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Localization and tracking of resources on construction jobsites are an emerging area where the location of
materials, labor, and equipment is used to estimate productivity, measure project's progress and/or enhance
jobsite safety. GPS has been widely used for outdoor tracking of construction operations. However, GPS is not
suitable for indoor applications due to the lack of signal coverage; particularly inside tunnels or buildings. Several
indoor localization research studies had been attempted, however such developments rely heavily on extensive
external communication network infrastructures. These developments also are susceptible to electromagnetic
interference innoisy construction jobsites. This paper presents indoor localization systemusing amicrocontroller
equipped with an inertial measurement unit (IMU). The IMU contains a cluster of sensors: accelerometer,
gyroscope and magnetometer. The microcontroller uses a direct cosine matrix algorithm to fuse sensors data
and calculate non-gravitational acceleration using nine-degrees-of-freedommotion equations. Current position
is calculated based on measured acceleration and heading, while accounting for growing error in speed estima-
tion utilizing jerk integration algorithm. Experimental results are presented to illustrate the relative effectiveness
of the developed system, which is able to operate independently of any external aids and visibility conditions.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The fact that indoor localization research is to date a very active
research area indicates that there are still many challenges left to
resolve. The challenges depend on the required accuracy and reliability
dictated by the application. Recent advances in sensing technologies
have enabled the deployment of a wide range of technologies for
identification, location sensing, and tracking of resources. Consequently
many researchworks had been developed for asset tracking, earthmov-
ing operations, surveying, safety hazards predicting, and context aware
construction [1–10].

Over thepast fewyears, several researchers have experimentedwith
indoor positioning technologies, which can be grouped in three major
categories: (1) wave propagation; (2) image based; and (3) inertial
navigation. Wave propagation technologies are based on the physical
propagation properties of radio, ultrasonic or sound waves over
distances [11–16]. Ultra wideband, infrared, WLAN and RFID are exam-
ples for radio frequency (RF) localization technology. However, even if
they suffer from several limitations, infrared technology provides
room-level accuracy and performs poorly in the presence of sunlight
[16]. WLAN technology localization accuracy had been investigated by
m), moselhi@encs.concordia.ca
different researchers, and found to be varying from 4 to 9 m depending
on localization algorithm utilized and number of WLAN access points
[17–19]. Varying accuracies of RFID localization systems had been
reported by researchers, from 5 to 9m depending on the tags' configura-
tion and the density of tag deployment [20–22]. Ultra wideband-based
systemshave a very high accuracy of approximately 20 cm [23], however
the cost of commercially available ultra wideband localization systems is
very high. Ultrasound technology is based on sound wave propagation.
The reported accuracy of an ultrasound system is 9 cm [23], however,
it requires line of sight for deployment of transmitters, and the cost is
comparable to ultra wideband transmitters [16]. Narrow Bandwidth
Phase Analysis is an emerging radio frequency based technology for in-
door localization, which is based on a high-resolution spectral analyzing
method tomeasure the phase differences of a set of 2.4 GHz frequencies,
with an average localization accuracy of 1.26 m [24].

Image-based localization technology involves image matching and
computer vision techniques. Computer vision techniques have been
categorized as (1) global methods such as edge detection and feature
recognition, and (2) local methods based on landmark detection using
visual tags or image matching [25]. However, these methods yield
coarse accuracy (room-level) and are susceptible to occlusions and
changes in the environment.

Inertial navigation localization technology utilizes an accelerometer
and a gyroscope for sensing and detecting motion. The accelerometer
measures acceleration in three dimensional spaces. The displacement
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Fig. 1. Developed hardware prototype.
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is calculated by double integration of the acceleration. The gyroscope
combined with the accelerometer is used to calculate the heading.
This principle is called dead reckoning technique [26]. The dead reckon-
ing is based on fusing the acceleration, and heading direction during a
time step to determine how far and in what direction the user has
moved from last known position. Unlike WLAN and RFID, motion sens-
ing technology is independent from any infrastructure [27]. However,
accelerometers are susceptible to acceleration caused by random
movements, which might not necessarily be human motion, and mag-
netometers are susceptible to magnetic fields generated by electrical
equipment and electronics [27]. Overall, motion sensing does not
provide high location accuracies, but the accuracy can be improved by
smart algorithms, which are able to correct drift errors [28].

Severalmethods recently developed to compensate the inherited er-
rors in inertial navigation system by integrating different technologies
and algorithms. A fusion of IMU and RGB-D camera based visual
gyroscope is utilized to avoid the drift errors in common gyroscope sen-
sors [29]. Twice position-fix reset (TPR) method is introduced recently
to improve the accuracy of a dual-axis rotational INS for long term nav-
igation applications [30]. The TPRmethod is designed to compensate for
the stochastic errors by estimating the azimuth error and the position
error with two observations.

Several researchers attempt to use inertial navigation in construc-
tion, Joshua [31] applied accelerometers to classify workers' masonry
activities in order to investigate workers' productivity. Taneja [32] in-
vestigated inertial measurement unit (IMU) sensors for location-
tracking in a building site as compared to other sensors that were
used to establish local area networks (WLAN) and radio frequency
identification (RFID).

Although significant research attempts have been made in develop-
ing several indoor localization systems using various technologies, the
performance of these systems is still expensive and not robust enough
for usage in dense and noisy indoor environments such as construction
jobsites. Further research work is needed to develop robust, cost-effec-
tive and accurate indoor localization solutions for supporting rugged
construction applications, such as automated progress reporting and
jobsite safety.

This paper presents a newly developed extension to the inertial nav-
igation technique for indoor localization system using amicrocontroller
equipped with an inertial measurement unit (IMU). This extension is
intended to reduce accumulated errors in measured acceleration and
heading utilizing a jerk integration algorithm.

2. Developed method

The developed method encompassed hardware prototypes and
software algorithms. The hardware development consists of a micro-
controller equipped with an inertial measurement unit (IMU) and
barometric pressure sensor as shown in Fig. 1.

The IMU incorporates three sensors—an ITG-3200 (MEMS triple-axis
gyro), ADXL345 (triple-axis accelerometer), andHMC5883L (triple-axis
magnetometer), which give 9 degrees of inertial measurement. The
barometric pressure sensor provides the tenth degree of freedom for
the system.

The outputs of all sensors are processed by an on-board ATmega328
processor and output over a serial interface. This hardware configura-
tion provides 10 degrees of freedom to calculate the current position
in three dimensional spaces as shown in Fig. 2.

The software development consists of three modules, namely: iner-
tial measurement module, altitude measurement module and localiza-
tion module as shown in Fig. 3. The inertial measurement module
processes and fuses inertial sensors using a Direction Cosine Matrix
(DCM) algorithm. This algorithm accounts for gyro drift correction
using accelerometer (gravity) vector and themagnetometer (compass)
vector, and compensates for tilt on X and Y magnetic components and
provide correction for yaw angle magnetic heading. The altitude
measurement module calculates the altitude based on the measured
barometric pressure taking into account current weather condition
(humidity, temperature, etc.).

The localization module calculates current position based on accel-
eration, heading and barometric pressure from the data acquisition
module. The linear displacement is calculated using the displacement
calculation algorithm by differentiation of the measured acceleration
to calculate the jerk and then triple-integrates the jerk to calculate ve-
locity and distance. The differentiation allows to correct DC margin er-
rors in accelerometer readings and provides detection for detection of
zero velocity intervals. The position estimation algorithm estimates
current position based on calculated displacements, heading and
altitude using extended Kalman filter. A detailed description of these al-
gorithms is presented in the following sections with their mathematical
background.

2.1. Displacement calculation algorithm.

Traditionally the displacement is calculated by double integration of
acceleration, however the global displacement error will grow by time
due to drift associated with DC bias in the acceleration signal. To mini-
mize these errors, a triple integration approach is presented in this re-
search, where the acceleration is first differentiated to calculate the
rate of change of acceleration (jerk). The jerk also allows for removal
of gravity acceleration components.

Jerk can be defined as the changing rate of acceleration with respect
to time [33], and its international unit is m/s3. According to Newton's
second law of motion, jerk is viewed as the change of force magnitude
for a unitmass in unit time. In recent years, jerk is applied in the tracking
and positioning for Global Positioning System (GPS), the high-speed dy-
namic vehicle tracking, the automatic control of high-speed machines,
and comfort evaluation for high speed trains and elevators [34–37]. It
is obvious that the jerk and the integral of thedisplacementwith respect
to time also have determined an important significance.

The jerk value can be calculated by solving the time derivative of ac-
celeration.

Jerk ¼ d Accelerationð Þ
dt

: ð1Þ

Then the jerk is triple integrated using numerical integration
method to obtain the acceleration, velocity, and displacement. Some
traditional integration methods such as the Newmark method and
Wilson-θ method are commonly used in earthquake engineering for
jerk integration, however these methods assume that the acceleration
is constant or linear variation during the interval of time [37,38],
which will lead to the jerk in the interval, is assumed to be 0 or a



Fig. 2. 10 degrees of freedommeasurement system.
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constant, and this assumption is not in accordance with the real
condition. In order to account for the variable acceleration and produce
fewer errors than the normal integration, the trapeze integration
method is used in this study.

Accelerationt ¼ Jerkt�1 � Jerktð Þ
2

� dt ð2Þ

2.2. Floor estimation

It is well known that atmospheric pressure decreases as altitude in-
creases. Models for typical relationship between atmospheric pressure
and altitude have been developed by many researchers. According to
these models atmospheric pressure drops by about 0.11 hPa for every
1 m increase in height.
Fig. 3. Develope
With the measured pressure P and the pressure at sea level P0 e.g.
1013.25 hPa, the altitude in meters can be calculated with the interna-
tional barometric formula:

Altitude ¼ 44;330� 1� P
P0

� � 1
5:255

 !
ð3Þ

The reference sea level pressure is obtained for weather stations
which report online their air pressure in real time with the height of
the station.

While the process of estimating the altitude from the barometric
pressure sensor seems straight forward, there are other issues that
need to be taken into account. Barometric pressure sensors are normally
calibrated for standard atmosphere conditions such as dry air with 15 °C
d method.
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temperature and 1013.2 hPa pressure. A correction factor must be
considered for different weather conditions.

Also the latency of air pressure can cause a significant error in the
sensor reading, however, in the case of indoor localization such factor
can be neglected. Our testing indicated that there is about 0.42 hPa
change in the air pressure due to a change of one floor, which is signif-
icantly larger than the sensormeasurement noise (0.02 hPa for pressure
sensor BMP180).

2.3. Position estimation algorithm.

The position estimation algorithm is based utilizes Kalman filter,
which was first introduced in 1960 to present a solution for discrete
data linear filtering problem [39]. Since then, extensive research and
application had been proposed, particularly in the areas of robotics
and navigation. The key advantage of the Kalman filter is its simple
computational algorithm, and adaptive recursive nature [40]. Kalman
filter estimation process is based on a feedback loop control system.
Which first estimates the process's state at a point in time and then ob-
tains feedback of measurements. This feedbackmeasurement is used to
adjust themodel parameters for next estimate. Themodel assumes that
the state of a system at a time t evolved from the prior state at time t-1
according to the equation

Xt ¼ AtXt�1 þ Btut�1 þwt ð4Þ

where Xt is the process state vector at time t, At is the state transition
matrix which is applied to the previous state Xt − 1, ut is the control
input vector, Bt is the control–input model which is applied to the con-
trol vector ut, and wt is the process noise which is assumed to be drawn
from a zero mean multivariate normal distribution with covariance Qt.

At time t ameasurement Zt of the true state Xt is calculated according
to

Zt ¼ HtXt þ vt ð5Þ

where Ht is the measurement model for mapping true state space into
measurement space and vt is the measurement noise which is assumed
to be zero mean Gaussian white noise with covariance Rt.

The Kalman filter recursive estimator model as shown in Fig. 4 has
two phases, the prediction phase, which estimates the priori process
state at next observation time, and the correction phase, which incorpo-
rates a new measurement into the a priori estimate to obtain an
improved a posterior estimate.

While the navigation problem at hand represents a non-linear
system, the basic Kalman filter is limited to linear systems. Therefore
Fig. 4. Kalman filter recurs
the extended Kalman filter (EKF) is considered to address this problem.
The EKF linearizes the non-linear system by using a first order Taylor
expansion. The non-linear function f translates the state vector X at
time step k − 1 to the next time step k, while the function h relates
the current state to the measurement Zk:

Xk ¼ f Xk�1;ukð Þ þWk ð6Þ

Zk ¼ h Xkð Þ þ Vk ð7Þ

The random variables Wk and Vk represent the noise of the state
transition and the measurement. They are assumed to be white,
mutually independent and normally distributed with covariance Qk

and Rk respectively.
The prediction stage equations are as follows:

• Predicted state estimate

X̂kjk�1 ¼ f X̂k�1jk�1;uk

� �
ð8Þ

• Predicted covariance estimate

Pkjk�1 ¼ FkPk�1jk�1 F
T
k þ Qk ð9Þ

The update stage equations are as follows:

• Innovation or measurement residual

Ŷk ¼ Zk � h X̂kjk�1

� �
ð10Þ

• Innovation (or residual) covariance

Sk ¼ HkPkjk�1H
T
k þ Rk ð11Þ

• Kalman gain

Kk ¼ Pkjk�1H
T
kS

�1
k ð12Þ

• Updated state estimate

X̂kjk ¼ X̂kjk�1 þ KkŶk ð13Þ

• Updated covariance estimate

Pkjk ¼ I � KkHkð ÞPkjk�1 ð14Þ
ive estimator model.
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where the state transition and observation matrices are defined to be
the following Jacobians:

Fk�1 ¼ ∂ f
∂x

����
X̂k�1jk�1 ;uk

ð15Þ

Hk ¼
∂h
∂x

����
X̂kjk�1

ð16Þ

In the context of the positioning algorithm described in this paper,
the state vector x is a vector containing the position, velocity and
acceleration data.

X ¼ xk yk zk vxk vyk vzk axk ayk azk
� �T ð17Þ

The process is started bymaking an appropriate, optimal estimate of
the state vector at an initial epoch. The coordinates are set at the values
of (0, 0, 0) while the velocities, accelerations and jerk are set at zero.
Thereafter, at each epoch the following processes are repeated:

• Compute an estimate of the (predicted) state vector and its associated
variance matrix from the optimal estimate of the state vector of the
previous epoch.

• From the observation equations by combining the predicted state
vector and the IMU measurements of the velocity and acceleration.
X

Y

Z

Sensor rotation by servomotor
Sensor at rest

Fig. 6. Gyroscope calibration procedure.
• Compute the estimate of the state vector and associated variance
matrix.

3. IMU calibration

In order to improve the performance of the low cost IMU sensor, an
effective method is implemented to calibrate the IMU. The method in-
corporates a multi-position scheme to calculate the scale factor matrix
and the bias vector factors through Gauss–Newton nonlinear optimiza-
tion. The factory calibration parameters are used as an initialization
point for Newton's optimization, and after a few number of iterations,
the algorithm converges to more accurate estimate of the sensor
parameters. The mathematical model for the accelerometer output is
described as:

A ¼ S V−Oð Þ ð18Þ
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Fig. 8.Magnetometer readings before and after compensation.



Table 1
Experiments description.

Trial Description Duration Distance

1 Slow straight line 7 s 5 m
2 Fast straight line 24 s 25 m
3 Running straight line 72 s 120 m
4 Campus walk 294 s 260 m
5 Outdoor campus walk 19 min 2610 m
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where: A is the acceleration, V is the raw sensor measurement, S is the
scale factor matrix and O is the bias vector.

The sensor's measurement limits are obtained by slowly moving it,
in order to ensure that linear acceleration is not produced and all the
measurement are from the earth gravity component. The sensor is
placed in the six positions as shown in Fig. 5, and the readings of the
minimum and maximum output values for the earth gravitation on
each axis are recorded, in order to enable the initialization point for
the optimization.

In static conditions, the modulus of the acceleration is equal to that
of the gravity acceleration g. The sensor is placed in N different random
static orientations and an error ek is calculated:

ek ¼ ax2 þ ay2 þ az2−g2 ð19Þ

The calibration parameters are calculated by minimizing the
accumulated error for N readings an iterative optimization procedure
that guarantees quadratic convergence.

For the gyroscope sensor, the calibration process is quite different,
where the sensor will stay at rest to calculate the bias vector O. The
scale factormatrix S is calculated using a servomotorwith an optical en-
coder for precise rate control. In this approach, the gyroscope is rotated
at preset angular rates while providing output measurements as shown
in Fig. 6.

The magnetometer calibration compensates for hard and soft iron
errors. Hard iron distortions are created by objects that produce a mag-
netic field. Soft iron distortions are considered deflections or alterations
in the existing magnetic field. This type of distortion is commonly
caused bymetals such as nickel and iron. Inmost cases hard iron distor-
tions will have amuch larger contribution to the total uncorrected error
than soft iron. Hard-iron effects are constant regardless of orientation or
position of the sensor. These constant offsets can be calculated, stored
and subtracted from the raw sensor data. Unlike hard-iron distortion,
Fig. 9. Campus walk path.
soft-iron distortion is the result of material that influences, or distorts,
a magnetic field, but does not necessarily generate a magnetic field
itself, and is therefore not additive.

A common way of visualizing and correcting hard and soft iron
distortions is to plot the output of the magnetometer on a 3D graph. By
rotating the sensor in a random way covering all the orientations, it
produces a sphere of data points as shown in Fig. 7.

Themagnetometer calibration procedure performs an ellipsoid fitting
for the data and estimation of the compensation factors,where the output
of themagnetometer is shown in Fig. 8. It is clear that the calibration pro-
cess removed the offset in the magnetometer measurements.
4. Experiments and results

To examine the effectiveness of the developed method, several ex-
periments have been performed for different localization scenarios.
The developed prototype was mounted on using a belt clip on a human
volunteer. The prototype processed the data and sent the personnel
position wirelessly to a database application, which in turn stored the
data with timestamps.

Experiments were performed in indoor laboratory environment at
Concordia University, Construction Management Lab. Another set of
experiments was performed in the corridors of Concordia University
at Sir George Williams Campus. The experiment settings are summa-
rized in Table 1. In these experiments, different paths were used for
distance ranges from 5 m to 260 m. Different walking patterns were
performed ranging from slow, fast to running, in order to check the
consistency of the developed method.

In the campuswalk experiment the path starts and ends at the same
position. The path includes straight linewalking andhad several left and
right turns. Also the path included climbing up and down several flights
of stairs to check the accuracy of altitude measurement using the baro-
metric pressure sensor signal as shown in Fig. 9. Experiments (1–4)
were repeated thirty times to appropriately assess the results, with a
total of 120 data sets collected, and a total experimentation duration
of 396 min. Experiment no. 5 was repeated 4 times.

The effect of the jerk integration on the removal of the velocity bias is
shown in Fig. 10,where the velocity in the x-axis before the jerk integra-
tion shows a drift in the calculated velocity, and such drift is one of the
reasons for the accumulated errors in the calculated position. The jerk
integrator removed the constant bias in the velocity, and hence reduced
the errors in position estimation.

Reducing errors in acceleration calculation through integration of
the jerk, provides an effective way to remove gravity component in
the measured acceleration and orientation errors, which cause huge
drift error on long runs. An error in IMU orientation also could cause
an incorrect projection of the acceleration signals onto global axes,
which in turn causes wrong integration direction of the acceleration.
Fig. 10. Velocity before and after jerk integration.



Fig. 11. Estimated 3D travel path.
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The 3D plot of the estimated walking path of experiment no. 4 is
shown in Fig. 11, where the 2D distance error between the start and
the end was 2.98 m over the 260.79 m total path length. Hence the
distance estimation error is about 1.14% of the total traveled distance.

The average drift error (as a percentage of the total traveled path
length) for all experiments ranged from 0.28% for experiment trial 1
to 1.14% for experiment trial 4 (an average of 30 runs). These errors
are compared with Taneja [32], where an off the shelf IMU localization
system was utilized. Their experimental results showed a range of
drift error from 1.92% to 6.2% for travel paths with length up to 250 m.
It is clear that our developedmethod is able to estimate indoor position
with higher accuracy.

In order to evaluate the developed method in longer duration and
distance experiments, a 2.6 km walk experiment was conducted on the
campus of the University of Waterloo. The ground truth measurements
Fig. 12. Experiment no. 5 (o
were collected using GPS and compared to the results of the developed
method as shown in Fig. 12. In this experiment the two Kalman filters
were utilized to compare the results. The linear Kalman filter (LKF)
estimated the distance with an accumulated error of 11.19%, while the
extended Kalman filter (EKF) estimated the distance with a total
accumulated error of 4.67% of the total traveled distance.
5. Conclusions

Amethod for indoor localization was presented in this paper, which
made use of a microcontroller equipped with IMU and a barometric
pressure sensor for 10 degrees of freedom position estimation in three
dimensional spaces. This method employs jerk integration algorithm
for high accuracy displacement calculation, and reduction of accumulat-
ed drift errors in the measured acceleration and heading signals. The
IMUcontains a cluster of three sensors: 3 axis accelerometer, gyroscope,
and magnetometer. A direct cosine matrix algorithm was utilized to
fuse the data of the sensors' cluster and provide reliable estimates of
non-gravitational acceleration, altitude and heading. The 3D location
was estimated using extended Kalman filter algorithm, to linearize the
non-linear system using a first order Taylor expansion. The developed
method was tested on several indoor and outdoor experiments, where
the results showed an average drift error ranging from 0.28% to 4.67%
of the total traveled distances.

The results presented in this study demonstrate the potential of uti-
lizing IMUs in location estimation and tracking on indoor construction
jobsites. The developedmethod can be used to obtain location informa-
tionwith respect to construction resources (labor, materials, and equip-
ment), which is essential for scalable near-real-time decision-making,
timely tracking of project's status and proactive safety monitoring on
construction projects. The developed method could be used on a wide
range of construction projects ranging from buildings, tunnels, to
other GPS denied areas of all sizes and locations. The developedmethod
can be expanded to encompass radio frequency modules to account for
Received Signal Strength (RSS), which can add more accuracy to the lo-
cation estimation in indoor construction job sites, and in a cost-effective
manner.
utdoor campus walk).
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