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Supersonic aeroelastic instability of a three-layered sandwich beam of rectangular cross section with an
adaptive magneto-rheological fluid (MRF) core layer is investigated. The panel is excited by an airflow
along it’s longitudinal direction. The problem formulation is based on classical beam theory for the face
layers, magnetic field dependent complex modulus approach for viscoelastic material model and the lin-
ear first-order piston theory for aerodynamic pressure. The classical Hamilton’s principle and the
assumed mode method are used to set up the equations of motion. The validity of the derived formula-
tion is confirmed through comparison with the available results in the literature. The effects of applied
magnetic field, core layer thickness and constraining layer thickness on the critical aerodynamic pressure
are studied. The onset of instability in terms of the critical value of the nondimensional aerodynamic
pressure for the sandwich beam is calculated using the p-method scheme. Simply supported,
clamped–clamped and clamped-free boundary conditions are considered. The results show that the mag-
netic field intensity and thickness ratios have significant effects on the instability bounds.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Thin walled structural components exposed to high velocity air-
flow on the outer surface of aerospace vehicle may become unsta-
ble at a certain critical aerodynamic pressure. At this pressure the
motion of the surface panels grows with time until the in-plane
tensile stresses induced by the geometric nonlinearities restrain
the vibration amplitude of the structure. This phenomena, is
known as panel flutter and may occur frequently under transonic,
supersonic or hypersonic environments as a result of interactions
between the inertial force, elastic force and the aerodynamic loads
induced by the airflow [1–3]. Oscillatory nature of the flutter can
cause high stresses and result in the fatigue of thin walled compo-
nents or supporting structures, excessive noise levels in vehicle
compartments near the fluttering panel or functional failure of
the equipment attached to the structure.

Since the panel flutter phenomenon first occurred on the early
V-2 rockets, a large number of failures have been caused by the
aeroelastic and aerothermoelastic flutters in the history of aero-
space development [4,5]. In order to reduce the possibility of catas-
trophic flight accidents caused by flutter, it is necessary to control
and suppress the fluttering structure/components of an aerospace
vehicle.

In order to improve the aeroelastic instability characteristics of
an aerospace structure, one should manage to increase the instabil-
ity bound by changing the structural complex eigenvalues. It is
well known that the structural eigenvalues are related to the struc-
tural stiffness, damping and mass matrices. By changing the struc-
tural stiffness, damping and mass properties, the flutter
characteristics of the structure may be possibly improved.

Adaptive structures are structures which can adopt, evolve or
change their properties or behavior in response to the environment
around them due to the incorporation of a controllable component
such as piezoelectric [6], shape memory alloy (SMA) [7], electro-
rheological (ER) [8] and magneto-rheological (MR) materials [9].

The stiffness and damping characteristics of adaptive structures
comprising magneto and electro-rheological fluids can rapidly and
reversibly be changed by application of external magnetic/electric
field. Nowadays, these structures are being used increasingly in
vibration and noise control [10–14]. These structures have other
valuable advantages such as low energy loss, simplicity, robustness
and easy controllability.

Constrained layer damping (CLD) is an effective approach for
improving the dynamic behavior of flexible structures which is
used mostly in aerospace and automotive engineering. Tradition-
ally, viscoelastic materials are used in this approach to suppress
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excessive vibration, however due to fixed damping and stiffness
properties of the usual viscoelastic materials, the vibration control
performance of these structures is limited to a narrow frequency
range. Recently, MR/ER materials have been utilized as a core in
sandwich structure which leads to distributed stiffness and damp-
ing properties of the structure and facilitates vibration control over
a broad range of frequencies. For the first time Gandhi et al. [15]
experimentally analyzed application of ER materials as a core in
a cantilevered sandwich beam and concluded that the structure
damping ratio and natural frequencies increase with increase in
electric filed. Another experimental investigation on a cantilevered
beam locally linked by an electro-rheological fluid layer to ground
was conducted by Haiqing et al. [16]. In this research the ER fluid
layer was locally applied to the beam as a complex spring and it
was found that the frequency response function curve of the beam
changed drastically under electric field. It is also reported that the
vibration characteristics of the cantilevered beam with locally
applied ER fluid layer treatment is more sensitive to the electric
field than a sandwich beam. Using Mead and Markus sandwich
beam model [17], vibration characteristics of viscoelastically
damped sandwich ER beam was calculated for clamped-free and
clamped–clamped boundary conditions by Yalcintas and Coulter
[18]. Hasheminajad and Maleki [8], studied the free and steady
state forced vibration characteristics of a sandwich plate with ER
fluid core and cross-ply elastic composite laminate face layers
using Hamilton’s principles and Navier technique under simply
supported boundary conditions for various electric field strength,
geometric aspect ratio and ER core layer thicknesses. They con-
cluded that the natural frequency increases monotonically with
increasing electric field strength but loss factor of the structure
increases to its maximum value and decreases with further
increase in the field intensity. Furthermore, the natural frequencies
increase with increasing geometric aspect ratio and decrease with
increasing ER core layer thickness. Allahverdizade and his cowork-
ers conducted a series of analytical and experimental studies on
linear and nonlinear vibration behavior of functionally graded ER
sandwich beams [19–22].

Compared to the works on structures embedded with ER fluids,
limited results are available on MR based sandwich structures.
First investigation on the use of MR fluid in sandwich structures
conducted by Yalcintas and Dai [23]. They compared effectiveness
of using MR and ER fluids in adaptive structures and concluded
that by using MR materials as a core, the natural frequencies of
the structure increases almost two times compared with ER coun-
terpart. The controllable capabilities of an MR sandwich beam have
been investigated theoretically and experimentally by Sun et al.
[24]. They used oscillatory rheometry technique to derive the rela-
tionship between the magnetic field intensity and complex shear
modulus of MR materials. Yeh and Shih [25] determined the
regions of dynamic stability and dynamic response of an MR sim-
ply supported sandwich beam subjected to the axial harmonic load
using incremental harmonic balance (IHB) method. Kumar and
Ganesan [26] used finite element formulation to study the effects
of core thickness, electric voltage and magnetic field on the vibra-
tion and damping behavior of the clamped free hollow sandwich
box column containing a viscoelastic, electro-rheological or
magneto-rheological fluid core. Rajamohan et al. [27] used finite
element method and Ritz formulation to study the vibration char-
acteristics of a sandwich beam with MR fluid core with various
boundary conditions. They also validated their formulations
through experimental study on a cantilevered sandwich beam. In
addition, they estimated complex shear modulus of the MR fluid
based on the single-degree-of-freedom (SDOF) vibration behavior
according to the procedure proposed by Choi et al. [28]. They con-
cluded that increasing the magnetic field intensity increases natu-
ral frequencies for all modes and loss factor at higher modes. It has
been observed that simply supported boundary condition has the
highest loss factor at lower modes and clamped-free one at higher
modes. Furthermore, it is observed that by increasing the thickness
of the MR layer, natural frequencies at all modes decreases while
the loss factor increases at the first two modes. Rajamohan et al.
[29] investigated the influence of length and location of the MR
fluid layer segment under different magnetic field intensities in
the dynamic characteristics of a partially treated MR fluid beam
for different boundary conditions and compared the results with
the fully treated counterpart. It is observed, in addition to the
intensity of the applied magnetic field and boundary conditions,
the location and length of the fluid pocket strongly affects the nat-
ural frequencies and transverse displacement response of the par-
tially treated MR beam. Optimal locations for the MR fluid
treatment in partially filled MR sandwich beam to individually
and simultaneously attain to maximum modal damping related
to the first five flexural vibration mode of the beam is obtained
by Rajamohan et al. [30] using genetic algorithm and sequential
quadratic programming algorithm. Semi active optimal vibration
control of fully and partially treated clamped-free MR sandwich
beam conducted using linear quadratic regulator (LQR) optimal
control strategy by Rajamohan et al. [12]. The results suggested
about 85% reduction in the free vibration settling time and 25%
reduction in the tip deflection. Ndemanou et al. [31] carried out a
study on vibration suppression of a cantilevered Timoshenko beam
subjected to the earthquake load by a magneto-rheological damper
localized at a specific point of the beam. Ramamoorthy et al. [10]
numerically and experimentally analyzed free and forced vibration
behavior of a partially treated laminated composite MR fluid sand-
wich plate. The study concluded more pronounced effect of using
MR fluid segment in partial region of large components on vibra-
tion amplitude reduction and decreasing the magnitude of the
peak response at all vibration modes with increase in magnetic
field intensity. Manoharan et al. [11] investigated the effect of
magnetic field intensity, thickness of MR fluid layer and the ply ori-
entation of the composite face layers on the natural frequencies
and loss factors of a laminated composite MR fluid sandwich rect-
angular plate using finite element formulation. In a recent numer-
ical and experimental study, Eshaghi et al. [32] analyzed the effect
of variation in the magnetic flux, core layer thickness and plate
aspect ratio on the vibration behavior of an MR sandwich plate.

Many research works have been carried out on vibrating and
damping behavior of MR/ER sandwich adaptive structures; how-
ever, a limited number of analyses are available on aeroelastic
behavior of MR/ER based adaptive structures. The first study on
the flutter suppression capability of ER sandwich beams was con-
ducted by Hasheminejad et al. [33]. They used sliding mode control
algorithm to suppress the supersonic flutter instability of a simply
supported sandwich beam coupled to an elastic foundation. Super-
sonic flutter analysis of a sandwich ER rectangular plate with
orthotropic face layers was conducted by Rahiminasab and Reza-
eepazhand [34]. Various parametric studies were performed in
terms of variations of the critical aerodynamic pressure as func-
tions of the applied electric field, thickness of the ER fluid layer,
electro-rheological fluid type, constraining layer thickness and
fiber angle of orthotropic faces for simply supported and fully
clamped boundary conditions. Hasheminajad and his coworkers
[35–37] further investigated supersonic panel flutter semi active
control of ER based rectangular sandwich plates and cylindrical
shell using sliding mode control method and Rung-Kutta time inte-
gration algorithm.

To the author’s knowledge, no report is available on the aeroe-
lastic behavior of MR sandwich structures under supersonic flow. A
few studies on the aeroelastic behavior of ER based adaptive struc-
tures are available [33–36]. These are limited to flutter control of a
specific structure with inadequate parametric investigation on the
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effect of core and constraining layers thicknesses. Rigorous investi-
gations involving the effect of various parameters such as bound-
ary conditions, constraining and core layer thicknesses, and
magnetic field strength on the instability boundary seem to be
required. The main objective of this paper is to fill such a gap. In
this study, the Hamilton’s principle along with the assumed mode
method is adopted to obtain the aeroelastic characteristics of the
sandwich beam. The classical beam theory is used for structural
modeling of the face layers. Simply supported (S-S), clamped–
clamped (C–C) and clamped-free (C-F) boundary conditions are
taken into account. Effect of magnetic field strength, MR fluid layer
thickness, and constraining layer thickness on non-dimensional
aerodynamic pressure of the sandwich adaptive beam is
investigated.

2. Mathematical modeling

Consider a three layer sandwich beam with magneto-
rheological fluid core of length L, width b and thickness h which
is subjected to a supersonic flow as shown in Fig. 1. The beam is
composed of an elastic base layer of thickness hb, a constraining
elastic layer of thickness hc and a MR fluid core of thickness hf.

Simplification is an integral part of any mathematical modeling.
Here, some simplifications are considered to make the model of the
problem. Since Young’s modulus of the MR fluid is almost negligi-
ble compared to that of the elastic layers, one can neglect normal
stress in the core. In addition, it is assumed that the fluid layer
thickness is very small compared to its length and no slip occurs
at the interface between the face layers and the MR layer. The
thicknesses of elastic layers are very small compared to the length
of the beam and one can neglect the shear strain in these layers.
Furthermore, all of the layers experience the same transverse
displacement.

With the above-mentioned assumptions, the total displacement
components of the upper and lower elastic layers at a material
point (x, zi) can be expressed as [38]:

ubðx; zb; tÞ ¼ ubðx; tÞ � zb
@w
@x

ðx; tÞ ð1Þ

ucðx; zc; tÞ ¼ ucðx; tÞ � zc
@w
@x

ðx; tÞ ð2Þ

wbðx; zb; tÞ ¼ wcðx; zc; tÞ ¼ wðx; tÞ ð3Þ
where ub and uc are the mid-plane displacements in the x direction,
w denotes the transverse displacement of the layers, zb, zc are the
local transverse coordinates of the two face layers, and t is the time.

Using the linear strain-displacement relations, the strain com-
ponents in the elastic layers can be written as [38]:

�bx ¼
@ub

@x
� zb

@2w
@x2

ð4Þ

�cx ¼
@uc

@x
� zc

@2w
@x2

ð5Þ
ℎ

Constraining layer
MR layer 
Base layer

ℎ

Fig. 1. Geometry of sandwich beam with width b.
In addition, the normal stress components within the base and
constraining layers are obtained from Hook’s law as

rb
x ¼ Eb�bx ¼ Eb

@ub

@x
� zb

@2w
@x2

 !
ð6Þ

rc
x ¼ Ec�cx ¼ Ec

@uc

@x
� zc

@2w
@x2

 !
ð7Þ

Displacement field of the core is expressed as

uf ðx; zf ; tÞ ¼ �zfuðx; tÞ ð8Þ
By using the displacements continuity on the upper and lower

interface of the sandwich beam, one can obtain u as follow:

u ¼ ub � uc

hf
� hb þ hc

2hf

@w
@x

ð9Þ

Thus, the shear strain of the MR core is obtained as

c ¼ cxz ¼
@wf

@x
þ @uf

@zf
¼ @w

@x
�u ¼ D

hf

@w
@x

þ uc � ub

hf
ð10Þ

where D = hf + (hb + hc)/2.
Longitudinal forces in each of the elastic layers which is

denoted by Fc and Fb with their lines of action in the midplanes
of the elastic layers are related to the longitudinal displacements
by

Fc ¼ EcAc
@uc

@x
; Fb ¼ EbAb

@ub

@x
ð11Þ

where Ab and Ac are the cross-section areas of the base and con-
straining layers, respectively and Eb and Ec are the corresponding
Young’s moduli.

Neglecting in-plane inertia of the base and constraining layers,
since the beam is assumed to be free of longitudinal forces, Fb and
Fc must be equal in magnitude and opposite in direction, i.e.,
Fc = �Fb:

EcAc
@uc

@x
¼ �EbAb

@ub

@x
ð12Þ

Integrating the above equation with respect to x, results in

uc ¼ �eub ð13Þ
where e = EbAb/EcAc.

The shear stress-strain properties of magneto-rheological
material strongly depend upon the applied magnetic field [39,40]
and can be divided in two distinguished regions, referred to as
‘pre-yield’ and ‘post-yield’ regions, as shown in Fig. 2.
Fig. 2. Shear stress-shear strain relationship of MR material.
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In the pre-yield region (at strains of order 10�3) the MR fluid
exhibits linear viscoelastic behavior [39], which has been described
by the field dependent complex modulus as

G�ðBÞ ¼ G0ðBÞ þ iG00ðBÞ ¼ G0ðBÞð1þ igðBÞÞ ð14Þ
where the storage modulus G

0
and loss modulus G

00
are proportional

to the averaged energy stored and dissipated over a cycle of defor-
mation per unit volume of the MR material respectively. Moreover,
g represents the material loss factor which is a measure of the ratio
of the energy dissipated from the material per radian to the stored
energy during the steady state sinusoidal excitation.

2.1. Governing equation of motion

General form of the Hamilton’s principle is used to determine
the equation of motion along with the associated edge boundary
conditions of the MR sandwich beam. It can be written as [41]Z t2

t1

dðU � T þWncÞdt ¼ 0 ð15Þ

where d denotes the first variation, T and U are the kinetic and
potential energy of the total system, Wnc is the work done by the
non-conservative forces, and t1 and t2 are the integration time
limits.

The total kinetic energy of the system (T) comprises those asso-
ciated with the transverse motion of the elastic face layers and the
MR layer (T1) and the rotational deformation of the MR core (T2)
expressed as:

T1 ¼ 1
2

Z L

0
ðqbAb þ qf Af þ qcAcÞ @w

@t

� �2

dx ð16Þ

T2 ¼ 1
2

Z L

0
qf If

D
hf

@2w
@x@t

� ð1þ eÞ
hf

@u
@t

" #2
dx ð17Þ

T ¼ T1 þ T2 ð18Þ
where If is the second moment of inertia of the MR layer and qb and
qc are the mass densities of the base and constraining layers respec-
tively. Hereafter, we use u instead of ub in our formulations.

The strain energy of the elastic face layers due to axial deforma-
tions (U1) and the one due to transverse deformations (U2) may be
expressed as

U1 ¼ 1
2

Z L

0
ðEbAb þ EcAce2Þ @u

@x

� �2

dx ð19Þ

U2 ¼ 1
2

Z L

0
ðEcIc þ EbIbÞ @2w

@x2

 !2

dx ð20Þ

where Ib and Ic are the second moments of inertia of the base and
constraining layers respectively. The strain energy of the MR core
can be express as

U3 ¼ 1
2

Z L

0
GAf

D
hf

@w
@x

� ð1þ eÞ
hf

u
� �2

dx ð21Þ

The total strain energy (U) of the sandwich beam can be
obtained by the sum of those due to elastic and MR layers as

U ¼ U1 þ U2 þ U3 ð22Þ
The virtual work done by the non-conservative aerodynamic

pressure loading can be obtained as

dWnc ¼
Z
A
Dp dw dA ð23Þ
where A is the surface area of the upper surface of the beam which
is subjected to the supersonic air flow and dp is the aerodynamic
pressure load which can be described according to the linear first-
order piston theory as follows [1,3]

Dp ¼ �f
@w
@x

� l @w
@t

ð24Þ

where f ¼ q1U2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 � 1
q�

and l ¼ q1U1ðM2
1 � 2Þ=ðM2

1 � 1Þ3=2

are the aerodynamic pressure and damping parameters respec-
tively, wherein U1,M1 and q1 are the free stream velocity,
Mach number and air density. Aerodynamic damping term
always stabilizes the flutter instability [42,43]. Furthermore, the
interest is on the pure effect of MR layer damping on the aeroe-
lastic characteristics of the MR sandwich beam, thus the contri-
bution of the aerodynamic damping in the calculations may be
neglected.

Using Eqs. (19) and (20) along with Eq. (18) the first variation of
the kinetic energy after time integration by parts, yields

Z t2

t1

dT dt ¼
Z t2

t1

dðT1 þ T2Þ dt ¼ �
Z t2

t1

Z L

0
ðb1 €wdwþ b2 €w

0dw0

þ b3€udw
0 þ ðb3 €w

0 þ b4€uÞduÞdx dt ð25Þ
where b1, b2, b3 and b4 are defined as follows

b1 ¼ ðqbAb þ qf Af þ qcAcÞ b2 ¼ qf If
D
hf

� �2

b3 ¼ �qf If
ð1þ eÞD

h2
f

b4 ¼ qf If
1þ e
hf

� �2 ð26Þ

Using Eqs. (19) through (22), the strain energy of the system can
be written asZ t2

t1

dU dt ¼
Z t2

t1

dðU1 þ U2 þ U3Þ dt

¼
Z t2

t1

Z L

0
a1u0du0 þ a2w00dw00ð

þ a3w0 þ a4uÞdw0 þ a4w0 þ a5uð Þduð Þdx dt ð27Þ
where

a1 ¼ EbAb þ EcAce2 a2 ¼ EcIc þ EbIb a3 ¼ GAf
D
hf

� �2

a4 ¼ �GAf
Dð1þ eÞ

h2
f

a5 ¼ GAf
1þ e
hf

� �2 ð28Þ

Aerodynamic pressure loading isZ t2

t1

dWncdt ¼
Z t2

t1

Z L

0
b Dp dw dx dt ¼ �fb

Z t2

t1

Z L

0
w0dw dx dt

ð29Þ
According to extended Hamilton’s principle, by substituting

Eqs. (25), (27) and (29) into Eq. (15), one can obtain the governing
equation of motion asZ L

0
ða2w00dw00 þ ða3w0 þ a4uÞdw0 � fbw0dwþ b1 €wdw

þ b2 €w
0dw0 þ b3€udw

0Þdx ¼ 0 ð30Þ
for transverse vibration andZ L

0
ða1u0du0 þ ða4w0 þ a5uÞduþ ðb3 €w

0 þ b4€uÞduÞdx ¼ 0 ð31Þ

for longitudinal vibration of the MR sandwich beam.



Table 1
Comparison of the first five natural frequencies of the MR sandwich beam.

Mode Present Yeh and Shih [45]

x(Hz) g x(Hz) g

1 19.16 0.00553 19.16 0.00585
2 52.35 0.00531 52.35 0.00561
3 98.38 0.00385 98.38 0.00407
4 159.75 0.00272 159.75 0.00288
5 237.44 0.00197 237.43 0.00208
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2.2. Solution procedure

Assumed mode method is used to solve the coupled Eqs. (30)
and (31) using the following relationships for transverse and longi-
tudinal displacements

wðx; tÞ ¼
XNw

i¼1

niðxÞgiðtÞ ð32Þ

uðx; tÞ ¼
XNu

i¼1

uiðxÞdiðtÞ ð33Þ

where Nw and Nu are number of modes used in the transverse and
longitudinal directions respectively. Also, ni(x) and ui(x) are the
transverse and longitudinal principle vibrationmode shapes respec-
tively, and gi(t) and di(t) are the generalized coordinates of the
structural system. By substituting ni(x) and ui(x) in Eqs. (30) and
(31) as admissible variations of the bending (dw) and extension
(du) of the sandwich beam and after doing some manipulations,
one can obtain

M€qþ Kq ¼ 0 ð34Þ
In the above equation q ¼ ½n1 � � � nNw ; d1 � � � dNu � is the vector of gener-
alized coordinates andM and K are the structural mass and stiffness
matrices, respectively which are defined as

M ¼ M11 M12

M21 M22

� �
; K ¼ K11 K12

K21 K22

� �
ð35Þ

where

M11 ¼ b1

Z L

0
ninj dxþ b2

Z L

0
n0in

0
j dx

M12 ¼ b3

Z L

0
n0iuj dx

M21 ¼ b3

Z L

0
uin

0
j dx

M22 ¼ b4

Z L

0
uiuj dx

K11 ¼ a2

Z L

0
n00i n

00
j dxþ a3

Z L

0
n0in

0
j dx� k

EbIb
L3

Z L

0
n0inj dx

K12 ¼ a4

Z L

0
n0iuj dx

K21 ¼ a4

Z L

0
uin

0
j dx

K22 ¼ a1

Z L

0
u0

iu
0
i dxþ a5

Z L

0
uiuj dx

ð36Þ

Assuming harmonic motion, q ¼ �qexpðidtÞ, where i ¼
ffiffiffiffiffiffiffi
�1

p
and

�q and d are the eigenvectors and eigenvalues of the system, the dis-
cretized form of the equation of motion (Eq. (34)) is transformed
into an eigenvalue problem

ðM�1KÞ�q ¼ d2�q ð37Þ
Consequently, the natural frequency x and modal loss factor g

of the three layer sandwich beam can be obtained as follows:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðd2Þ

q
ð38Þ

g ¼ Imðd2Þ
Reðd2Þ ð39Þ

The non-dimensional aerodynamic pressure, k, is normally used
to obtain the flutter boundary [33,44]. Here, the non-dimensional
aerodynamic pressure can be defined as
k ¼ fb
L3

EbIb
¼ q1U2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 � 1
q bL3

EbIb
ð40Þ

By plotting loss factor for different non-dimensional aerody-
namic pressures one can obtain the instability boundary. The insta-
bility will be reached when the loss factor changes from positive to
negative.

In order to calculate the critical non-dimensional aerodynamic
pressure (kcr), the mode shapes for the longitudinal and transverse
vibration of the pure beam are used [41].

3. Validation of the present method

A computer code is developed to determine the critical non-
dimensional aerodynamic pressure of the MR sandwich beam
using the present formulation. The code is verified using the results
of frequency analysis given by [45] letting f = 0. The dimensions
and material properties of the sandwich beam with MR core are
taken from Yalcintas and Dai [23]. The obtained results using the
present formulation are given in Table 1 beside the results of Yeh
and Shih [45], which used the model of Mead and Markus [17] in
their formulation. From Table 1 it is seen that the natural frequen-
cies and loss factors obtained by the present method are in good
agreement with those of Yeh and Shih, which verifies the validity
of the present methodology.

Table 2 shows a comparison of natural frequencies obtained
from the present formulation and the results of Nayak et al. [46]
for three different boundary conditions which are found to be in
good agreement with the results of Nayak et al. [46]. The geomet-
rical and material properties are same as that of examples 1 to 3 of
Howson and Zare [47].

4. Results and discussion

Many structure and fluid related parameters such as field inten-
sity, thickness of the fluid layer, geometry of the beam, type of the
MR fluid, thicknesses of the elastic face layers, boundary condi-
tions, etc., may influence the aeroelastic behavior of the MR sand-
wich beam. The proposed assumed mode method is used to study
the effect of variations in the constraining and fluid layer thick-
nesses, magnetic field intensity on the properties of the MR sand-
wich beam in terms of critical non-dimensional aerodynamic
pressure for different boundary conditions.

To show the effectiveness of the constraining damping treat-
ment using MR material to suppress flutter instability, consider
an MR sandwich beam with properties specified in Table 3.

In this study the MR fluid, MRF-122EG, is used, which it’s com-
plex shear modulus has been reported by Rajamohan et al. [27] as:
G0ðBÞ ¼ �3:3691B2 þ 4997:5Bþ 0:873� 106 Pa

G00ðBÞ ¼ �0:9B2 þ 812:4Bþ 0:1855� 106 Pa
ð41Þ
where B is the magnetic field intensity in Gauss.



Table 3
Material properties and geometric parameters of the MR sandwich beam.

Parameters Value

Length (L) 35 cm
Width (b) 4 cm
Base layer thickness (hb) 2 mm
Constraining layer thickness (hc) 1 mm
MR layer thickness (hf) 2 mm
Base and Constraining layer Young’s modulus (Eb, Ec) 70 GPa
Base and Constraining layer density (qb, qc) 2710 kg m�3

MR layer density (qf) 3500 kg m�3

Table 2
Comparison of the first five natural frequencies of the MR sandwich beam for different boundary conditions.

Boundary condition Mode number Natural frequency (Hz)

1 2 3 4 5

Clamped–clamped Present analysis 34.630 93.392 178.049 285.389 410.839
Nayak et al. [46] 34.669 93.522 178.472 285.810 412.095
Error (%) �0.11 �0.14 �0.24 �0.15 �0.31

Simply supported Present analysis 57.139 219.585 465.171 768.163 1106.626
Nayak et al. [46] 57.146 223.919 465.932 772.133 1111.1
Error (%) �0.01 �1.97 �0.16 �0.52 �0.40

Clamped-free Present analysis 33.759 199.523 515.399 916.813 1366.679
Nayak et al. [46] 33.754 199.126 513.174 909.954 1355.30
Error (%) 0.01 0.20 0.43 0.75 0.83
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The following non-dimensional parameters are used for para-
metric study:

Hf ¼ hf =hb; Hc ¼ hc=hb ð42Þ
4.1. Aeroelastic analysis

The variation of natural frequencies and loss factors in terms of
non-dimensional aerodynamic pressure for MR sandwich beam
with S-S, C–C and C-F boundary conditions at 500 Gauss are illus-
trated in Figs. 3–5. Conventional p-method is used to predict the
onset of instability in terms of critical value of non-dimensional
aerodynamic pressure (kcr). Maximum number of eight modes
(Nu = Nw = 8) guaranties the convergence of kcr for all of the
selected geometric parameters used in this study.

Each figure illustrates the variation of the first five modal
frequencies and damping ratios with respect to k. Aeroelastic
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Fig. 3. Natural frequencies and loss factors of simply supported MR sandwich
instability occurs when, at a specific point, one of the modal loss
factors drops below zero. When corresponding modal frequency
at the point of instability becomes zero, divergence type instability
occurs, while at flutter type instability, corresponding modal fre-
quency is not zero. At flutter instability, above the critical value,
two adjacent aeroelastic modes get close to each other but do
not merge due to damping of MR layer.

As it can be seen from Figs. 3–5, flutter type instability occurs
for S-S and C–C boundary conditions between the first and second
modes, while for C-F boundary condition, divergence type instabil-
ity happens. This has already has been reported by Bisplinghoff and
Ashley [48] for clamped-free bare beams in supersonic flow. For all
cases considered, the modal damping associated with the first
mode crosses the zero axes which indicate that instability bound-
ary has been reached.

4.2. Effect of magnetic field intensity

Fig. 6. indicates variation in kcr of the MR sandwich beam with
S-S, C-F and C–C boundary conditions for different field intensities
and different values of constraining layer thickness ratios (Hc). It
can be seen that for a specific configuration (say Hc = 0.5), the MR
sandwich beam with C–C end condition has highest kcr, while for
C-F condition it has the lowest kcr. This is attributed to the higher
stiffness of the beam in the C–C end condition. This condition
requires more aerodynamic energy to bring the first and second
modes of the beam close to each other. The results show an
increase in the kcr with increase in the magnetic field intensity
for all boundary conditions at higher values of Hc (0.5 and 1). A
similar trend is reported in [33,34] for electrorheological sandwich
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Fig. 4. Natural frequencies and loss factors of clamped–clamped MR sandwich beam varying with non-dimensional aerodynamic pressure at 500 Gauss.

λ

N
at
ur
al
fre
qu
en
ci
es
(H
z)

200 400 600 8000

50

100

150

Mode 1

(2)

(3)

λ

Lo
ss
fa
ct
or

0 200 400 600 800
-0.6

-0.4

-0.2

0

0.2

0.4

0.6 Mode 5
Mode 4
Mode 3
Mode 2
Mode 1

Fig. 5. Natural frequencies and loss factors of clamped-free MR sandwich beam varying with non-dimensional aerodynamic pressure at 500 Gauss.
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beam and plate. This can be attributed to the fact that with increas-
ing magnetic field intensity, simultaneous upward shift in the first
and second mode frequencies occur at high values of Hc. That is to
say, modal loss factor of the first mode decreases with increasing
magnetic field intensity and has decreasing effect on kcr. However,
this reduction is not so considerable at higher values of thickness
ratio. At low values of Hc (0.01 and 0.1), specifically for S-S end
condition, there is no obvious upward shift in the first two natural
frequencies of the beam. On the other hand, decreasing behavior of
the first mode loss factor, shifts kcr to lower values. To the authors
knowledge, this type of behavior has not been reported in the
literature.

The effect of magnetic field intensity on kcr for all three types of
boundary conditions for different values of MR layer thickness
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ratios (Hf) is illustrated in Fig. 7. For C-F boundary conditions at low
values of Hf (0.01 and 0.1) there is a non-significant increase in kcr
and in S-S end condition, a slight decrement is observed. For higher
values of Hf (0.5, 1 and 2) the results generally show an increase in
kcr for all three types of boundary conditions.

Furthermore, for C-F and S-S boundary conditions there is an
increment in kcr with increase in the thickness of the MR layer from
Hf = 0.01 to Hf = 2 but for C–C end condition at low values of Hf

(0.01 and 0.1) the highest values of kcr happen. This observation
may be related to the role of damping in destabilization of a
non-conservative system. According to the works by Dowell, Lot-
tati and Herrmann and Jong [49–51], for lightly damped non-
conservative systems adding small structural damping can signifi-
cantly reduce the instability boundary of the system. The lower the
damping, the more reduction in instability boundary. To investi-
gate the effect of damping on the instability boundary of MR sand-
wich beam, the loss modulus of magneto-rheological fluid is set
equal to zero. Table 4 shows variation of kcr with Hf with and with-
out loss modulus of MR fluid for S-S and C–C boundary conditions
corresponding to a fixed field intensity of 0 Gauss. x1, g1,x2, g2
indicate first and second mode natural frequencies and loss factors
Table 4
Effect of loss modulus of MR fluid on instability boundary.

Boundary condition Hf x1 x2

S-S Damped 0.01 55.22 206.85
0.1 48.39 157.33
0.5 39.05 124.51
1 34.92 109.24
2 31.09 92.95

Undamped 0.01 55.17 206.33
0.1 48.24 157.10
0.5 38.98 124.4
1 34.88 109.23
2 31.07 92.94

C–C Damped 0.01 116.22 296.20
0.1 88.52 222.60
0.5 70.27 182.34
1 61.65 159.86
2 52.41 134.24
4 43.67 108.96

Undamped 0.01 115.92 295.37
0.1 88.40 222.47
0.5 70.25 182.32
1 61.64 159.85
2 52.40 134.23
4 43.66 108.96
of the beam regardless of aerodynamic pressure. x1f,x2f are the
frequencies of the first and second mode at fluttering point.

For S-S case, it is observed that the most reduction in instability
boundary occurs for lowest value of Hf which has the lowest value
of first mode loss factor. With increasing the thickness of the MR
layer, the value of the first mode loss factor increases, thus the
value of flutter boundary increases. In C–C case, reduction of flutter
boundary occurs due to presence of damping, however, lowest
value of flutter boundary does not happen at lowest value of Hf.
This may be linked to the large values of critical aerodynamic pres-
sure in undamped condition, for low values of Hf (0.01 and 0.1). In
addition, for C–C case higher first mode loss factor in comparison
with S-S case causes less reduction in critical aerodynamic
pressure.

Fig. 8. shows the influence of Hf on the critical aerodynamic
pressure at different values of Hc. The magnetic field applied to
the MR layer is 500 Gauss.

The results show that in S-S and C-F cases, kcr increases with
increasing the MR layer thickness for all constraining layer thick-
ness values. At lower values of Hc, the similar trend has been
observed for C–C case. However, at higher values of Hc, critical
g1 g2 x1f x2f kcr

0.01059 0.03194 63.22 206.67 237
0.05592 0.06000 66.02 156.88 277
0.08775 0.04688 63.96 122.60 318
0.10084 0.04850 59.01 107.21 338
0.11951 0.05817 52.19 91.27 368
0 0 176.51 176.51 1028
0 0 136.04 136.04 635
0 0 105.74 105.74 506
0 0 92.87 92.87 505
0 0 79.58 79.58 533

0.03316 0.04834 149.01 295.53 787
0.05817 0.04144 128.84 220.40 626
0.04531 0.02602 106.90 179.37 576
0.04685 0.02657 93.95 157.26 578
0.05612 0.03248 79.37 132.28 598
0.07433 0.04538 65.07 107.84 645
0 0 260.05 260.05 1593
0 0 194.57 194.57 958
0 0 157.64 157.64 837
0 0 138.25 138.25 837
0 0 116.62 116.62 868
0 0 95.69 95.69 947
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aerodynamic pressure decreases with increasing Hf to 0.5 and then
increases monotonically.

5. Conclusion

The aeroelastic characteristics of MR sandwich beams exposed
to supersonic airflow are presented. The governing differential
equation of motion was derived by utilizing Hamilton’s principle.
Assumed mode method has been used to solve governing equation
of motion along with p-method for aeroelastic instability analysis.
Various parametric studies were performed to investigate aeroe-
lastic instability boundary of the MR fluid sandwich beam by the
effect of magnetic field intensity, MR layer and constraining layer
thicknesses under three frequently encountered boundary condi-
tions. Different types of aeroelastic instability have been discussed
for different boundary conditions of the beam. The major outcomes
of this study are:

� Flutter type instability occurs for clamped–clamped and
simply-supported boundary condition and divergence type
instability happens for clamped-free boundary condition.

� For all three types of boundary conditions, increasing the mag-
netic field intensity will rise the critical non-dimensional aero-
dynamic pressure for high values of constraining layer
thickness; however there is slight reduction or no significant
change at lower values of constraining layer thicknesses.

� In simply-supported and clamped-free boundary conditions,
the critical aerodynamic pressure increases with increasing
magnetic field intensity for different values of MR layer thick-
nesses. However, clamped–clamped boundary condition has
different behavior in comparison with two other boundary con-
ditions, that is, for lower values of MR layer thicknesses the
highest critical aerodynamic pressure are observed.

� In simply-supported, clamped-free and lower values of con-
straining layer thickness in clamped–clamped boundary condi-
tions, at constant magnetic field intensity, increasing the
thickness of the MR fluid layer leads to rise in critical aerody-
namic pressure for different values of constraining layer thick-
nesses. There is an exception for clamped–clamped boundary
condition at higher values of constraining layer thicknesses
which drops with increasing the thickness of the MR layer to
0.5 and then rises monotonically.
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