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Construction companies can accrue losses due to labor fatalities and injuries. Sincemore than 70% of all accidents
are related to human activities, detecting andmitigating human-related risks hold the key to improving the safe-
ty conditions within the construction industry. Previous research has revealed that the psychological and emo-
tional conditions of workers can contribute to fatalities and injuries. Recent observations in the area of neural
science and psychology suggest that inattentional blindness is onemajor cause of unexpected human related ac-
cidents. Due to the limitation of human mental workload, laborers are vulnerable to unexpected hazards while
focusing on complicated construction tasks. Therefore, the ability to detect the mental conditions of workers
could reduce unexpected injuries. However, there are currently no availablemeasurement approaches or devices
capable of monitoring construction workers' mental conditions. The research proposed in this paper aims to de-
velop a measurement approach to evaluate hazards through neural time–frequency analysis. The experimental
results show that neural signals are valid for mental load assessment of construction workers, especially the
low frequency bands signals. The research also describes the development of a prototype for a wearable electro-
encephalography (EEG) safety helmet that enables the collection of the neural information required as input for
the measurement approach.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Construction is one of themost dangerous industrial sectors in every
country. In Hong Kong, the construction industry has one of the worst
safety records compared to all other industries. In 2013, there were
3332 injuries and 37 fatalities in the construction industry in Hong
Kong, which accounts for 19.68% of fatalities across all industries [29].
Most of these accidents (including injuries and fatalities) were related
to labor activities (75%), including slipping (24.0%), lifting (14.7%), fall-
ing (13.1%), striking against stationary objects (9.3%), operating tools
(2.8%) and other human-related activities (10%) [29]. If safety hazards
are properly detected and reported,workplace safety can be significant-
ly improved [40]. However, the biggest challenge in identifying hazards
and recording accidents is the dynamic environment of construction
jobsites and workers' unpredictable behavior patterns [34]. Many re-
searchers suggest that safety hazards could be identified through a safe-
ty analysis or safety climate analysis [75]. Together with proper safety
programs [3] and prospective safety performance evaluation [71], safety
conditions could be significantly improved. Although safety practices
yi.song@coa.gatech.edu
such as training, inspections, motivation, enforcement, and penalties,
are successfully implemented in construction projects and achieved
some improvements [28], there still are a large number of unexpected
accidents that occur on job sites. However, risks cannot be assessed,
controlled and avoided if managers are not aware of the hazards in
the first place [12]. Since preventing accidents purely through safety
programs is not possible, focusing on identifying and protecting vulner-
able individuals rather than attempting to identify all possible hazard-
ous events for all possible individuals who could be impacted provides
an alternative option to further improve on site safe conditions [6]. In
other words, construction site safety interventions can be improved
by strategically targeting individuals who are more susceptible to
accidents.

A workers' ability to perceive hazards can help him or her to escape
from dangerous situations, which can result in near-miss accidents.
Classic psychological theories suggest that people's decision making
on risk-taking behavior is negatively correlated with their risk percep-
tion [46]. Thus, individuals who are weak in risk perception or tend to
misestimate the risks are vulnerable to safety hazards, which can result
in injuries insteadof near-miss accidents. Therefore, aworker's ability to
perceive risk is an excellent indication of aworker's vulnerability. If such
an ability can be quantified andmonitored, more vulnerable individuals
could be identified and better protected.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2015.12.018&domain=pdf
mailto:linzhenghang@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.autcon.2015.12.018
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Among the many factors that could impact a worker's perception
ability, his or her mental condition is most important. In psychological
research,mentalworkloadhas been determined to be one of the best in-
dicators of perceptional ability [45,49] especially for peoplewho usually
conduct complicated tasks. Therefore, the measurement of individuals'
mental workload can help to assess their perception ability, which in
turn can then be used to identify vulnerable workers on a construction
job site. The research described in this paper aims to propose an ap-
proach to quantitatively estimate mental workload and then apply the
resulting estimates to identify potentially vulnerable construction
workers.

2. Background

2.1. Psychological issues and construction safety

In labor-intensive industries like construction, the psychological
condition of workers plays a central role in safety performance. Con-
struction work involves inherently dangerous tasks and exposure to
various psychological stressors associated with pressure due to con-
straints on schedules and physical hazards [38]. According to Endsley's
findings (1995) [19], there are three steps that people who experience
dangerous events proceed through, including (1) detection of hazard-
ous signals, (2) perception and comprehension of risks, and (3) projec-
tion of the consequences associated with decision options. Many
psychological researchers conclude that emotions greatly influence sig-
nal detection, risk perception and process of risk-based decisionmaking
[51,60]. Different from other industries, in construction, risk perception
is more important because even if the hazards are identified, workers
still may involuntarily behave unsafely, since most construction tasks
are inherently associated with various level of risks [74]. Due to tight
project budgets and schedules, construction personnel are predomi-
nately production-oriented and can suffer from high levels of physical
and mental pressure [47], which can exacerbate the level of danger
and increase the possibility of injury. Tixier et al. (2014) conducted an
experiment on 69 constructionworkers and observed that the emotion-
ally negative group (i.e. those workers who were sad, unhappy, fearful,
anxious and disgusted) were subject to more risks than the positive
group (i.e. those workers whowere happy, amused, joyful and interest-
ed) [63]. For example, inmasonrywork, heavy load lifting and awkward
posture requires significant physical demands. In additional to physical
demands, temporal demands and mental demands play critical roles in
workers' performance [43] and safety [41]. Therefore, the demands of
construction tasks could be indicators of safety risk. In 2010, Mitropou-
los and Namboodiri proposed a novel task demand assessment (TDA)
approach to measuring construction safety based on how difficult it
was to safely perform an activity [48].With the help of wearable biolog-
ical sensors, the physical demands of tasks can be detected and mea-
sured, however, there is still no meaningful quantitative assessment
framework on the mental demands of construction tasks [2]. This re-
search aims at proposing such an approach to assess the mental de-
mands through analyzing human brain rhythms.

2.2. Risk perception and mental workload

Mental workload or cognitive load refers to the total amount of
human mental effort or memory that is required for the execution of a
task [62]. When a person places too much attention on one task, he or
she will have less attention to focus on other stimuli. One classic exam-
ple is talking on the phone while driving [55]. In these cases, when a
driver's attention is mostly allocated to the phone conversation, less at-
tention is allocated for driving, which can result in higher accident rates
[50]. Therefore, when a task consumes too much attention, people can
be exposed to the danger of inattentional blindness [56]. Inattentional
blindness is a psychological phenomenon where an individual fails to
identify stimuli due to this lack of attention [39]. One approach to
studying inattentional blindness is known as the Invisible Gorilla Test
[13]. In this test, subjects are asked to count the number of ball passes
between several participants in a video, while a person wearing a full
gorilla suit walks through the scene. After watching the video, the sub-
jects are asked to indicate whether they saw the gorilla. Most results
demonstrate that 50% of subjects did not report seeing the gorilla. Fail-
ure to see the gorilla is attributed to the high mental engagement of the
counting task and results in inattentional blindness [18].

In the construction industry, when workers focus too narrowly on
their work, they become inattentionally blind, which decreases their
perception ability andmakes themmore vulnerable to dangers. Also, re-
petitive tasks that require a very low cognitive load can lead to acci-
dents. Another possible issue that affects the risk perception is hazard
expectation. When workers conduct certain construction activities,
they expect certain things to happen and tend to block out other possi-
bilities. For example, when a worker installs a roof, he or she knows
from standard training that falls are major hazards. Because they are fo-
cused on avoiding a fall, theymay not be aware that theymaybe also hit
by an object. These types of distractions and lack of focus on safety may
also lead to inattentional blindness. These examples highlightwhy, even
though workers may participate in safety training, they still could be
injured.

Another issue that is related to the mental workload of workers is
work complexity [69]. Workers often face rising cognitive demands
when they execute increasingly complex tasks. In these cases, their cog-
nitive skills aremore important than physical skills [16]. In the construc-
tion industry, workers obtain a considerable portion of information
directly from the cognitive task, while they are concurrently performing
physically demanding work [17]. For instance, in the case of electrical
installation, workers not only need to accurately attach wires, but they
may need to do so on top of a ladder while holding their arms up for
long periods of time. In these types of situations, understanding how
the physical workload impacts the mental workload is required to esti-
mate the safety condition of theworker in executing the task. However,
due to differences between individual workers, it is difficult to predict
the risk level from the task complexity and individual proficiency.
Therefore, a quantitative and direct monitoring approach that can esti-
mate the mental workload of workers can help project managers to
identify vulnerable workers and implement safety policies or ap-
proaches to help avoid accidents.

2.3. Quantitative neural time–frequency analysis

In order to develop a measurement of mental workload, various be-
havioral and physiological tests have been developed since the 1980s
[27,70]. Although subjective and inaccurate, such measurements can
provide a relatively continuous data record over time without
obstructing execution of the task [68]. In recent years, new neuroimag-
ing techniques such as functional magnetic resonance imaging (fMRI)
and electroencephalography (EEG) can provide direct and quantitative
alternatives for the assessment of mental workload [57]. Among these
methods, EEG is the best candidate for construction implementation be-
cause it can be applied outside of a specialized laboratory. Other
methods require cumbersome devices, large medical teams and immo-
bile subjects [23]. Moreover, many studies have found a correlation be-
tween brain rhythms collected by an EEG and mental workload [52,61,
66].

One popular quantitative analysis for brain rhythms ofmentalwork-
load is Event-Related Potentials (ERPs). ERPs is a valid approachbecause
it requires fewer assumptions or parameters, possesses higher temporal
precision and accuracy, has been well studied, and provides fast and
easy computational results [14]. However, the results of ERPs are diffi-
cult to interpret and link the continuous data to physiological mecha-
nisms. To resolve these difficulties, a time–frequency-based analysis
adopted from digital signal processing theory has been introduced for
use in the analysis of brain rhythms [26,64,65]. In the research method
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described below, time–frequency analysis will be adopted to assess the
mental workload of subjects when they focus on construction tasks. A
preliminary experiment is described, which is designed to collect the
brain rhythms of experimental subjects, and then estimate their mental
workload and their vulnerability to accidents.

2.4. Physiological load of construction workers and the scope of this
research

Another valid approach of improvingworkforce productivity and safe-
ty is through monitoring workers' physiological conditions. Gatti et al.
conduct a comparative experiment and found that vital signs, such as
heart rate and breathing rates, are valid signals for monitoring workers'
physiological conditions [22]. Those physiological signals have been
used as predictors of physical strain for productivity measurement [20,
21]. One critical observation suggested by Tixier et al. (2014) is the exis-
tence of an interrelationship between physiological and mental condi-
tions [63]. Both perspectives have a complicated interrelationship and
have to be monitored separately and distinctively. Although such issues
have not been thoroughly studied in the construction industry, to simply
the research question, the research described in this paper will focus on
exploring the feasibility and validity of applied time–frequency analysis
onmental perspectives throughmonitored EEG signals. A study on inter-
relationship between physiological and mental conditions for construc-
tion activities will be discussed in future research.

3. Research methodology

3.1. Electroencephalography (EEG)

In recent years, research has led to new methods for collecting
workers' physiological informationwith the end goal of enhancing con-
struction safety. For instance, Jebelli et al. employed inertial measure-
ment units to detect the body motion of steel works to protect them
from falls [30]. Gatti et al. measured two physiological parameters (i.e.
heart rate and breathing rate) to monitor the health condition of con-
struction workers when they conduct various construction activities
[22]. In the research described in this paper, EEG will be introduced to
assess the mental workload of workers.

There are several advantages of using EEG to study neurocognitive
processes [15] including:

1) EEG can capture cognitive dynamics over time. Most cognitive
events occur in a temporal sequence and in a scale of milliseconds
or seconds. High temporal-resolution techniques such as EEG are
suitable to capture this rapid information on a temporal scale.

2) EEG is a direct measurement of neural activities. The voltage fluctu-
ations detected by EEG are themost direct observationmethod com-
pared to other measurement devices. Although the mechanism is
not fully known by researchers, the oscillating patterns of EEG sig-
nals are well-studied and can be modeled fairly accurately [10,67].

3) The EEG signal is multidimensional. Different from regular time se-
ries data, EEG signals are multidimensional because they include
time, magnitude, frequency, power and phase. Such multidimen-
sionality provides plentiful data resources and possibilities for so-
phisticated data analysis.

3.2. Data processing

The data collected and analyzed through EEG will capture brain
rhythms that will be grouped into bands based upon their center fre-
quencies and frequency widths. These brain rhythm frequency bands
include delta waves (1–3 Hz), theta waves (4–7 Hz), low alpha waves
(8–9 Hz), high alpha waves (10–12 Hz), low beta waves (13–17 Hz),
high beta waves (18–30 Hz), low gamma waves (31–40 Hz), and high
gamma waves (41–50 Hz). Such a grouping is not arbitrary but results
from neurobiological mechanisms of brain oscillations, such as synaptic
decay and brain signal transmission [9].

The EEG data analysis involves computation of power spectral densi-
ties (PSD) for the above frequency bands. These rhythms can be used to
identify and classify cognitive states such as mental workload, engage-
ment, execution, and verbal or spatial memory [7]. In this research, the
engagement indexdevelopedbyPrinzel et al.will be used [53] tomeasure
the attentional resource allocation. This index has been successfully ap-
plied by NASA's Langley Research Center and reported to be sensitive to
increases in task load. In the study, the engagement index will be com-
pared across tasks with different levels of complexity. The calculation of
an EEG-engagement index (EN) will be based on beta power (13–
30 Hz) divided by alpha power (8–12 Hz) plus theta power (5–7 Hz)
and can be represented in the following equation:

EN tð Þ ¼ Pβ tð Þ
Pa tð Þ þ Pθ tð Þ ð1Þ

where EN(t) is the EEG-engagement index at time t;Pα(t), Pβ(t), and
P θ(t) are the power of alpha rhythms, beta rhythms and theta rhythms
at time t.

An engagement index is a time–frequency indicator based on the
power and energy of alpha, beta and theta frequency bands. Bandpass
filters were applied to isolate each frequency band from the raw signal.
A higher engagement index suggests higher mental workload. Since
people have limited memory sources (or working memory), higher
mental workload spent on tasks means fewer resources will be allocat-
ed to risk perception. Therefore, the engagement index describes to
which level the memory resources have been allocated to risk percep-
tion. In other words, a higher engagement index suggests lower risk
perception ability and higher vulnerability.

Another useful mental workload assessment framework is based on
a hybrid brain–computer interface (BCI) model that is characterized by
the temporal and frequency information containedwithin the EEG data.
As suggested by Zhou et al. (2007), eight quantitative features can be
derived from EEG raw signals based upon their bispectrum, since
bispectrum has been proven to be a useful tool for EEG signal classifica-
tion and filtering [73]. These features are:

(1) Peak frequency of the power spectral density (PSD), H1(t).
(2) Peak value of the PSD, H2(t)
(3) The first order spectral moment of the PSD at time t:

H3 tð Þ ¼
XN

ω¼1

ω �H1;ω tð Þ ð2Þ

whereω is the frequency of thepower spectrum;N is themaximum fre-
quency to be considered.

(4) The second-order spectral moment of the PSD:

H4 tð Þ ¼
XN

ω¼1

ω−H3 tð Þð Þ2 �H1;ω tð Þ ð3Þ

(5) The sum of logarithmic amplitudes of the bispectrum at time t:

H5 ¼ ∑ω1 ;ω2∈F log B ω1;ω2ð Þj jð Þ ð4Þ

(6) The sum of logarithmic amplitudes of diagonal elements in the
bispectrum

H6 ¼
X

ω∈F

log B ω;ωð Þj jð Þ ð5Þ
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(7) The first-order spectralmoment of the amplitudes of diagonal el-
ements in the bispectrum

H7 ¼
XN

k¼1

k� log B ωk;ωkð Þj jð Þ ð6Þ

(8) The second-order spectral moment of the amplitudes of diagonal
elements in the bispectrum:

H8 ¼
XN

k¼1

k−H7ð Þ2� log B ωk;ωkð Þj jð Þ ð7Þ

where,

B ω1;ω2ð Þ ¼
Xþ∞

m¼−∞

Xþ∞

n¼−∞
E x kð Þ � x kþmð Þ � x kþ nð Þ½ � � e−i2π mω1þnω2ð Þ: ð8Þ

B(w1,w2) is the bispectrum of the 2D Fourier transform of the third-
order cumulant of x(t), which is a non-Guassian third-order stationary
random process.

The estimation of the bispectrum is based on the calculation of mo-
ment as Eq. (2). The moment of PSD suggests how power is distributed
across frequencies, whereas higher frequencies provide higher leverage
and results in exponential increment in moment. Since high frequency
signals normally are caused by random noise and low frequency signals
are reflection of brain activities, the moment indicates whether the col-
lected data is dominated by noise or valid signals. The bispectrum calcu-
lation in Eqs. (3) to (8) describes the non-linear relationships across
frequency bands. A high bispectrum value suggests high interdepen-
dency between frequency components and invalidates the linear esti-
mation, such as regression, of these frequency bands. The logarithm of
bispectrum aims at rescaling the output for more robust comparison.

3.3. Preliminary test and equipment

A preliminary experiment was designed to validate the feasibility of
mental workload measurement. Five subjects were invited to wear an
EEG monitoring helmet to perform an installation task. The subjects
were asked to relax for 5 s, climb up a ladder (1 m tall and 3–4 s to
climb), conduct an installation (4–5 min), climb down the ladder and
then rest. The installation task requires each subject to choose suitable
nuts and fasten them to bolts with a screwdriver. The task is repeated
three times by the subjects. The task includes four types of activities
with various risk levels: idling, ladder climbing, nut selection and bolt fas-
tening. The risk level is recorded based on the subjects' perception
through a post experiment survey as bolt fastening (high risk) N ladder
Reference Pole

Pulse Sensor

Micro collector 

Fig. 1. Design of the wearable EEG monitoring safety helmet: Micro contr
climbing (high risk) N nut selection (medium risk) N idling (low risk).
During the experiment, a monitoring safety helmet was connected to a
laptop via Bluetooth to stream data. At the same time, a camera was
used to record the activities and events and was synchronized with the
EEG data collection. Then, event tags were associated with raw EEG data
based on analysis of the video.

The research teamdeveloped a EEGmonitoring safety helmetwith a
Neurosky TGAM model [10]. Since Neurosky TGAM only has one chan-
nel for raw data collection, the research team expanded it to four chan-
nels by stacking four TGAM boards and connected them with a
DFRduino UNO R3 and a Bluetooth module. An electrocardiography
(ECG) sensor, PulseSensor [1], was also attached to the microcontroller
for reference. Fig. 1 shows the instrumentation of the monitoring
helmet.

The four sensor sites that were selected refer to the 10–20 system or
international 10–20 system,which is a method that describes the appli-
cation locations of scalp electrodes. Four selected locations in this re-
search are left ear (TP9), left forehead (FP1), right forehead (FP2) and
right ear (TP10). These locations are presented in Fig. 2. The FP1 location
is related to logical attention and other brain functions, such as interac-
tion planning, decision making, task completion and working memory
[8]. The FP2 location relates to emotional attention and other brain func-
tions, such as judgment, sense of self and restraint of impulses. Because
of proximity to auricular andmastoid, TP9 and TP10 are suggested to be
the reference points by a 10–20 system. One practical issue of wearing
the helmet is to fix the application locations of each electrode. Conduc-
tive pastewas applied to a stick, which connected electrodes to the skin.
Another potential issue arose because of sweating. For instance, the
sweat could potentially decrease the conductivity of skin which could
result in faulty data. During the preliminary experiment, the researchers
ensured that the subjects did not sweat by keeping the work load low
and operation duration short. For applications in the field, the problems
introduced by sweating must be more robustly addressed.

Since the rawdata contains rich informationwith unavoidable noise,
it is important to determine the best signal for mental load estimation.
Comparing across the spectrum of all frequencies, alpha waves (8–
12 Hz), beta waves (13–30 Hz), and gamma waves (31–50 Hz) are the
best candidates [9] for the following reasons. Alpha brainwaves are
presentwhen people have quietlyflowing thoughts. They are associated
with relaxed wakefulness and aid with mental coordination, calmness,
and alertness. Beta brainwaves dominate normal waking states of con-
sciousness when people engage in tasks, i.e. they are associatedwith at-
tentiveness, selective attention, concentration and anticipation. Gamma
brainwaves are high frequency waves relate to simultaneous informa-
tion processing involving multiple brain areas and are associated with
higher mental activities, perception, problem solving, fear and
consciousness.
Electrodes for Four
Sensing Locations

NeuroSky Board

oller and pulse sensor (left); NeuroSky Board and Electrodes (right).
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Fig. 2. Electrodes installing locations refer to 10–20 system.
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4. Experimental results and mental workload assessment

4.1. Time–frequency analysis results

Since the engagement level indicates the vulnerability of a worker,
the interrelationship between the risk level of tasks and engagement
level is critical to validate the feasibility of the mental workload assess-
ment model and the EEG monitoring helmet. Fig. 3 presents the raw
data of brainwaves from the four electrode installation locations during
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thefirst 18 s. Event tagswere associatedwith the raw signal by referring
to videos recorded during the preliminary experiment. All data reported
here is recorded from a single subject in one experimental round.

To simplify the data analysis for the preliminary experiment, this
manuscript only discusses the signal patterns of FP1 and TP10, since
FP1 and TP10 have less fluctuation. The temporal data analyzed in this
study includes the first 18 s of the experimental window, which in-
cludes all four major activities (idling, climbing, nut selection and bolt
fastening). Since the EEG signals have plentiful information with ran-
domnoise, by focusing on two channels and a short timewindow, it im-
proves the computational efficiency by removing redundant
information. Multiple electrode channels and longer time windows
will be discussed in future research. The raw data displayed in Fig. 3
shows distinctive patterns in signal magnitude and frequency among
the four different activities. Although the output voltages are different
in magnitude, the frequency patterns are similar across all four chan-
nels. To visualize the performance of the target rhythms, the data is
decomposed into frequency domains as shown in Fig. 4.

Fig. 4 shows the energy distribution across the whole frequency
spectrum. The time–frequency analysis was applied to understand the
raw EEG signals. Two types of time windows were applied through
the raw signal to remove white noise. The Hanning window is a bell-
shaped window with decreasing weight for signals based on distance
from the testing time point. A rectangular time window only takes
into account the 0.2 s time period centered on the testing time point.
Then a Fourier Transform was performed to isolate the frequency
band based on the observed physiological indicators. Fig. 4 shows the
frequency spectrum of the raw signals, which uses a heat map to high-
light the power of each frequency level. There are clear signal spikes in
the Alpha, Beta and Gamma rhythms when the subjects begin to climb
the ladder and starts to fasten the bolts. These spikes are directly associ-
ated with the subject's mental workload and physical work. By
10 12 14 16 18
Time (seconds)

Ladder 
Climbing

Nuts 
Selection

Bolts 
Fastening

s of FP1, FP2, TP9 and TP10.
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calculating the magnitude of the spikes, the mental workload can be
quantitatively estimated. It is also important to note that the appear-
ance of gammawaves occurs when the subject selects the nuts and fas-
tens the bolts, but not when the subject is climbing the ladder.
Neurologists believe that gammawaves implicate neural consciousness
via themechanism for conscious attention, which is relatively indepen-
dent fromphysical movement [9]. Even if the ladder climbing involves a
heavy physical load, the activity doesn't initiate a gamma spike. There-
fore, gamma waves can be used to differentiate routine behaviors
from behaviors that involve decision making, since both nut selection
and bolt fastening require judgment, i.e. the subject needs to choose
the right size nut and then fasten the bolts in the correct order.

To understand how signal power is distributed through the frequen-
cy domain, a Power Spectrum Density map is shown in Fig. 5. In various
frequency bands,most of the signal power is distributed in low frequen-
cy bands, which include theta, alpha, beta and gamma waves. Also, the
Power Spectrum Density map demonstrates that the Gamma band
uniquely possesses a great amount of power compared to the other fre-
quencies. This observation suggests that most the information within
EEG signals are stored in low frequency bands, particularly in the
Gamma band. Therefore, to achieve cleaner data, a Lowpassfilter should
be used to remove the irrelevant data contained in the higher frequen-
cies. Combining the results from Figs. 4 and 5, it is also important to note
that, although low frequency bands storemore energy, their fluctuation
is not as obvious as bands with relatively higher frequencies. Thus, to
simplify single pattern identification and reduce computational
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Fig. 4. Signal spectrogram of FP1 and TP10 with
complexity, a Bandpass filter should be employed to remove both low
and high frequency components.

The results of the time–frequency analysis suggest that themonitor-
ing helmet is able to capture the fluctuation of brain wave bands when
the user engages in different tasks. Each type of task is associated with
various levels of mental workload and risks, and shows distinctive pat-
terns. Thus, it is feasible to estimate the mental workload through
extracting, filtering and processing the EEG singles.
4.2. Mental workload estimation

To estimate the mental workload associated with the activities, an
engagement index was calculated by deriving the power in each fre-
quency band. Before the calculation, bandpass filters were applied to re-
move irrelevant frequency components and isolate the objective brain
rhythms. Calculation of the engagement index uses a moving timewin-
dow of 0.2 s. Since the sampling rate is 220 Hz, each time window in-
cludes 44 data points. Fig. 6 shows the temporal level of the
engagement index using a sliding time window. Each value of the y
axis is calculated based on its average PSD within a 0.2 s time window
before that time point.

The engagement index significantly spikes when the subject climbs
up the ladder. The bolt fastening activity also requires higher engage-
ment with more intense frequency. The drawback of the engagement
index is its neglect of information contained in the gamma band,
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which contains a great amount of energy in a single PSD. However, the
engagement index is simple and accurate enough to reflect the mental
workload for various activities. In the previous discussion on the rela-
tionship between mental workload and vulnerability, higher engage-
ment suggests lower risk perception ability and higher probability for
accidents. The results from this preliminary experiment in Fig. 6 show
that the ladder climbing activity is the most dangerous activity (i.e. it
has the highest engagement index value) of those investigated that
may result in inattentional blindness. Although both the nut selection
and bolt fastening activities also required the subject work at height,
the subject is more vulnerable to inattentional blindness whenworking
on the fastening activity (multiple engagement index spikes) and is
more alert during the selection activity (lower engagement index).

In order to validate the conclusions suggested by the engagement
index, a bispectrum signal is constructed to calculate the bispectrum
feature indexes suggested by Zhou et al. [73]. Four time windows with
a length of one second are selected for each activity. The 3rd order
cumulant and bispectrum magnitude are calculated by Eq. (8). Instead
of a fixed time lag in the original signal, a flexible time lag is compared
on top of Fig. 6 to select the proper lag for large differences between 3
order cumulants so that the data pattern can be easily identified.

Through the bispectrum analysis, the bispectrum feature indexes
can be calculated by Eqs. (2) through (7). The resulting combination
of feature indexes is listed in Table 1, which indicates the mental work-
load of each activity type. H3 has similar results to the engagement
index, which shows that ladder climbing requires more mental load
compared to bolt fastening.H4 is similar toH3 but in a reciprocal pattern.
Both H3 and H4 are moments that describe energy distribution across
the frequencies. Lowermoments imply that the power ismainly allocat-
ed at low frequency bands, which requires more brain activity and
workingmemory. Bispectrum indicators forH5 toH8 have the same con-
clusions relative to each other, even in varying scale, which suggests
that bolt fastening requires more concentration and has a higher prob-
ability of triggering accidents compare to the other activities. The mag-
nitude of bispectrum indicators reflects the non-linearity across
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frequencies. A more detailed magnitude through the whole spectrum
is mapped in Fig. 7.

The bottom of Fig. 7 suggests which frequency pairs are most useful
to differentiate the magnitude of different activities. High frequency re-
gions have weak correlation with each other, which results in insensi-
tive responses for different activities. In other words, the high
frequency bands are relatively consistent for each task and not suitable
to be used to differentiate differentmental load levels. However, the fre-
quency bands between 10 Hz and 15 Hz could provide larger distinc-
tions among activities. One exception is idling, when all frequency
bands are active andmemory is less concentrated. The bispectrummag-
nitude of high frequency bands could be used to identify idling, since for
other tasks, the magnitude is close to zero. This result is consistent with
the conclusions that are suggested by the spectrogram in Fig. 4.

Although the engagement index provides us with a direct and sim-
ple interpretation of the intensity of mental workload, it is important
to notice that each individual has his/her own brain responseswhen ex-
ecuting the same task. This could result in inaccuracy in risk detection
and difficulty in generalizing the findings. Bispectrum feature indices
offer more feature references to differentiate tasks and judge risk levels
through non-linear changes across brainwave frequency bands. There-
fore, bispectrum feature indices of EEG signals could supplement the en-
gagement index and help to provide a more reliable estimation of
individual vulnerability.

5. Safety/vulnerability and mental workload

Based upon the results from the preliminary experiment, we draw
following conclusions. First, EEG is an effective measurement tool to
monitor the dynamic fluctuation of mental workload when workers
are engaged in construction tasks. From the monitored EEG signals,
there are obvious distinctions in data patterns for each construction ac-
tivity. As shown in Figs. 3 and 4, themagnitude and power spikes can be
used to differentiate tasks with various levels of complexity andmemo-
ry requirements. Second, the engagement index is a valid tool for
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Table 1
Bispectrum feature indices of time windows selected from four experimental activities.

Feature
indexes

Window 1
(idling)

Window 2
(climbing)

Window 3
(nut selection)

Window 4
(bolt fastening)

Risk level Low High Medium High

H3 8.44 e + 4 6.44 e + 4 7.49 e + 4 6.19 e + 4
H4 3.62 e + 14 1.39 e + 14 2.67 e + 14 1.58 e + 14
H5 1.28 e + 4 2.94 e + 4 1.85 e + 4 3.14 e + 4
H6 247.82 635.22 397.50 675.51
H7 1.51 e + 4 3.49 e + 4 2.18 e + 4 3.71 e + 4
H8 0.62 e + 11 7.72 e + 11 1.89 e + 11 9.29 e + 11

Note: the values in table are the normalized magnitude calculated from Eqs. (2) to (7).
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mental workload estimation in construction. The derived engagement
index (Fig. 6) aligns with the EEG spectrum and could be used to assess
the mental workload of construction tasks based on their signal fea-
tures, such as magnitude, frequency and phase. Third, the bispectrum
analysis highlights that low frequency bands are more appropriate
and sensitive to complicated work. “Idling” activities can be easily iden-
tified through the calculation of correlations between high frequency
bands. In addition, some frequency bands, such as gammawaves, dem-
onstrate independency with the subjects' physical load and could be
used to mitigate the impact of subjects' movement.

Through this study, EEG shows promise as a novel approach to esti-
mating themental workload involved in executing various construction
activities. More specifically, the metrics described in this paper are also
able to differentiate the activities through a series of quantitative fea-
tures. The estimated level of mental workload is a good indication of
the vulnerability of an individual worker [18,39]. Previous research
shows that when people are subject to heavy mental workload, it
could cause inattentional blindness, which can result in accidents.
Therefore, by knowing who is concentrating on work or conducting
tasks that demand high levels of concertaration, project managers will
be able to identify vulnerable employees and provide sufficient inter-
ventions. For instance, project managers can create protection zones
for workers who are exposed to hazards by restricting their contact
with machinery. EEG signals can also be an effective tool to diagnose
workers' mental conditions, such as whether they are alert, relaxed or
nervous. Also, field supervisors could use the abnormal signals patterns
as an indicator of task overloading or inappropriate work shifting. In
other words, the mental demands required by various construction
tasks can be estimated to guide task allocation together a with TDA ap-
proach [48], especially for the use by a multi-skilled workforce [24].
Meanwhile, the boredom and lack of attention that results from task
underloading can be partially relieved through better mental demands
management.

Another potential use of the EEG data is activity detection. Based on
the experimental results, the signal pattern of brain waves vary predict-
ably when subjects conduct different types of activities. The EEG data
can also be helpful in activity detection for productivity measurement
since each type of task has its own mental load and cognitive require-
ments. At the same time, the proposed measurement in this research
could supplement other activity detectingmetrics through various sen-
sors [58], such as IMUs [4,5], cameras [44], Kinect [31,54] or physiolog-
ical sensors [21]. EEG monitoring provides a new data dimension that
can help other sensory monitoring approaches make more accurate
judgements. Occupational injuries and fatalities also can be attributed
to poor task and work place design. Field supervisors could implement
the collected multisensory data in construction production system
design [42]. For example, quantitative demands of all construction
tasks can be quantified by the signal strength of physiological andmen-
talmonitoring. Such information could help the field supervisors design
more efficient and reliable construction production systems through
measuring the productivity, determining the size of the crew, arranging
night shifts and highlighting potential errors.

One limitation of the current injury reporting system required by
OSHA is that all accidents are self-reported after they occurred. Howev-
er, there is also a great number of near-miss accidents that are often
neglectded in safety assessment [72] because such accidents are ex-
tremely difficult to detect andmonitor. The EEGmonitoring systempro-
vides an innovative way to identify near-miss accidents by monitoring
the mental condition when people perceive danger. Some frequency
bands of the EEG signal (such as gammawaves) could indicate themen-
tal condition of workers when they are experiencing accidents. Also,
with the development of information and communication technology
in past decades, integration of technoglies among various disciplines
could potentially create a significant synergy from multi-sensory data
sources [37]. Together with other sensors, such as IMU [5], video cam-
era, RGBD camera [25] or RFID [36], an automatic near-miss accident re-
cording system could be created and dramatically increase the accident
database for project managers to refer to.

Since the research described in this paper is based on a preliminary
study, it is subject to several limitations. First, the scale is not large
enough. Since the equipment (EEG safety helmet) was designed by
the research team, it is still a prototype. Thus, the experiment cannot
be conducted in larger, more practical scales. Also, the ground truth of
risk level of each task is based on post experiment survey, which is rel-
atively subjective. In future research, the research team will try to im-
prove the equipment design and data quality and build more devices
to test the validity of the assessment model on a larger scale. Motion
sensors will be applied to collect more objective risk assessments. Sec-
ond, the data collected from the system still yielded random errors.
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Although filters have been applied to eliminate the white noise in the
retrieved data, the reliability of the sensing system still needs to be test-
ed and specific filers need to be designed. One possible solution is make
full use of referencemonitoring points, such as TP9 and TP10, to develop
a statistical filter and construct a stochastic process to estimate the con-
fidential level. Third, the pacement of the electrodes within the helmet
needs to be optimized. There are more than 50 potential locations for
application of the EEG electrodes suggested by the international 10–
20 system, each of which indicates a different brain function. To opti-
mize the accuracy of detection and comfort for the wearer, the hard-
ware needs to be expanded and optimized. Devices with multiple
channels will be applied to compare across the electrode locations to
find out the most senstive installing location and to minize the number
of electrodes that need to be attached. Another critical limitation of this
research is its narrow focus on mental load monitoring. Monitoring of
human activities contains both physiological and mental information,
which are clearly correlated to each other. Although this research stud-
ied themental load independently, there exists a research gap to under-
stand how researchers can fuse both types of information for higher
accuracy and reliability.

The EEGmeasurement technique described in this paper enables the
real-time direct monitoring on worker's mental conditions. It can revo-
lutionize the construction industry not only in terms of making it safer,
but alsomoremeasurable in terms of labor productivity. Combinedwith
sophiticated building information systems [11,32,35,59] or social net-
work [33] proposed by other researchers, EEG monitoring could create
productive synergies in schedule management and quality control. An-
other potential future development to extend the current study is to
better understand the relationship between physical load and mental
load. Amotion detection system such as one based on inertial measure-
ment units could be applied and integratedwithmental load data as the
ground truth of physical load and complexity of tasks.
6. Conclusions

Measurement of workers' mental workload provides an alterna-
tive source of information about on-site safety conditions. The EEG
assessment enables project managers to identify vulnerable individ-
uals and thus supplement the on-site risk detection. Integrating both
perspectives could help project managers to prioritize the safety re-
sources to protect vulnerable individuals who are exposed to higher
risks. The research described in this paper demonstrates how to uti-
lize EEG data to indirectly measure the vulnerability of workers
based on their mental load when they conduct various construction
tasks. The preliminary experiments suggest that it is feasible for
using brain waves to quantify and differentiate the mental workload
of activates in construction. The proposed framework enables the
possibility of quantitatively assessing the mental demands of con-
struction activities, since nearly all complex construction work can
be broken down into relative simple and interdependent tasks. Com-
bining physiological and temporal demand estimation, future devel-
opment in quantification of mental task demands could help field
supervisors optimize workload allocation, production system design
and project scheduling. In addition, due to the complexity of human
biological systems, it is also critical to further investigate the interre-
lationship between the mental and physiological conditions of the
workforce during construction activities.
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