koy
o |k Ky Ky ky
k, k;, kS, ky, kyy
(6)

Eq. (6) can further be arranged as follows:
{&5} = [T'1{&} + TM){Em} (7)

21— 000 o0 0 pl 1 2 3
where {&} = {SX &) &y & &), k, ky kyy kL, kyZ K ky Ky 12, I<yz K k, kxy

3 1,37 ~ _ 4 o4 od o4 o4 5 5 1,5 6
kyk,} and {én} = {8 & &y Ex &y K ky kxy k. k. K ky kyy kS,

KS, ke ke ke, ke ko, K3 KS K3, kS, K, ks Ko ke, K K, kK kD kL k2T
are the linear and nonlinear mid-plane strain vectors and the
individual terms are defined in Appendix (A.2). Similarly, [T;] and
[Tne] are the linear and nonlinear thickness coordinate matrices
and provided in Appendix (A.3).

2.3. Effective material properties

The effective material properties of the FG-CNTRC material is
computed using the extended rule of mixture as [23]:

Eii =0, VanrESY" 4 ViE™ (8)
n, Venr Vi

Mo _Var  Vm 9
E22 Eglz\]T + Em ( )

M5 _Vor Ve
G2 G5 G"

(10)

where, 17, 17, and 5 are the effectiveness parameter. The CNT is the
short fibre, therefore, the effectiveness parameters are utilized to
calculate the effective material properties through the extended
rule of mixture and it is because the short fiber does not obey the
same rule as in the case of long fiber.

In this analysis, the total volume of the composite is taken as
the individual contribution of the carbon nanotube and the poly-
mer matrix volume fractions and expressed as [23]:

Vonr + Vi =1 (11)
Similarly, the effective Poisson’s ratio (7;;) and the density of

the FG-CNTRC material can be obtained using the following for-
mula as [23]:

V12 = Veng VN + Vo™ (12)

CNT

0=V p= + Vi p™ (13)

2.4. Constitutive relation

The constitutive relations for any general FG-CNT flat panel is
expressed as:

Oxx Qu Qi O 0 0 Exx 011

Oyy Qn Q» O 0 0 Eyy 022

Txy ¢ = 0 0 Qs 0 0 T ¢ — 0 AT
T 0 0 0 Qs O Vax 0

Tyz 0 0 0 0 Qu Vyz 0

(14)

where, Qqy = E11/(1 = vi2Va1), Qi2 = Vi2E22/(1 = Viavn), Qa2 = Enz/
(1 —v12v21), Qo =Gz, Quq =Gz and Qss = Gpz. In which we
assumed that Gij3 =Gy, and Gy = 1.2 x Gy,. AT is the uniform
temperature rise across the panel thickness.

Eq. (14) can also be rewritten as:

{0} = [Ql{e — em} (15)

where, [Q] is the reduced stiffness matrix.
2.5. Strain energy

The total strain energy of the free vibrated FG-CNTRC flat panel
can be expressed as:

]

where, h is the total thickness of the FG-CNTRC flat panel.
Now, Eq. (16) can be rewritten by substituting strains and stres-
ses from Eqs. (4) and (15) and conceded as:

= % /A <{51}T[D1]{5L} +{&} Da){Em}y + {en Y [Ds){E}
+{5~L}T[D4Hém})dA a7)

where, [Di] = ['2 11" [QT1dz, (D, = 17 [T [QT™dz, [Ds] =
I%WQWMMMI%WmWW

2.6. Kinetic energy

The kinetic energy of the FG-CNTRC flat panel can be expressed
as:

—5 [ thav (18)

where, p and {/} are the mass density and the global velocity vec-
tor, respectively.

Using Eqgs. (3) and (18), the kinetic energy of the FG-CNTRC flat
panel with thickness h can be written as:

) / (/ (o} 1f PV]{Ao}dZ>dA

ziﬁﬁJWWmM (19)

+h/2

I“ws 1" pIf]dz is the inertia matrix.

where, [m] =
2.7. Work done due to thermal load

The in-plane thermal forces induced in the present FG-CNT flat
panel due to the uniform thermal field can be obtained by integrat-
ing the stress equation over the thickness of the panel and it is
expressed as:
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h/2

{Nar} = {Nx N, Ny 00} = / Q{0 % %y 00} ATdz  (20)

)

where, N,, N, and N,, are the in-plane thermal forces.

Now, the work done due to the in-plane thermal force {N 4,7} and
the corresponding geometrical distortion in Green-Lagrange for the
flat panel can be expressed as [49]:

ING()® + (22)* + (Wy)?)
{War} = /V HIN[(uy)? + (0y)% + (wy)?] pdV (21)
+Nyluxuy, + v vy +ww,]

uyY'TN« Ny 0O 0 0 0O u,
y Ny N, O O O O U,
(/. 0 0 N N, O O Uy
Wy} = dv
{War} /v v, 0 0 Ny N, 0 0 v,
va 0 0 0 0 NX ny va
w,, 0 0 0 0 Ny N, w,,
(22)
(War} = [ [ {50)" Del{ec)dndy (23)
where, {&;} is the geometric strain vector and [Dg] is
the material property matrix. where, D] =
Ne Ny O 0 0 0
Ny N, 0 0 0 0
/2 0 0 Ny Ny 0 0 . .
I [Te)” 0o 0 N, Nyy 0 o |[Teldz and [Tg] is thick-
0 0 0 0 Ny Ny
0 0 0 0 Ny N,

ness coordinate matrix same as [Ty].
2.8. Finite element formulation

Finite element method is widely applied in worldwide for the
numerical analysis of structures with geometrical and material
complexities. In this present investigation, the domain is
discretized using a nine-noded isoparametric quadrilateral
Lagrangian element with nine degrees of freedom per node. Now,
the mid-plane displacement of the desired field variables of the
assumed displacement model {/,} are expressed as follows:

9
{do} = > Niliai} (24)
i=1
where, {Joi} = o, Uo,Wo, @, @), sy, 0,0y is the nodal displace-
ment vector and N; are the interpolating function of the ‘ith’ node.
The linear and nonlinear mid-plane strain vector in terms of
nodal displacement vector can be written as

{er} = [Bl{40}, {&c}=[Bcl{/o,}, {em}=[Al[Cl{40} (25)

where, [B] and [Bg] are the product form of differential operators
and the shape functions for matices, respectively

[A] is the function of displacements and [G] is the product form
of differential operator and shape functions in the nonlinear strain
terms. The detail of [B], [Bg], [A] and [G] matrices are provided in
the Appendices (A.4) and (A.5), respectively.

2.9. Governing equation

The governing equation of the FG-CNTRC flat panel is obtained
using Hamilton’s principle as:

o [T s W ydt =0 (26)

Jty

Now the final form of nonlinear vibration governing equation of
the FG-CNTRC flat panel is obtained by substituting the value of T,
U, and W r in the Eq. (26) and conceded as:

M]{2} + (K] + [Ke] + [y + [Knal, + [Knel3) {2} = 0 (27)

where, [M] = [N]"[m][N] is the system mass matrix, [K;] = [B]"[D:][B]
is the linear stiffness matrix, [K¢] = [B¢]"[D¢][Bc] is the global
geometrical stiffness matrix, [Kn]; = [B]'[D2][A][G] and [Kni], =
[G)"[A]"[Ds][B] are the coupled stiffness matrices (combination of
linear and nonlinear strains) and [Ky]; = [G]'[A]" [D4][A][G] is the
nonlinear stiffness matrix.

Eq. (27) is now rewritten in the form of eigenvalue and eigen-
vector form and conceded as:

((Ki) + (K] + [Knely + [Knil, + [Knils) — 0*[M])A =0 (28)

where, w and A are the natural frequency and the corresponding
eigenvector, respectively.

2.10. Solution technique

Now, the Eq. (28) has been solved by using the direct iterative
method and the detailed procedures are mentioned in the follow-
ing lines as [46]:

As a first step, the elemental stiffness and mass matrices are
evaluated using the finite element steps.

a. Obtain the global stiffness and mass matrices by assembling
the elemental matrices.

b. Now, solve the linear eigenvalue equation by dropping the
nonlinear terms from the final governing equation.

c. Specify desired amplitude ratio (Wmax/h, where Wmax is the
maximum deflection at the center and h is the thickness of
the flat panel) and the eigenvector is scaled up with the
desired amplitude.

d. The nonlinear stiffness matrices are obtained using the
scaled up eigenvector through the numerical integration.

e. Further, the nonlinear eigenvalue is computed by solving the
governing equation for the nonlinear fundamental
frequency.

f. The desired nonlinear response is obtained by repeating the
step 3-5 until the desired convergence is obtained by setting

the convergence criteria \/(d)” — @n1)?/(@n)? < 7, here ‘y’
and ‘n’ denoted the convergence tolerance and iteration
number, respectively.

3. Results and discussions

A customized computer code has been developed in MATLAB
environment based on the present finite element micromechanical
model for the evaluation of the nonlinear vibration behavior of
FG-CNTRC flat panel under thermal environment. In the present
analysis, PMMA is considered as the matrix materials and the
temperature dependent material properties are considered as

Table 1
Material properties of SWCNT (10,10) (L=9.26 nm, R=0.68 nm, h=0.067 nm,
vPT =0.175).

Temperature g7 E5" cor gyt sy’

(X) (TPa) (TPa) (TPa) (10°%K)  (10°5/K)
300 56466  7.0800 19445  3.4584 5.1682
400 55679 69814 19703  4.1496 5.0905
500 55308 69348 19643  4.5361 50189
700 54744 68641 19644  4.6677 4.8943
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Table 2

Effectiveness parameter of the CNT.
Venr M 1 13
0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

p = 1150 kg/m3, E™=(3.52 — 0.0034T) GPa and o =45(1 +0.0005
AT) x 107, where, AT=T — T, and T, = 300 K (ambient tempera-
ture). Similarly, the SWCNTs of armchair (10, 10) configuration is
considered as the reinforcement phase. The material properties
of the SWCNT are taken from [21]. The effective properties and
the effectiveness parameters of the SWCNT are provided in
Tables 1 and 2, respectively.

The following sets of support conditions are used in the present
analysis:

(a) All edges simply supported condition (SSSS):
v=w=g,=y,=0,=0atx=0,aand u=w=q,=1,=0,=0
aty=0,b

(b) All edges clamped condition (CCCC):
U=V=W=qx=py=Yyx=1,=0¢=0,=0 for both x=0, a and
y=0,b.

In this analysis, the linear and nonlinear frequencies of the
FG-CNTRC flat panel is nondimensionalized using the formula as:

2x2  3x3  4x4 55  6x6  Tx7
Mesh size

ga

5 SSSS

€ 241 —=—UD —+—FG-X

8,01 —4—FG-O —v— FG-V

oy .\0\- -

£ 20-

g

s 18 1 .\l\.i

g 16

§°7 v—

o I e v v
é 14+ A\A\‘i

T - A >
S 124

@

210

hel

5

=z

(2)

@ = w(a*/h)\/py/Es, where, Eq and p, are the Young’s modulus
and density of matrix at 300 K respectively.

3.1. Convergence and validation study

As a first step, the convergence behavior of the present nonlin-
ear numerical model of the FG-CNTRC flat panel is computed for
four different grading (UD, FG-X, FG-V, and FG-0) at ambient tem-
perature (300 K) for different mesh division. The nondimensional
linear and nonlinear frequency responses of the square FG-
CNTRC flat panel are computed numerically under two support
conditions (CCCC and SSSS) and presented in Figs. 2 and 3, respec-
tively. For the computational purpose, other geometrical parame-
ters are taken as a/h=50 and Vg =0.11. It is clearly observed
from the figures that the present mathematical model is converg-
ing well with the mesh refinement for all different types of grading
and support conditions. Based on the convergence, a (6 x 6) mesh
is utilized to compute the further responses.

Now the proposed HSDT model is extended to show the valida-
tion behavior by comparing the nondimensional fundamental fre-
quency parameters of square simply supported flat panel for
different thickness ratios and presented in Table 3. The material
properties and the geometrical parameters are taken from [23].
Similarly, the frequency ratios (ratio of nonlinear fundamental fre-
quency to the linear frequency) are computed using the present
higher-order model for the FG-CNTRC flat panels of two different
gradings (UD and FG-V) and five amplitude ratios (Wa/h =0.2,

65-

60- ccce
—=—UD ——FGX

55+ —+ FG-O——FG-V
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451
40-
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25 : : : : : :
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(b)

Nondimensional fundamental frequency parameter(@ )

Fig. 2. Convergence study of linear frequency parameter of the FG-CNTRC flat panel.
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Fig. 3. Convergence study of nonlinear frequency parameter of the FG-CNTRC flat panel.



342 K. Mehar, S.K. Panda/Composite Structures 143 (2016) 336-346
Table 3
Comparison study of nondimensional fundamental frequencies of square simply supported FG-CNTRC flat panel (Vg = 0.17, T = 300 K).
a/h ubD FG-X FG-O FG-V
Present [23] Present [23] Present [23] Present [23]
10 13.553 13.532 14.679 14.616 11.316 11.550 12.150 12.452
20 17.322 17.355 19.920 19.939 13.405 13.523 14.833 15.110
50 19.203 19.223 22.945 22.984 14.291 14.302 16.046 16.252
different geometrical and material parameters on the nonlinear
Table 4

Comparison study of frequency ratios (n. /) of square FG-CNTRC flat panel
(Vinr =0.17, T=300 K and a/h = 100).

Grading Sources @ Winax/h
0.2 0.4 0.6 0.8 1.0
uD Present 21.7719 1.0106 1.0420 1.0932 1.1692 1.2472
[23] 21.6989 1.0322 1.1232 1.2603 1.4304 1.6231
FG-V Present 20.6175 1.0787 1.1714 1.2768 1.3900 1.5117
[23] 18.2103 1.0454 1.1711 1.3549 1.5766 1.8224

0.4, 0.6, 0.8 and 1.0). It is well known that the flat panels are the
simplest form of the curved panel. The responses are computed
using the same geometrical and the material properties same as
in [48] and presented in Table 4. It is clearly observed that the pre-
sent results are showing good agreement with that of the reference
with noticeable differences for the higher amplitude ratios. The dif-
ferences between the results indicate the effect of Green-Lagrange
type nonlinear kinematics in the framework of the HSDT instead of
the von-Karman nonlinearity for the analysis of any graded struc-
ture when exposed to severe nonlinearity.

3.2. Parametric study
Based on the convergence and comparison study now the newly

developed nonlinear micromechanical higher-order finite element
model of FG-CNTRC flat panel is extended to show the effect of

vibration behavior. In general, the responses are computed for four
types of square FG-CNTRC flat panel (UD, FG-X, FG-O and FG-V) by
taking a/h = 50 and V{,; = 0.12 at 300 K throughout the analysis, if
not stated otherwise. For the computational purpose, the FG-
CNTRC panel thickness is taken to be h =0.002 m throughout the
analysis.

It is well known that the volume fractions of the filler material
play a major role in the fabrication and the stiffness behavior of the
polymer-based composites. Therefore in this example the effect of
three volume fractions (V¢ = 0.12,0.17 and 0.28) on the nonlinear
vibration behavior of the FG-CNTRC flat panel is investigated under
two support conditions (SSSS and CCCC) and six amplitude ratios
(Whax/h = 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5). The responses are pre-
sented in Table 5 and observed that the nondimensional funda-
mental frequency increases as the CNT volume fractions increase.
The fundamental frequency parameters are also observed maxi-
mum and minimum for the FG-X and FG-O type FG-CNTRC flat
panel, respectively. It is because, the CNT volume fractions are
maximum at the top and bottom surfaces of the FG-X type
FG-CNTRC panel whereas minimum for FG-O type (CNT volume
fractions are higher at mid-plane). It is also observed that the non-
linear frequency parameters are increasing as the amplitude ratio
increases except few cases. The non-monotonous behavior of the
frequency responses is observed for higher amplitude ratio, i.e.,
Wia/h = 1.0 may be due to the inclusion of all the nonlinear
higher order terms in the present mathematical model.

Table 6 shows the effect of thickness ratios on the linear and
nonlinear frequency responses of FG-CNTRC flat-panel. The

Table 5
Effect of the volume fraction and amplitude ratio on the non-dimensionalized nonlinear frequency parameter of the FG-CNTRC flat panel.
Support conditions Vinr Grading Winax/h
0 0.25 0.50 0.75 1.00 1.25 1.50
CCCC 0.12 uD 36.426 36.645 36.995 36.729 39.384 39.918 41.561
FG-X 42114 42.201 42.443 43.391 44374 43.014 41117
FG-O 27.960 28.173 28.850 29.981 31.497 33.383 35.463
FG-V 31.045 31.197 31.963 32.942 33.570 33.616 34.470
0.17 uD 44,525 44728 45.208 46.227 47.320 48.466 50.360
FG-X 51.672 51.843 52.351 53.189 54.340 55.847 57.640
FG-O 34.014 34.290 35.101 36.449 38.277 40.443 43.069
FG-V 37.635 37.900 38.457 39.395 41.439 40.150 40.987
0.28 uD 53.467 53.678 54.385 55.462 57.211 59.062 60.848
FG-X 61.216 61.358 61.759 63.069 64.676 64.485 64.254
FG-O 41.238 41.578 42.556 44322 46.676 49.433 52.507
FG-V 44995 45.233 46.343 47.829 48.955 47.787 48.381
SSSS 0.12 uD 17.656 17.653 17.563 17.393 16.615 16.706 15.494
FG-X 21.049 21.012 20.665 19.040 17.996 17.838 17.701
FG-O 13.209 13.217 13.240 13.268 13.300 13.303 13.308
FG-V 14.798 14.803 14.811 14.853 14.877 14.876 14.796
0.17 uD 21.391 21.393 21.316 21.109 20.815 20.468 19.016
FG-X 25.545 25.512 25.198 24.143 22.661 23.123 22.235
FG-O 15.975 15.988 16.024 16.086 16.171 16.280 16.411
FG-V 17.824 17.844 17.872 17.918 17.993 18.112 17.944
0.28 ubD 26.316 26.312 26.073 24187 24.047 22.875 22.646
FG-X 31.473 31.438 31.483 27.636 27.694 26.245 24970
FG-O 19.436 19.447 19.476 19.475 25.777 19.258 19.025
FG-V 21.594 21.611 21.650 21.714 21.807 21.873 21.943
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Table 6
Effect of thickness ratio on the non-dimensionalized nonlinear frequency of the FG-CNTRC flat panel.
Support conditions alh Grading Winax/h
0 0.25 0.50 0.75 1.00 1.25 1.50
Ccccc 50 uD 36.426 36.645 36.995 36.729 39.384 39.918 41.561
FG-X 42.114 42.201 42.443 43.391 44.374 43.014 41.117
FG-O 27.960 28.173 28.850 29.981 31.497 33.383 35.463
FG-V 31.045 31.197 31.963 32.942 33.570 33.616 34.470
100 uD 39.824 40.113 40.485 41.325 42.476 43.946 45.377
FG-X 47.383 47.491 47.815 48.584 49.453 50.881 52.289
FG-O 29.721 29.822 30.638 31.760 33.301 35.161 37.338
FG-V 33.343 33.537 34.111 35.104 36.393 38.082 40.099
SSSS 50 uD 17.656 17.653 17.563 17.393 16.615 16.706 15.494
FG-X 21.049 21.012 20.665 19.040 17.996 17.838 17.701
FG-0 13.209 13.217 13.240 13.268 13.300 13.303 13.308
FG-V 14.798 14.803 14.811 14.853 14.877 14.876 14.796
100 uD 18.011 18.018 18.041 18.081 18.138 18.169 18.235
FG-X 21.638 21.685 21.820 21.687 21.724 21.773 21.832
FG-O 13.380 13.454 13.415 13.459 13.520 13.598 13.692
FG-V 15.028 15.049 15.085 15.137 15.203 15.285 15.370
Table 7
Effect of temperature on the non-dimensionalized nonlinear frequency the of FG-CNTRC flat panel.
Support Conditions T (K) Grading Winax/h
0 0.25 0.50 0.75 1.00 1.25 1.50
cccc 300 uD 36.426 36.645 36.995 36.729 39.384 39.918 41.561
FG-X 42.114 42.201 42.443 43.391 44374 43.014 41.117
FG-O 27.960 28.173 28.850 29.981 31.497 33.383 35.463
FG-V 31.045 31.197 31.963 32.942 33.570 33.616 34.470
500 uD 34.542 34.710 34.576 35.305 35.739 37.494 39.111
FG-X 39.618 39.759 40.185 40.894 41.890 43.191 44.624
FG-O 26.612 26.840 27.518 28.626 30.153 31.962 33.741
FG-V 29.484 29.722 30.385 31.463 31.879 33.304 30.779
SSSS 300 uD 17.656 17.653 17.563 17.393 16.615 16.706 15.494
FG-X 21.049 21.012 20.665 19.040 17.996 17.838 17.701
FG-O 13.209 13.217 13.240 13.268 13.300 13.303 13.308
FG-V 14.798 14.803 14.811 14.853 14.877 14.876 14.796
500 uD 17.108 17.087 16.864 15.598 14.801 15.355 13.575
FG-X 20.400 20.274 18.907 18.458 16.981 17.492 17.328
FG-O 12.706 12.706 12.719 12.707 12.661 12.339 12.045
FG-V 14.263 14.270 14.252 14.058 13.730 13.502 13.141

responses are computed for two thickness ratios (a/h =50 and
100), six amplitude ratios (Wpq/h =0.25, 0.5, 0.75, 1.0, 1.25 and
1.5) under two support conditions (CCCC and SSSS). It is observed
that the nondimensional fundamental frequency responses of the
FG-CNTRC flat panel increases as the thickness ratio and the ampli-
tude ratio increases. The non-dimensional linear frequency param-
eters are minimum and maximum for the FG-O and FG-X type of
the FG-CNTRC panel, respectively, and the responses are within
the expected line.

The CNT is well known for its good thermal property, and it
becomes more important when the structure is exposed to ele-
vated temperature field. In this present investigation, the CNT
properties are assumed to temperature dependent, therefore, envi-
ronment temperature plays a significant role on the vibration
behavior of the FG-CNTRC flat panel. The nonlinear frequency
responses of the square FG-CNTRC flat panel is computed for two
different temperature (T=300K and 500 K), two support condi-
tions (SSSS and CCCC) and presented in Table 7. It can be clearly
observed that the nonlinear frequency responses of the FG-
CNTRC flat panel increases as the amplitude ratios increase, how-
ever, decreases with the temperature load. It is because of the fact
that the structural stiffness lowers as the temperature load
increases and the responses follow the expected line.

4. Conclusions

In this study, the nonlinear free vibration behavior of the
SWCNT reinforced composite flat panel of four different grading
(UD, FG-X, FG-0, and FG-V) under uniform thermal environment
have been examined using the HSDT kinematic model and
Green-Lagrange nonlinearity. In addition, all the nonlinear
higher-order terms are included in the mathematical model to
achieve the exact flexure of the structure. The structure is graded
functionally through the thickness based on the volume fractions
of the CNT, and the effective properties are evaluated through
the micromechanical model using the extended rule of mixture.
To achieve the realistic behavior, the properties of CNT are consid-
ered to be temperature dependent. The desired governing equation
for the vibration analysis is obtained using Hamilton’s principle
and discretized through the suitable isoparametric finite element
steps. The desired responses are computed numerically using the
direct iterative method. The convergence behavior of the present
numerical higher-order model has been checked. The model has
also been validated by comparing the responses to results available
in the literature. The applicability of the present higher-order
model has been highlighted by computing the responses for the
different geometrical and material parameters and temperature
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load as well. The following conclusions are drawn from the
detailed parametric study.

(a) The convergence and the comparison studies indicated the
accuracy of the present nonlinear HSDT model with and
without thermal load.

(b) It is observed that the nonlinear frequency responses are
decreasing with the increase of the temperature load
because the stiffness of the FG-CNTRC panel decreases with
temperature. However, the structural responses are follow-
ing a reverse trend for the volume fractions and the thick-
ness ratios.

(c) The results also clearly indicate that the FG-CNTRC flat-panel
with FG-X type grading is a stiffer configuration than any of
the other three made by different types of grading.
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Linear and nonlinear thickness coordinate matrix
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