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Human energy consumption has gradually increased greenhouse gas concentrations and is considered the main
cause of global warming. Currently, the building sector is a major energy consumer, and its share of energy con-
sumption is increasing because of urbanization. This paper presents a framework for smart grid big data analytics
and components required for an energy-saving decision-support system. The proposed system has a layered ar-
chitecture that includes a smart grid, a data collection layer, an analytics bench, and a web-based portal. A smart
metering infrastructure was installed in a residential building to conduct an experiment for evaluating the effec-
tiveness of the proposed framework. Furthermore, a novel hybrid nature-inspired metaheuristic forecast system
and a dynamic optimization algorithm are designed behind the analytics bench for achieving accurate prediction
and optimization of future energy consumption. Themain contribution of this study is that an innovative frame-
work for the energy-saving decision process is presented; the framework can serve as a basis for the future de-
velopment of a full-scale smart decision support system (SDSS). Through the identification of consumer usage
patterns, the SDSS is expected to enhance energy use efficiency and improve the accuracy of future energy de-
mand estimates. End users can reduce their electricity costs by implementing the optimal operating schedules
for appliances, which are provided by the SDSS.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Human energy consumption has gradually increased greenhouse
gas concentrations in the atmosphere and is considered themain source
of global warming. Because of global warming and the accompanying
climate change, conserving electricity is imperative. End-use energy ef-
ficiency can contributemore than 50% to the total global energy conser-
vation [5,40,53]. Clearly, even a small reduction in the energy
consumption of buildings can have appreciable economic and ecological
impacts for the society [43]. Improving electricity use efficiency can
gradually mitigate the contribution of human energy consumption to
global warming and climate change [15,50,54].

The construction sector is a major energy consumer, accounting for
approximately 40% of the global energy consumption and 30% of CO2

emissions [7,19,35]. Its share is increasing because of urbanization [59,
60]. In the United States, commercial and residential buildings account
for 40% of the nation's total energy consumption, and this figure is
steadily increasing [1,40]. In Europe, buildings constitute 40% of the en-
ergy consumption and 36% of CO2 emissions [36]. Accordingly, improv-
ing the energy efficiency of buildings is necessary for controlling energy
),
costs, reducing environmental impact, and increasing the value and
competitiveness of buildings.

In Taiwan, the total energy consumption has increased steadily over
the past two decades, with an average annual increase of 3.52%. The
electricity consumption has increased annually by 4.52% on average.
Specifically, in 2012, the residential sector formed 10.88% of the total
energy consumption; the energy and industrial sectors consumed
45.25%; the transportation sector accounted for 11.89%; the agricultural,
forestry, and fishery sectors consumed 0.89%; and the services sector
consumed 11.04% [2]. Compared with other sectors, the residential sec-
tor is currently amajor energy consumer. Moreover, the introduction of
the green building certification system in Taiwan has raised public
awareness about energy efficiency. Hence, identifying and optimizing
the electricity use of equipment and appliances in residential buildings
are desirable.

The smart grid system offers a promising solution to the rapid in-
crease in power demand [3,20,24,56]. Smart grids can potentially im-
prove the reliability and quality of electricity generation; reduce peak
demand; reduce transmission congestion costs; increase energy effi-
ciency; increase environmental benefits accruing from increased asset
utilization; improve capability to accommodate renewable energy;
and enhance security, durability, and ease of repair in response tomali-
cious attacks or adverse natural events [25,31]. Because a smart grid in-
volves the use of information and communication technologies for all
aspects of electricity generation, delivery, and consumption, it
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minimizes environmental impact, enhances markets, improves reliabil-
ity and service, reduces costs, and improves efficiency.

A smart meter, which is a key component of a smart grid system, is
an electrical meter that records energy consumption at intervals of an
hour or less and sends the information to a utility center for monitoring
and billing purposes. Smartmeters can provide customerswith detailed
electricity consumption data in real timeor in near real time. Consumers
can use the smart grid system for monitoring and tracking their energy
consumption. In accordance with global trends, Taiwan, which imports
97.49% of its energy needs, has already begun replacing conventional
meters with smart meters [38]. The objective is to improve energy use
efficiency and reduce CO2 emissions.

Recent studies have investigated various aspects of smart grid sys-
tems, such as challenges faced in, concerns related to, advantages of,
and suitability of the use of smart meters for power grids [23]; informa-
tion and communication technologies used in such grids [52]; supervi-
sory control for such grids; and data acquisition in the grids [32].
Researchers in other studies have constructed an energy consumption
management system [18,27,28], an automatic monitoring system [37],
demand response in electricity supply [12,26,41], and a building auto-
mation system [6,18,43]. These studies have mainly focused on techni-
cal aspects, such as developing smart grid platforms and facilities for
improving the performance and reliability of energy systems.

A literature review shows that many researchers have investigated
energy management systems from a macro viewpoint of utilities and
power companies, and few studies have presented dynamic operating
strategies for home appliances for effectively saving energy costs.
Therefore, this paper proposes a real-time smart grid data analytics
framework for effective energy-saving systems at the appliance level
for residential buildings; the framework is presented from the end-
user perspective. The framework has a layered architecture and in-
cludes a smart grid, a data collection layer, an analytics bench, and a
web-based portal.

Themain contribution of this study is the development of an innova-
tive framework for energy-saving decision processes. The proposed
framework is expected to serve as a basis for the future development
of a full-scale smart decision support system (SDSS). The SDSS inte-
grates data analytics and dynamic multi-objective optimization models
to generate energy consumption patterns and alternative energy-saving
solutions at an appliance level. The SDSS is expected to identify consum-
er usage patterns, accurately estimate future energy demand, and im-
prove the efficiency of energy use by end users. In particular, end
users can reduce their electricity costs by using optimal operation
schedules for appliances, automatically provided by the SDSS.

The rest of this paper is organized as follows. Section 2 reviews the rel-
evant literature on energy management systems. Section 3 presents the
residential building considered in the experiment and the design of a
smart grid big data analytics framework with three main layers. Finally,
Section 4 concludes with remarks and recommends future works.

2. Literature review

Recently developed energy consumption management systems have
enabled end users to effectively use electricity [28,30,60]. For instance,
Zhou et al. investigated a real-time energy control approach for a home
energy management system in the United Kingdom [60]. A demand re-
sponse mechanism was proposed to enable households to avail of de-
mand response services. Half-hour-ahead rolling optimization and a
real-time control strategywere combined to achieve household economic
benefits and the capability to copewith complex operating environments.
Simulation test results indicated that the proposed control approach
could optimize the schedule for home appliances and battery charging/
discharging behavior, even if the forecast data were inaccurate.

Aghemo et al. proposed a building automation and a control system
that canmanage the lighting plants and air-conditioning system in build-
ings to increase user comfort and reduce operation and maintenance
costs [6]. Arghira et al. proposed a stochasticmethod to predict the energy
consumption for the next 24 h [9]. Basic predictors that have been pre-
sented and tested in the literature include “will always consume,” “will
never consume,” and autoregressive moving average parameters.

Chen et al. presented a smart appliance management system that
can recognize electric appliances in home networks by measuring the
energy consumption of the appliances through a current sensing device
[16]. This system can search the corresponding cluster data and elimi-
nate noise by applying the current clustering algorithm thereby achiev-
ing accurate recognition of electric appliances and error detection.
Radulovic et al. presented guidelines for linked data generation and
publication, togetherwith one complete example in thedomain of ener-
gy consumption in buildings [45]. Their findings can facilitate re-
searchers and practitioners in exploiting linked data technologies.

Bapat et al. developed a Yupik system that enables users to respond
to real-time changes in electricity prices [10]. The Yupik system com-
bines sensing, analytics, and integer linear programming to generate ap-
pliance usage schedules, whichmay be used by households tominimize
energy costs and potential lifestyle disruptions. Similarly, Lima and
Navas integrated automated remote metering and submetering of elec-
tricity into a structured knowledge tool [28]. This integration environ-
ment received electricity meter measurements.

Lach et al. proposed an automatic monitoring system for reducing
the energy consumption of a typical home; the system involves using
Wi-Fi-technology-enabled smart switches [37]. Multiple sensors are
used for the automatic monitoring and control of the environment ac-
cording to the user preference, which was ascertained from the user
profile. Reinisch et al. proposed a Think Home system that entails
using multi-agent techniques to reduce energy consumption [47]. The
Think Home system contains a large knowledge base, which is used to
achieve energy efficiency and user comfort.

Lee et al. proposed a green construction hoist that applies an energy
regeneration system for reducing its operating energy requirements
[39]. The energy regeneration system was customized to improve its
energy-saving efficiency. Zeng et al. investigated the application of sev-
eral energymanagement strategies to hybrid electricwheel loaders. The
strategies included an engine optimal control strategy, a minimum
motor power control strategy, a motor optimal control strategy, and
an instantaneous optimal control strategy [57]. Ramos et al. proposed
a data-mining-based methodology to identify typical load profiles of
medium voltage consumers and to develop a rule set for the automatic
classification of new consumers [46].

Regarding time series (TS) energy data prediction, Chou and Telaga
proposed a novel approach to using large data sets for identifying anom-
alous power consumption in building office spaces [17]. The two stages
of the anomaly detection approach were consumption prediction and
anomaly detection. Daily real-time consumption was predicted using
a hybrid neural net autoregressive integrated moving average model.
Anomalies were then identified by applying the two-sigma rule for
comparing actual and predicted consumption. The research contributed
to the formalization of a methodology for real-time detection of anom-
alous patterns in large data sets. The prediction stage facilitates building
managers in planning their future energy consumption, and the anom-
aly detection stage enables them to identify unusual consumption of
electricity by tenants.

To date, most studies have focused on establishing a system for
predicting the baseline of future electricity consumption through stochas-
tic methods and regression analysis, and few studies have proposed dy-
namic operating strategies, which enable effective energy use and cost
saving, for home appliances. Therefore, this paper describes a procedure
and the components required for an energy-saving decision support
system.

The smart metering infrastructure system collects real-time data for
home energy use. Bluetooth is used in home area networks for wireless
communication. Real-time data are dynamically analyzed using an ad-
vanced artificial intelligence and a multi-objective optimization
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algorithm, and a list of energy-saving alternatives is provided. Finally,
web-based technology is used to enable users to visualize the real-time
data.

3. Framework design for smart grid data analytics

In this study, to provide efficient information to end users, a frame-
work for a smart grid big data analytics system was developed. The
framework can efficiently retrieve, continuously analyze real-time elec-
tricity consumption data, identify power consumption patterns, predict
future energy consumption, and provide optimal operation schedules
for appliances. The framework was verified by installing a smart grid
metering infrastructure in a residential building.

The metering system was installed in a typical three-story building
in Xindian District, New Taipei City, Taiwan. Fig. 1 shows an axonomet-
ric view of the experimental building, with each floor height measuring
3 m. The residential building was occupied by a family of five (three
children and their parents). Fig. 2 illustrates the building layout, which
had a total area of 350 m2. Table 1 shows the appliances and electricity
equipment used in each floor of the building. Their positions are
mapped to the correspondingfloors in Fig. 2 by using the assigned num-
ber of the appliances and equipment in the “location” column of Table 1.

The first floor mainly consisted of an office area, where the owner
ran his business, and a test area, where the owner conducted experi-
ments for his business. The second floor mainly comprised a kitchen
area, a dining area, a reading area, and a living area. The third floor
mainly consisted of amaster bedroom, bedroom for the owner's daugh-
ters, bedroom for guests, and a study room.

The layered architecture of the proposed smart grid big data analyt-
ics framework for improving energy savings in residential buildings in-
cludes a smart grid and data collection layer or a data layer, an analytics
bench, and a web-based portal.

3.1. Data layer

The data layer is a database management system containing real-
time electricity data, appliance information, unit price of electricity,
Power metering 
facilities of the 3rd

floor

The 3rd floor
(h = 3 m)

The 2nd floor
(h = 3 m)

The 1st floor
(h = 3 m)

Fig. 1. An axonometric view o
and data obtained from an analysis (the data include future electricity
prediction and electricity-saving alternative data). Additionally, electri-
cal parameters such as voltage, current, power, frequency, and power
factor are retrieved from a database management system. Electricity
data are retrieved from smart meters and transferred to a dedicated
server through the communication network. The smart meter data are
streamed at 1-min intervals, producing 1440 data points daily for each
smart meter.

The smart grid data metering infrastructure was installed in the ex-
perimental building. It can be depicted schematically according to the
physical location and function of the different segments: (a) the resi-
dential metering and submetering infrastructure, (b) the communica-
tion network, and (c) the data management system (Fig. 3).

(a) Metering and submetering infrastructure

The metering and submetering infrastructure comprised smart me-
ters and submeters with bidirectional communication resources for
collecting, transferring, and controlling information. The submetering
process involves installing additionalmetering resources in each electri-
cal appliance or equipment. The collected data are sent through the
communication network to the database management system and
then fed to the analytics bench for further analysis. Fig. 4 illustrates
the physical configuration of the metering system in the second and
third floors.

The metering infrastructure has the following elements:

o Three-phase smart meters and single-phase submeters

The specifications of the three-phase smart meters are as follows:
(1) voltage rating: AC 0–380 V; (2) power consumption: b1 V A; (3) im-
pedance: N230 kΩ; (4) accuracy: precision level less than 0.5; (5) current
rating: 60 A; (6) frequency: 40–60 Hz; (7) communication: two-way RS-
485, MODBUS-RTU protocol; (8) working power range: AC 80–260 V/DC
5 V; (9) working environment:−20 to 55 °C; (10) storage environment:
−30 to 75 °C; (11) dimensions: 116 mm × 94 mm × 58 mm; and (12)
weight: 0.25 kg. Single-phase submeters measure six sets of equipment
North

SouthWest

East

Power metering 
facilities of the 2nd

floor and entire 
house

Power metering 
facilities of the 1st

floor 

f the residential building.
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North
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Fig. 2. Building layout and location of appliances and electricity equipment.

Table 1
Building appliances and electricity equipment.

No. Name of equipment Quality Area Location in Fig. 2

1st floor
1 Fan 2 Office area (1)
2 Computer 2 Office area (2)
3 Desk lamp 2 Office area (3)
4 Wall lighting 1 Office area (4)
5 Cell lighting 1 1 Office area (5)
6 Cell lighting 2 1 Test area (6)
7 Specialized machines ? Test area (7)
8 Dehumidifier 1 Test area (8)
9 Cell lighting 2 Balcony (9)

2nd floor
10 TV set 1 Living area (10)
11 Cell lighting 1 1 Living area (11)
12 Electric fan 1 1 Living area (12)
13 Cell lighting 2 1 Dining area (13)
14 Oven 1 Dining area (14)
15 Microwave 1 Dining area (15)
16 Rice cooker 1 Dining area (16)
17 Hot water machine 1 Dining area (17)
18 Hot water heater 1 Dining area (18)
19 Stereo 1 Dining area (19)
20 Cell lighting 3 1 Kitchen area (20)
21 Refrigerator 1 Kitchen area (21)
22 Small lighting 1 Toilet (22)

3rd floor
23 Cell lighting 4 (23) (24) (25) (26)
24 Wall lighting 4 (27) (28) (29) (30)
25 Computer 1 Studying area (31)
26 Lamp 1 Studying area (32)
27 Air conditioning 1 Bedroom (33)
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energy datawith the same input circuit including voltage, current, power,
frequency, power, and power consumption. The general measurement
module specifications are voltage (80–250 V), current (20 mA to 40 A),
and accuracy (1%).

o Smart Internet Protocol power controller

The functions of the smart Internet Protocol (IP) power controller are
(1) energymanagement, (2) remote control (e.g., supportingweb control
and Transmission Control Protocol (TCP) command control), (3) local
control (e.g., manual switch control for local use), (4) monitoring
(e.g., monitoring real-time status through a web browser and an LED in-
dicator), (5) environment control (e.g., control based on external temper-
ature and humidity sensors), (6) power budget management
(e.g., control of daily/weekly/monthly consumption), (7) alert notification
(e.g., supporting email notification and TCP trigger command in case of
any event), and (8) data logging (e.g., supporting local data storage in
the SD card for querying and downloading).

Fig. 5 shows the configuration of the smart IP power controller. Its
specifications are as follows: (1) CPU: 32-bit ARM-7 (80 MHz);
(2) RAM: 16 MB SDRAM; ROM: 8 MB flash ROM; (3) Ethernet LAN:
10/100 Mbps; Port: RJ-45 connector; (4) Ethernet protocols: Address
Resolution Protocol (ARP), IP, Internet Control Message Protocol
(ICMP), User Datagram Protocol (UDP), TCP, Hypertext Transfer Proto-
col (HTTP), Dynamic Host Configuration Protocol (DHCP), Point-to-
Point Protocol over Ethernet (PPPoE), and File Transfer Protocol (FTP);
(5) input power: 110–240 V AC/15 A/50–60 Hz; (6) outlet ports: two
ports controlled by a dual switch relay (≈240VAC/15 A); (7) power in-
formation: current, voltage, frequency, active power, power factor, en-
ergy, and power consumption; (8) support application programming
interface (API) for the system integrator; (9) maximum current: 15 A;
(10) operating temperature: 0–60 °C; storage temperature:



The experimental building

Metering infrastructure

Single-phase meter loop

Smart IP power controller

Three-phase 
power meter

Bluetooth converter
Sensors of temperature, 

humidity, carbon 
dioxide, and 
illumination 

Database management system Communication network

Web-based 
programmable 

controller

Industrial ethernet 
switch

Router

Wi-Fi signal 
extender

Bluetooth 
converter

Smart grid 
data analytics

Web-based system

Users

Energy usage pattern
Energy saving stratergies

Data flow 

Legend

Information flow 

Action flow by users

Data 
mining

Fig. 3. Smart grid metering infrastructure in the building.

251J.-S. Chou, N.-T. Ngo / Automation in Construction 72 (2016) 247–257
−10–70 °C; (11) dimensions: 35 cm× 11 cm× 4 cm (W×D ×H); and
(12) weight: 1.38 kg.

o Bluetooth converter

Bluetooth is a wireless communications system commonly used to
exchange data over short distances [11,22]. Its main features are low
power consumption, fast data exchange, and widespread availability.
(P3) - Power metering syste

3-1 
phase 
power 
meter

RS-485/
Bluetooth 
converter

Sub smart 
meters

Power switch

(P4) - Power metering syste

Sub smart 
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Power 
switchRS-485/

Bluetooth 
converter

P3

Fig. 4. Configuration of smart grid metering inf
The IEEE standard for Bluetooth is IEEE 802.15.1 [42]. A wireless
Bluetooth network is connected to the smart IP power controller for
data transmission and Internet access.

o Temperature sensors for measuring the indoor and outdoor temper-
atures of the building

o Humidity sensors for measuring the indoor and outdoor humidity
levels of the building
m in the 2nd floor

m in the 3rd floor

P4

rastructure in the second and third floors.
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Fig. 5. Configuration of smart IP power controller.
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o CO2 sensors for measuring indoor CO2 emission
o Illumination sensors formeasuring the indoor and outdoor illumina-

tion intensities of the building

(b) Communication network
Bluetooth converter

2nd floor
Single-phase meter loop
Indoor temperature and 

humidity sensors
Outdoor temperature and 

humidity sensors

CO2 sensors 

3rd floor
Single-phase meter loop
Indoor temperature and 

humidity sensors
Outdoor temperature and 

humidity sensors
CO2 sensors 

Data serverWeb serverUsers

RS-485

Fig. 6. Schema of comm
The communication network, which transfers information collected
by the metering systems to the database management system, includes
a router, industrial Ethernet switch, web-based programmable controller,
Bluetooth converter, andWi-Fi signal extender. Fig. 6 presents the physi-
cal connections among the components of the communication network.
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Table 2
Facilities and equipment used for setting the experiment.

Facilities/Equipment Quality

1. Hardware
Communication system
Wi-Fi internet router 1
Signal extender 6
IP power controller 2
Industrial Ethernet switch 3
Industrial — web based programmable controller 11
RS-485/Bluetooth converter 22
Control box 2
Smart meter system
Three-phase smart meter 1
Single-phase meter loop 2
Environmental sensor system
Environmental CO2 sensor 3
Temperature and humidity sensor 4
Illumination sensor 2
Server system
High performance computer 1
Data server 1
2. Software
MATLAB 1
Web server 1
MySQL 1

Fig. 7.MySQL— database management system for building energy consumption.
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The specifications of the web-based programmable controller are as
follows: (1) CPU: 32-bit ARM-7 Winbond CPU (80 MHz); (2) RAM:
8MB SDRAM; (3) ROM: 4MB flash ROM (2MB for user programming);
(4) operating system: uC-Linux, which provides and API and common
gateway interface for customer programming Ethernet; (5) port type:
RJ-45 connector; (6) speed: 10/100 Mbps (autodetecting); (7) proto-
cols: ARP, IP, ICMP, UDP, TCP, HTTP, DHCP, PPPoE, DDNS, NTP, FTP,
and Telnet; (8) modes: TCP Server/TCP Client/UDP; (9) setup: HTTP
browser setup (Internet Explorer & Netscape), Console; (10) port: RS-
232/422/485 × 1 port (3000 V DC photocoupler isolation protection);
(11) speed: 300 bps to 230.4 Kbps; (12) power: DC 9–30 V,
2000 mA, and 500 mA at 12 V; (13) operating temperature: 0–70 °C;
(14) storage temperature: −10 to 80 °C; (15) dimensions:
150 mm × 110 mm × 20 mm (W × D × H); and (16) weight: 170 g.

(c) Data management infrastructure

The data management infrastructure includes a data server and
desktops. TheMySQL system stores all the data from the smart grid sys-
tem installed in the experimental building. Information on electricity
consumption is retrieved from smart meters and transferred to a dedi-
cated server through the communication network. The data stream
from smart meters arrives at 1-min intervals, producing 1440 data
points daily for each smart meter. Fig. 7 illustrates a sample of data
stored in MySQL.

To provide readers with detailed technical and scientific informa-
tion, Table 2 lists thehardware and software used for performing the ex-
periment in the residential building. The hardware comprised the
communication system, smartmeter system, environmental sensor sys-
tem, and server system, and the software programs used for processing
data were MATLAB, the web server (e.g., XAMPP controller), and
MySQL.
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3.2. Analytics bench

The analytics layer constructs computational models by integrating
data analytics and dynamic multi-objective optimization modules for
continuously analyzing real-time electricity consumption data at the
appliance level received from the smart meters and submeters. It then
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3.2.1. Data mining techniques and time series analysis for identifying ener-
gy use pattern

The data analysis scheme employed involves using DM techniques
and TS analysis for identifying energy use patterns at appliance level.
The scheme helps users understand and monitor their appliances so
that they can take appropriate steps to reduce their electricity costs.
TS analysis comprises methods for analyzing TS data for extracting
meaningful patterns. The TS forecasting model predicts values on the
basis of previously observed values. The various model-fitting methods
include autoregressive integrated moving average (ARIMA) and neural
network autoregressive methods.

The energy consumption data are the TS data for both linear and
nonlinear components. Therefore, hybrid linear and nonlinear models
effectively capture energy consumption patterns. Artificial neural net-
works (ANNs) and support vector regression (SVR), for instance, are
widely used nonlinear models that can handle nonlinear components,
whereas ARIMA or seasonal autoregressive integrated moving average
(SARIMA) method is usually used to fit linear components in the linear
and nonlinear models.

Models integrating ARIMA and ANNs have been extensively used by
researchers [29,33,34,48,49,58]. Khashei and Bijair proposed a novel hy-
bridization of ANN and ARIMAmodels for TS forecasting. The advantage
of the ARIMAmodel in linearmodeling is its effectiveness in identifying
and magnifying the existing linear structure in data. The ANN model is
used to capture the nonlinear part, which comprises the residuals
from the first stage of ARIMA modeling [34]. However, sufficient data
are required to construct an effective hybrid model. Other problems
with ANN models are their numerous parameters, uncertain solutions,
and potential to overfit.

SVR was proposed by Vapnik [51] to avoid the drawbacks of ANNs.
SVR is a nonlinear alternative to ANNs. Researchers have effectively
used SVR to solve numerous regression problems [8,13,44]. The hybrid-
ization of ARIMA and SVR has been effectively applied to TS forecasting,
such as stock markets [21,44] and electricity prices [14].

However, the main problem with SVR is that setting the
hyperparameters requires an experienced practitioner. Inappropriately
chosen kernel functions or hyperparameter settings may lead to ex-
tremely poor performance. Therefore, a novel hybrid model combining
a TSmodel such as ARIMA and nature-inspiredmetaheuristic optimized
model such as SVR is proposed for forecasting the energy consumption
of residential buildings. The fine-tuned machine learning model
(e.g., SVR or least squares SVR) is used to address nonlinearity, and
the TSmodel (e.g., ARIMAor SARIMA) is used to address the nonstation-
ary linear component.

Fig. 8 shows the process involved in constructing and evaluating the
proposed novel metaheuristic TS forecasting system. The first stage of
the TS system, such as ARIMA, involvesmodeling the linear component.
At the second stage, the residuals from the first stage, outdoor temper-
ature, type of day (i.e., weekday or weekend), and hour of day (i.e., 0,
Table 3
Electricity pricing methods in Taiwan (Unit: New Taiwan Dollar).

Classification

Non time-of-use rate Non-commercial building

≤120 kWh per month
121–330 kWh per month
331–500 kWh per month
501–700 kWh per month
701–1000 kWh per month
N1000 kWh per month

Time-of-use rate Monday to Friday Peak period 0

Off-peak period
0
2

Saturday
Partial-peak period 0

Off-peak period
0
2

Sunday and Off-peak day Off-peak period 0
1…23) are used as inputs for the metaheuristic optimized model. The
forecast accuracy of the proposed system can be improved by
separating the linear and nonlinear components.

Compared with other models in the literature, the proposed hybrid
TS forecasting system has two major advantages. First, the proposed
system can automatically connect to the MySQL database management
system. Consequently, the system can directly read, access, and analyze
the energy consumption data from the MySQL and store analytical re-
sults in the MySQL. This automatic process may reduce the computing
time for the forecasting process.

The second major advantage of the system is its high prediction ac-
curacy. The proposed system integrates the linear TS prediction model
and the nonlinear metaheuristic optimized model. Consequently, the
system can accurately capture energy consumption patterns, and its
prediction performance is higher compared with the single TS models
reported in the literature. In addition, the nature-inspiredmetaheuristic
optimization algorithm is integrated into the system to automatically
fine-tune the hyperparameters of the machine learning model, thereby
improving the prediction accuracy of the system.

3.2.2. Dynamic multi-objective optimization algorithm for allocating ener-
gy use

The dynamic multi-objective optimization algorithm is used to opti-
mize appliance operating schedules. Users can compare alternatives to
determine when appliances should be turned on or off. Each solution
is an alternative (nondominant) energy-saving strategy.

An objective of this phase was to simultaneously optimize the total
energy consumption, appliance-level electricity usage and electricity
cost. The first constraint is the electricity pricing policy, which is catego-
rized by season, type of day (weekday, weekendor holiday), and timeof
day (peak and off-peak time). Table 3 shows the time and cost break-
down for each rate [4]. The second constraint is the available/desired
operating time for the appliances and the status of the occupants of
the residential building. Fig. 9 illustrates the dynamic multi-objective
optimization module used for optimizing energy use and electricity
cost.

Swarm intelligence (SI) and bio-inspired computation have
attracted considerable attention. In the fields of optimization, computa-
tional intelligence, and computer science, bio-inspired algorithms, par-
ticularly SI-based algorithms, are commonly used [55]. Examples of SI-
based algorithms are the bee algorithm (BA), particle swarm optimiza-
tion (PSO), cuckoo search, andfirefly algorithm (FA). Optimization algo-
rithms used for solving real-world problems include genetic algorithms,
PSO, the FA, and the BA.

3.3. Web-based portal

The web-based portal is the interface layer that enables a user to in-
teract with the energy-saving decision support system. Fig. 10 shows
Summer (Jun. 1~Sept. 30) Non-summer
(All other days)

Per kWh

1.81 1.81
2.64 2.33
3.90 3.20
5.09 4.18
5.94 4.85
6.71 5.28

7:30~22:30 Per kWh 3.62 3.56
0:00~07:30
2:30~24:00

1.65 1.58

7:30~22:30 2.58 2.50
0:00~07:30
2:30~24:00

1.65 1.58

0:00~24:00
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Optimal electricity costs

An example:

Fig. 9. Dynamic multi-objective optimization model.
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the expected interface of the SDSS. The system supports consumer
needs by providing (1) real-time electricity consumption; (2) monthly
consumption records; (3) monthly comparisons; (4) maximum,
average, and minimum consumption; (5) consumption forecasts for
the current month and the resulting expenditure; (6) alternative oper-
ation schedules for home appliances with optimal electricity costs;
and (7) the electricity cost saved by using alternative operation
schedules.
Welcome to web-based  energy usage smart decision support system. 
Enter your verification credential to obtain access to monitor, track, 
and effectively use energy consumption of appliances in your home. 

User types the
password in 

Chec

New page
appliances, ou
and energy sa

Select ap
and ou

Show s
outputs (gra

pd

WEB-BASED ENERGY USAGE SMART DECISION SUPPORT SYSTEM
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Fig. 10. Web-based SDSS
4. Conclusion

This paper presents a framework for an energy-saving decision-
support system. The metering infrastructure was installed in a residen-
tial building for performing experimental simulations. The layered ar-
chitecture of the proposed framework includes a smart grid big data
collection layer, an analytics bench, and a web-based portal. In particu-
lar, a novel hybrid nature-inspired metaheuristic forecast system and a
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dynamic optimization algorithmare designed behind the analytics layer
to enable accurate prediction and optimization of energy consumption.

Themain contribution of this work is the development of an innova-
tive framework that can serve as the basis of a full-scale SDSS,which can
be used for determining an appropriate energy-saving strategy. The
SDSS can identify and allocate energy use through machine learning
and constrained optimization. Specifically, it integrates data analytics
and dynamic multi-objective optimization modules for generating en-
ergy consumption patterns and alternative energy-saving solutions at
home appliance level. The SDSS can help improve the energy efficiency
of end users. Notably, end users can reduce electricity costs by using the
system to automate the operating schedules of appliances, lighting sys-
tems, heating, ventilation, and air conditioning.
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