
Automation in Construction 63 (2016) 100–133

Contents lists available at ScienceDirect

Automation in Construction

j ourna l homepage: www.e lsev ie r .com/ locate /autcon
EXPRESS to OWL for construction industry: Towards a recommendable
and usable ifcOWL ontology
Pieter Pauwels a,⁎, Walter Terkaj b

a Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent, Belgium
b Istituto di Tecnologie Industriali e Automazione (ITIA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini, 15, 20133 Milano, Italy
⁎ Corresponding author. Tel.: +32 9 264 3880, +32 47
E-mail addresses: pipauwel.pauwels@ugent.be (P. Pau

(W. Terkaj).

http://dx.doi.org/10.1016/j.autcon.2015.12.003
0926-5805/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 January 2015
Received in revised form 12 November 2015
Accepted 5 December 2015
Available online 30 December 2015
An increasing number of information management and information exchange applications in construc-
tion industry is relying on semantic web technologies or tools from the Linked Open Data (LOD) domain
to support data interoperability, flexible data exchange, distributed data management and the develop-
ment of reusable tools. These goals tend to be overlapped with the purposes of the Industry Foundation
Classes (IFC), which is a standard for the construction industry defined through an EXPRESS schema. A
connecting point between semantic web technologies and the IFC standard would be represented by
an agreed Web Ontology Language (OWL) ontology for IFC (termed ifcOWL) that allows to (1) keep on
using the well-established IFC standard for representing construction data, (2) exploit the enablers of se-
mantic web technologies in terms of data distribution, extensibility of the data model, querying, and rea-
soning, and (3) re-use general purpose software implementations for data storage, consistency checking
and knowledge inference. Therefore, in this paperwewill look into existing efforts in obtaining an ifcOWL
ontology from the EXPRESS schemas of IFC and analyse which features would be required in a usable and
recommendable ifcOWL ontology. In making this analysis, we present our implementations of an
EXPRESS-to-OWL converter and the key features of the resulting ifcOWL ontology.

© 2015 Elsevier B.V. All rights reserved.
Keywords:
Industry Foundation Classes (IFC)
Web Ontology Language (OWL)
Building
Construction
Information technology
Resource Description Framework (RDF)
Semantic web
1. Introduction

Building information modelling (BIM) can be named as one
of the most notable efforts in recent years regarding informa-
tion management in construction industry [1]. BIM environ-
ments allow to semantically describe any kind of information
about the building in one 3Dmodel, so that it can be better rep-
resented and more easily exchanged than in the case of tradi-
tional computer-aided design (CAD) tools. The IFC standard
[2], developed by buildingSMART [3], aims at supporting these
activities by providing a central “conceptual data schema and
an exchange file format for BIM data” [2, scope]. In other words,
using the IFC data model and file format, BIM data can be
exchanged between software applications, which can in turn
9 066806 (mobile).
wels), walter.terkaj@itia.cnr.it
provide extra functionality (e.g. 4D planning, 5D cost calcula-
tion, Computational Fluid Dynamics (CFD) simulation and
structural analysis).
1.1. IFC and EXPRESS

Each IFC data model is represented as a schema in the
EXPRESS data specification language defined in the 10303-
11:1994 standard of the International Organisation for
Standardisation (ISO). The EXPRESS language “consists of
language elements which allow an unambiguous data definition
and specification of constraints on the data defined and by which
aspects of product data can be specified” [4]. The EXPRESS
language consists of the terms (e.g. types, entities, properties)
and rules that must be used to build a specific EXPRESS schema
(.exp). In the case of IFC, there are several available IFC EXPRESS
schemas, including the most well-known IFC2X3.exp,
IFC2X3_TC1.exp, IFC4RC4.exp, and IFC4_ADD1.exp (see [5] for
an overview of the specifications). These schemas should be

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2015.12.003&domain=pdf
mailto:walter.terkaj@itia.cnr.it
Journal logo
http://dx.doi.org/10.1016/j.autcon.2015.12.003
Unlabelled image
www.elsevier.com/locate/autcon

Subject Object
Predicate

Fig. 1. The triple form of an RDF statement: subject–predicate–object.

101P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
considered as chronologically ordered versions of one IFC sche-
ma, meaning that there is always one most recent schema
available.

Each of the EXPRESS schemas of IFC [5] enables a description
of construction-related information where the represented
objects have a well-defined and interrelated meaning and pur-
pose. As a singlewindowelement can internally be described in
very diverse ways by each BIM environment, the export/import
possibilities to/from IFC should guarantee that each BIM envi-
ronment is able to map its own descriptions to a generally
understandable IFC format, thereby considerably improving
(not solving) the interoperability of information.

Wewant to point out that IFC is not an isolated effort or stan-
dard. It should be used in combination with other standards,
such as Model View Definitions (MVDs) and Information Deliv-
ery Manuals (IDMs), if an improved information exchange is
targeted. Also Property Set Definition (PSD) releases [6] should
be considered as important additions to the IFC schema. A PSD
release provides a schema that defines how custom properties
and property sets can be defined outside of the IFC specification.
This schema is provided as an Extensible Markup Language
(XML) Schema Definition (XSD). PSDs, as well as MVDs and
IDMs are considered out of the scope of this paper. Starting
from a centrally agreed ifcOWL ontology, however, it is feasible
to support PSD, MVD and IDM definitions in a semantic web
representation.
1.2. RDF and OWL

1.2.1. The basics
The semantic web initiative [7] shares some of the goals of

formal specification of information that IFC is targeting for
the construction industry domain. The semantic web was
conceived and presented as the successor of the existing
World Wide Web (WWW) by describing all information in
a language that could be understood by computer applica-
tions, i.e. machine-readable. Because the WWW contains in-
formation about almost any possible concept in the world,
the language describing this information cannot follow one
domain-specific schema. Instead, a flexible and generic lan-
guage is needed to describe and easily combine information
from very different knowledge domains. Therefore, the se-
mantic web was conceived as a semantic network [8] in
which diverse semantic domains can be represented and
combined using directed labelled graphs. Each node in such
a graph represents a concept or object in the world and
each labelled arc represents the logical relation between
two of these concepts or objects. A graph can be constructed
using the Resource Description Framework (RDF) [9], which
has a basis in description logic (DL) [10]. The graph is thus
formed by a set of logic-based declarative sentences and,
in total, it represents a specific semantic domain, as it is
understood and explained by Hennessy [11]. By describing
information in a single directed labelled graph, a uniform repre-
sentation of information is achieved, making information reus-
able by both humans and computer applications.
An RDF graph is constructed by applying a logical AND opera-
tor to a range of logical statements containing concepts or objects
in the world and their relations. These statements are often
referred to as RDF triples, consisting of a subject, a predicate and
an object (Fig. 1) and thus implying directionality in the RDF
graph. In addition, each concept has a Unique Resource Identifier
(URI), thereby making the RDF graph explicitly labelled. Every
concept described in an RDF graph, whether this be an object,
subject or predicate, is uniquely defined through this URI.
When two identical URIs are found, their semantics are consid-
ered identical as well.

The resulting RDF graph can be represented using various
syntaxes. Syntaxes used for RDF graphs are RDF/XML (.RDF),
N-Triples (.N_T), Turtle (.TTL — [12]), and Notation-3 (.N3)
[13]. RDF graphs can be given an improved semantic structure
using RDF vocabularies or ontologies. The most basic elements
to describe such ontologies are available in the RDF Schema
(RDFS) vocabulary [14]. RDFS, for instance, enables the specifi-
cation of classes, subclasses, comments, and data types. An
RDFS interpreter is able to infer extra RDF statements that are
implicitly available via the RDFS constructs. More expressive
elements to describe ontologies are available within OWL
[15]. In short, OWL further enhances the RDFS concepts to
allow making more complex RDF statements, such as cardinal-
ity restrictions, type restrictions and complex class expressions.
The RDF graphs constructedwithOWL concepts are called OWL
ontologies.
1.2.2. OWL semantics and OWL profiles
As the expressiveness of OWL is a key element in this arti-

cle, we will briefly outline what options are available in terms
of building an OWL ontology. The semantic expressiveness of
the OWL language is specified in multiple specification docu-
ments hosted by the World Wide Web Consortium (W3C).
The first W3C Recommendation for OWL dates from 2004
[16]. This version is now superseded by the OWL2 language
specification issued in 2012 [15]. Hence, any reference to
OWL in this paper refers to the OWL2 specification. All rele-
vant references to the exact semantics of OWL2 can be found
in [17] (section about Semantics, including OWL2 Direct
Semantics and OWL2 RDF-Based Semantics). Fig. 2 provides an
overview picture that we will use to explain the basics of
OWL profiles.

As pointed out in [17], “the Direct Semantics assigns meaning
directly to ontology structures, resulting in a semantics compatible
with themodel theoretic semantics of theSROIQdescription logic
— a fragment of first order logic with useful computational proper-
ties”. This leads to a semantic expressiveness for OWL2 that is

Image of Fig. 1

OWL 2 (Full)

DL
QLRL

EL

Fig. 2. The OWL2 profiles EL, QL and RL each provide a certain kind of expressiveness,
which determines to what level of detail information can be semantically represented
and which impacts performance as a result (more information, less performing).
Original figure in [18].

102 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
properly grounded in a particular description logic, namely
SROIQ. This semantic expressiveness is graphically displayed
as the outer ellipse in Fig. 2 (OWL2 Full). However, “some condi-
tions must be placed on ontology structures in order to ensure that
they can be translated into a SROIQ knowledge base” [17]. For
instance, transitive properties cannot be used in number re-
strictions. Whenever an OWL2 ontology satisfies these condi-
tions, the expressiveness of the ontology is in the second
ellipse in Fig. 2, namely OWL2 DL. An OWL ontology should re-
main within this boundary if it is to be used by SROIQ-based
tools, which are the tools typically supplied by the semantic
web community.

As in the case of OWL, also OWL2 has a number of so-called
profiles, namely OWL2 EL, OWL2 QL and OWL2 RL [19]. Fig. 2
displays the relationships between these three key profiles. As
outlined in Motik et al. [19], an OWL2 profile “is a trimmed
down version of OWL2 that trades some expressive power for the
efficiency of reasoning”. In short, in each of the given OWL2 pro-
files, a number of statements that can be used in OWL2 DL are
not allowed. By not allowing these statements, and thus
sacrificing some expressiveness, important improvements can
be made in terms of performance. Namely, inference engines
do not need to check a number of restrictions as they are not
allowed (and thus not considered) in particular profiles. More
information about the expressiveness of each of the profiles
can be found in [19]. The following summarised descriptions
can be used as a reference:

• OWL2 EL
This profile is to be used in applications that use ontologies
with many properties and/or classes. Basic reasoning
can be performed in time that is polynomial with respect to
the size of the ontology (PTime). Important constructs
that are not allowed in OWL2 EL are, among others,
universal restrictions (allValuesFrom), cardinality
restrictions (maxCardinality, minCardinality,

exactCardinality), disjunction (unionOf), enumerations
(oneOf), and several particular property-related expres-
sions (inverseOf, disjoint, functionalProperty,

symmetricProperty).
• OWL2 QL
This profile is recommended for applications with a large
volume of instance data, and where query performance is
most important. If done properly, query answering can be
performed in LOGSPACE with respect to the size of the
data. The expressive power of this profile is quite limited
as it excludes constructs such as existential and universal
restrictions (someValuesFrom, allValuesFrom), cardi-
nality restrictions (maxCardinality, minCardinality,

exactCardinality), disjunction (unionOf), property
inclusions (subPropertyOf) and enumerations (oneOf).
In comparison with OWL EL, some property-related
expressions are allowed (inverseOf, disjoint,

symmetricProperty).

• OWL2 RL
This profile is meant to be used for applications that require
scalable reasoning without sacrificing too much expressive
power. Whenever reasoning is involved, it is a good choice
to adopt ontologies in this profile. “The ontology consistency,
class expression satisfiability, class expression subsumption,
instance checking, and conjunctive query answering problems
can be solved in time that is polynomial with respect to the
size of the ontology.” [19]. The expressive power of OWL2
RL is quite close to OWL2 DL. A few syntactic restrictions
[19] need to be taken into account in order for the ontology
to be in the OWL2 RL profile. Moreover, all axioms of OWL2
are supported in OWL2 RL, except for disjoint unions of
classes and reflexive object property axioms.
1.2.3. Closedworld assumption (CWA) versus openworld assump-
tion (OWA)

Two distinct approaches to knowledge representation are
relevant when dealing with IFC and OWL: CWA and OWA
[20]. According to CWA, any statement that is not known to
be true, must be considered as false. When applied to an
IFC model or a BIM model, one can conclude that whenever
something is not specified, it is most definitely not there. On
the other hand, according to OWA a statement that is not
known to be true, is not necessarily false, nor true, but un-
known. In other words, it might be true or false in the future,
when more information is supplied, but no conclusion can be
drawn until then.

Many traditional software applications, including BIM tools,
database systems and the IFC datamodel, adopt a CWA. Seman-
tic web technologies, however, generally rely on an OWA be-
cause the technologies are supposed to be used on the Web,
which is a system with incomplete information. One cannot
conclude that something is not true simply because no one
specified it on the web. Hence, an OWA needs to be adopted.
At least, that is the original reason behind this decision. The dif-
ference between CWA and OWA plays a key role when an on-
tology is used to represent an IFC model or a BIM model,
because if something is not specified, then one cannot conclude
much, except that it might still be true or false. A whole

Image of Fig. 2

103P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
different kind of information usage and inference becomes
available.

Mapping information representations in CWA to informa-
tion representations in OWA is not that hard; the main differ-
ence lies in the usage of the information that is presented in
both. Furthermore, it is even possible to run a CWA-based vali-
dation of an OWL ontology (see [21,22]). However, the OWA of
semantic web technologies is still something different from the
traditional CWA features in current software applications. In
many cases, both types of assumptions have their value
(e.g. [23]). If adopted properly, the usage of semantic web
technologies is a fruitful addition to (and not replacement
of) existing technologies, such as BIM software environ-
ments and the IFC specification in EXPRESS.
1.3. Current status of IFC and RDF

1.3.1. The parallels between IFC and RDF
There is a considerable parallel between the

buildingSMART effort towards the specification and
standardisation of IFC for construction industry, and the
W3C effort towards the specification and standardisation of
RDF for web data. The purpose of the EXPRESS language is
similar to the purpose of the OWL language, and the semantic
structure of an IFC file is to some extent comparable to the se-
mantic structure of an RDF graph. However, Barbau et al. [24]
emphasised the lack of formal semantics in EXPRESS, arguing
that a logic-based language, such as OWL, brings certain
modelling advantages in knowledge representation and se-
mantic data sharing. Indeed, by adopting any of the given
OWL profiles for specifying building information, one can
rely on correspondingmodel theoretic semantics to interpret
the information (see Section 1.2.2). A number of generally
available tools beyond construction industry can then be
used, including generic formally grounded query engines,
reasoning engines, and so forth. Such formally grounded ge-
neric tools are not generally available for EXPRESS. Addition-
ally, Beetz et al. [25] stressed the limits of EXPRESS with
respect to the reuse of existing ontologies and interoperabil-
ity with semantic web tools. With this statement, Beetz et al.
[25] most likely refer to the OWA basis of semantic web tech-
nologies (see Section 1.2.3), which makes it possible to add
new information without violating any of the conclusions
that were inferred previously (cf. monotonic reasoning).

Themain differences between the buildingSMART effort and
the W3C effort lie in (1) the domain that is to be represented,
and (2) the language/technology that is used to represent that
domain. Currently, both IFC and RDF are mainly used within
their respective domains. IFC is commonly used for exchange
of construction-related information, notwithstanding its limita-
tions, whereas RDF is used to representweb data. The combina-
tion of IFC and RDF led to, among other applications, an online
LOD cloud [26–29] that collects a considerable number of
open RDF datasets that are linked together in one open data
cloud (1014 datasets in 2014). As there are so many parallels
between the approaches behind IFC and RDF, it should be
possible to attempt publishing IFC data as part of this LOD
cloud, or at least as RDF graphs.
1.3.2. Why porting IFC data into the RDF data model?
The formalisation of IFC data as an RDF graph requires to

focus first on the conversion of the IFC schema, defined as an
EXPRESS schema, into an OWL ontology. As soon as such an
ontology is available, it is relatively straightforward to build
RDF graphs that are compliant with that OWL ontology. Var-
ious research initiatives addressed the problem of converting
an EXPRESS schema to an OWL ontology and some of them
focused in particular on the specific IFC case.

Most of the initiatives to formalise IFC in an ontology lan-
guage have beenmotivated with the aim of providing a seman-
tically rich and platform independent framework that can
support the integration of software tools and exchange of data
in a knowledge-based system that is both human readable
and usable by machines. Some early example applications
were provisionally suggested in Pauwels et al. [30], Abdul-
Ghafour et al. [31], Yurchyshyna et al. [32], Yurchyshyna and
Zarli [33] for the construction domain and in Kadar et al. [34]
and Terkaj et al. [35] for themanufacturing domain. The poten-
tiality and the presence of technologies to develop a semantic
linking of building information models were presented by
Törmä [36,37]. In addition, Schevers and Drogemuller [38], as
well as Zhang and Issa [39], argued that the conversion of IFC
into OWL, besides enabling the exploitation of semantic web
technologies for building information models, even facilitates
the linkage between different IFC models and databases. Many
more example applications have emerged by now, covering a
myriad of use case scenarios in architectural design, construc-
tion industry, smart city applications, built heritage applica-
tions, the factory and manufacturing domain, building
regulation management, and facility management. From these
use cases, it is clear that the focus of development does not re-
ally lie in the replacement of existing technologies, but rather in
the combination of building informationwith relevant informa-
tion in other domains. This can be considered as a useful OWA
addition to the set of currently available tools that provide
crucial CWA functionality.

Most of the semantic tools previously mentioned have rela-
tively limited functionalities and applicability. In many cases,
the reason for this limitation is the absence of a real standard
ifcOWL ontology, even though several proposals were present-
ed. Therefore, the developed applications are all based on
slightly different ontologies, making them work as isolated ex-
amples. As a result, it is not really possible to build applications
with a realistic scope. A recommendable and usable ifcOWL on-
tology would allow to test applications of semantic web tech-
nologies in more realistic settings and to let them mature into
usable, trustworthy and helpful tools.
1.3.3. Previous proposals in the conversion of the EXPRESS schema
of IFC into an OWL ontology

A number of EXPRESS to OWL conversion procedures have
been proposed so far. Schevers and Drogemuller [38] proposed

104 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
a first unidirectional conversion map from EXPRESS to OWL,
taking IFC as a reference example and highlighting some of
the key issues to be addressed. Agostinho et al. [40] proposed
a mapping between EXPRESS and OWL within a broader
ModelMorphism initiative. Beetz et al. [25] proposed a semiau-
tomatic method for converting EXPRESS schemas to OWL on-
tologies in order to enhance the applicability and re-usability
of the IFC standard. Barbau and colleagues specified a set of
rules for the automated conversion from EXPRESS to OWL
within the OntoSTEP initiative [41,24] and implemented the
system as a plug-in for the Protégé software tool [42]. Another
conversion tool was presented by Pauwels and Van Deursen
[43]. Also Gao et al. [44] proposed to develop an OWL ontology
for the IFC schema. In this case, the focus was entirely on infor-
mation retrieval (IR) use cases, and only those concepts
and terms that were considered relevant for information re-
trieval were considered. Eventually, 248 entities, 140 type enu-
merations, and 583 enumeration items were taken from the
IFC4 schema as the basis for the IFC IR ontology [44]. Terkaj
et al. [45] proposed an OWL version for a fragment of IFC
aiming at facilitating the extension of IFC and the integration
with other data models that are relevant in the scope of the in-
dustrial domain, in particular for the design and management
of factories. Finally, Terkaj and Sojic [23] presented how some
of the EXPRESS rules included in an IFC schema can be repre-
sented in OWL as well to enhance the previous ifcOWL
ontologies.

Many of these proposals have been documented only in rela-
tively short scientific articles that are not detailed enough. For ex-
ample, Schevers and Drogemuller [38], Beetz et al. [25] and
Pauwels and Van Deursen [43] presented the key ideas of their
approach, without publishing the generated ontology that
would provide the actual details of the conversion procedure.
Therefore, anyone willing to adopt any of these proposals
would be required to implement the conversion procedure, inev-
itably leading to slightly different versions (e.g. object property
renaming undecided, presence/absence of inverse properties, dif-
ferent handling of ENUM and SELECT data types). In addition,
these three earlier proposals were developed when the OWL2
specification by Hitzler et al. [15] was not yet published. Instead,
there was the distinction between the OWL profiles OWL Full,
OWL DL and OWL Lite, which are different from the OWL2 pro-
files that exist nowadays. Nevertheless, most of the presented
proposals were in OWL DL, which can be compared to OWL2
DL. Hence, the general outlines presented in these three early
proposals are still of high value for this article and have informed
many of the general decisions made here. As an example, class
wrapping of EXPRESS simple data types has been proposed by
Schevers and Drogemuller [38] and Beetz et al. [25] for good rea-
sons, therefore this approach has been adopted here as well for
the conversion of EXPRESS simple data types. Other than that,
most of the details (cardinality restrictions, domain and range re-
strictions, class and property naming) had to be thoroughly
reviewed.

Of the later proposals, the most relevant resources are the
conversion procedure presented and documented within the
OntoSTEP initiative [41,24], and the conversion procedure
presented by Hoang [46] and Hoang and Törmä [47]. The
OntoSTEP research initiative aims at providing a general pur-
pose conversion mechanism for any EXPRESS schema to an
OWL ontology, not only of the EXPRESS schema of IFC. In ad-
dition, the conversion procedure is well-documented and the
resulting ontology file can be generated and checked. Of all
the available resources, only the conversion procedure by
Hoang [46] and Hoang and Törmä [47] explicitly and appro-
priately takes into account the existence of the OWL2 profiles
EL, QL and RL, thereby making a case for a conversion proce-
dure that results in a layered ifcOWL ontology. Three layers
are proposed: ifcOWL Simple, which only includes what can
be specified in the intersection of OWL2 EL, QL and RL (see
Fig. 2); ifcOWL Standard, which is an ontology in the OWL2
RL profile; and ifcOWL Extended, which is an ontology in
OWL2 DL.

The proposal that we make in the following sections only
differs in the details compared to the proposals by Krima
et al. [41], Barbau et al. [24], Hoang [46] and Hoang and
Törmä [47]. Many of the decisions made by Krima et al. [41]
and Barbau et al. [24] are motivated by the aim of developing
a general-purpose converter for EXPRESS. In other words, the
conversion procedure is not tailored to the case of construc-
tion industry or IFC, more specifically. As a result, quite ver-
bose constructs are often used in order to take into account
the many possible declarations in EXPRESS. A less verbose
and thus better usable conversion can be used for several
concepts employed in IFC.

The proposal byHoang [46] andHoang and Törmä [47] iden-
tified two main criteria for the conversion: (1) to be able to
switch between different OWL2 profiles, and (2) to make it
easy to generate RDF graphs as linked data, not necessarily
tied to an overly restricted ontology. As a result, considerable
compromises are made in the three proposed ifcOWL ontol-
ogies (Simple, Standard and Extended), in order to make
them somewhat compatible. By choosing to not implement
OWL class domain and range restrictions in the Simple and
Standard versions of the ontology, mainly because of criterion
2, these ifcOWL versions tend to become underspecified. In
other words, these ifcOWL versions consider only a fraction of
the semantic richness of the original EXPRESS schema. The
ifcOWL Extended ontology can be comparedwithwhatwe pro-
pose in the following sections. However, by aiming tomake this
ontology compatible with ifcOWL Simple and ifcOWL Standard,
it becomes hard to add all the restrictions that are originally de-
fined in the EXPRESS schema.
1.3.4. Targeted criteria
As highlighted in the previous section, it is important to set

appropriate criteria that underpin the proposed EXPRESS-to-
OWL conversion procedure. Considering the reasons for
targeting one standardised (or at least recommended) version
of the ifcOWL ontology (see Section 1.3.2), we decided to stick
to the following three criteria, in order of importance:

1. The ifcOWL ontology must be in OWL2 DL.

105P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
2. The ifcOWL ontology should match the original EXPRESS
schema as closely as possible.

3. The ifcOWL ontology primarily aims at supporting the con-
version of IFC instance files into equivalent RDF files. Thus,
herein it is of secondary importance that an instance RDF
file can be modelled from scratch using the ifcOWL ontology
and an ontology editor.

We decided to remain in OWL2 DL, and not in any of the
three OWL2 profiles because an OWL2 DL ontology provides a
rich expressiveness. Note that it is possible to develop an
ifcOWL ontology in the EL, QL or RL profile from the OWL2 DL
version, since these profiles are subsets of the OWL2 DL version
(Fig. 2). The disadvantage behind this decision is that the
resulting ifcOWL ontology will imply sacrifices in terms of per-
formance, in particular reasoning performance. The advantage
is that we have the complete freedom to build an ifcOWL ontol-
ogy that is as close as possible to the original IFC EXPRESS sche-
ma (cf. our second criterion). If an ifcOWL ontology is used as a
recommended version, then this ontology should be as close as
possible to the original IFC standard. These two first criteria are
thus very important here, which is not the case in the recent
proposal by Hoang [46] andHoang and Törmä [47]. The propos-
al by Krima et al. [41] and Barbau et al. [24] takes our first two
criteria in account as well, but additionally aims at supporting
the conversion of EXPRESS schemas other than IFC (more gen-
eral purpose).

The third criterion is considerably less important than the
first two criteria. Essentially, we targeted first at supporting
the conversion of IFC instance files into equivalent RDF files,
and not at the creation of RDF graphs from scratch, using only
the ifcOWL ontology. In most cases, IFC models will likely be
built still in BIM software environments, as they are available
and spread in the industry. The common case will thus
remain to be a one-directional conversion process from BIM
environment into an ifcOWL-compliant RDF graph. Considering
this common case, most instance RDF graphs will already be
checked for consistency in the native BIM tools. As a result,
we can opt to not convert all procedural RULE and FUNCTION

declarations in the native EXPRESS schema, which are in any
case better handled in a native CWA BIM tool. If one would
choose to set the third criterion the other way round (i.e. fo-
cusing on the creation of ifcOWL-compliant RDF graphs from
scratch), then the ifcOWL ontology needs to include as many
as possible RULE and FUNCTION declarations. This is to some
extent possible, considering the proposals made in Terkaj
and Sojic [23].
Fragment 1. Printout of the SCHEMA declaration present in IFC4_ADD1.exp.
1.4. Paper outline

Relying onprevious conversion proposals, we have looked in
close details at the various options of converting EXPRESS
schemas into OWL ontologies, so that we are able to propose
and recommend the required ifcOWL ontology. The following
outline is used to document this research.
• Section 2 will first outline the key characteristics of an
EXPRESS schema, providing all the details that are relevant
to take the conversion decisions.

• Section 3 presents the proposed EXPRESS to OWL conversion
procedure. This section is similarly detailed to point out also
the exceptions to the general conversion procedure.

• In Section 4, we briefly present our implementation(s) of the
conversion procedure in executable software tools. The focus
of this section (and of this article) is on the conversion of
EXPRESS toOWL, i.e. only about the ifcOWL TBox. The section,
however, also includes a brief indication of how this TBox can
be exploited to generate ABox data.

• Section 5, finally, compares the proposed conversion proce-
dure with the results of previous proposals, which were
only briefly touched in Section 1.3.3.
2. The structure of EXPRESS

In this section, we will first look into the key characteristics
and content of an EXPRESS schema. We will use the
IFC4_ADD1.exp schema [2] as a reference example for this pur-
pose. This brief introduction to EXPRESSwill allow to better ap-
preciate the diverse possible conversion routines presented in
Section 3.

In EXPRESS, a number of declarations can bemade. A distinc-
tion is hereby made between the declarations enumerated
below.

• TYPE declarations [4, p.38]
• ENTITY declarations [4, p.40]
• SCHEMA declarations [4, p.62]
• CONSTANT declarations [4, p.63]
• ALGORITHM declarations [4, p.64 (cf. FUNCTION and PROCE-

DURE declarations)]
• RULE declarations [4, p.72]

An EXPRESS schema contains exactly one SCHEMA declara-
tion that covers the entire file, thereby assigning the body of
this file to the particular schema declaration. An EXPRESS sche-
mamay import definitions from other schemas using the REF-

ERENCE FROM keywords. The IFC schema is self-contained and
there is no import of other schemas (see Fragment 1).

Image of Fragment 1

Fragment 3. Example of the defined data type declaration IfcBoxAlignment, which
refers to another defined data type (IfcLabel), which in turn refers to a simple data
type STRING of maximum 255 characters.

106 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
At the end of the IFC4_ADD1.exp schema, there are two
RULE declarations and 45 FUNCTION declarations, which will
be briefly covered further on in this section. All the other
declarations make use of the TYPE and ENTITY keywords
that represent and reference a number of EXPRESS data
types. A distinction is hereby made between the following
data types:

• Simple data types [4, p.20], i.e. NUMBER, REAL, INTEGER, LOG-
ICAL, BOOLEAN, STRING, BINARY

• Aggregation data types [4, p.23], i.e. ARRAY, LIST, BAG, SET

• Named data types [4, p.28], i.e. entity data types and defined
data types

• Constructed data types [4, p.29], i.e. enumeration data types
and select data types

• Generalised data types [4, p.35].

These data types will be briefly documented in the next sub-
sections by following the order in which they appear in an IFC
schema and skipping only the generalised data types since they
are not regularly employed in an IFC schema (reference schema
IFC4_ADD1.exp).
2.1. Simple data type declarations

Simple data types (i.e. NUMBER, REAL, INTEGER, LOGICAL,
BOOLEAN, STRING, BINARY) are commonly used in an IFC sche-
ma. These data types are referenced by the other data type dec-
larations as shown in the following subsections.
2.2. Defined (named) data type declarations

Apart from the simple data type declarations, the defined
(named) data type declarations are the most basic elements
that are used in an EXPRESS schema. These declarations are typ-
ically very short statements, eventually providing the building
blocks used by more complex data types in the EXPRESS sche-
ma. Diverse defined data types can be found in an IFC EXPRESS
schema and most declarations are similar to the one given in
Fragment 2 (IfcAreaDensityMeasure), where a type name
is given (e.g. IfcAreaDensityMeasure) togetherwith a refer-
ence to a simple data type (e.g. REAL).
Fragment 2. Printout of the defined data type declaration IfcAreaDensityMeasure.
Some defined data type declarations refer to other
defined data types instead of a simple data type. For instance,
the data type IfcBoxAlignment (see Fragment 3) refers to
another defined type (i.e. IfcLabel). Fragment 3 provides
also an example WHERE rule restriction, namely WR1. This is a
local rule that only applies to the type in which it is declared.
In the case of Fragment 3, the local rule specifies that the data
type can be instantiated only using the values provided in the
list.
2.3. Aggregation data type declarations

Some of the defined data type declarations refer to an aggre-
gation data type. These aggregation data types are declared lo-
cally and can make use of one of the following containers:
ARRAY, LIST, BAG, and SET.

The LIST and ARRAY data types represent an ordered collec-
tion of elements, whereas the BAG and SET data types represent
unordered collections [4, p.23]. Three examples are given in
Fragment 4, namely IfcCompoundPlaneAngleMeasure,
IfcLineIndex, and IfcComplexNumber. For each of
these examples, cardinality restrictions are declared
between brackets. As an example, the data type
IfcCompoundPlaneAngleMeasure is defined as a LIST with
minimum 3 and maximum 4 INTEGER elements. In addition,
it can be noticed that the values of these INTEGER elements
are restricted using WHERE rules.

The IfcLineIndex in Fragment 4 refers to an ordered LIST

of at least 2 elements. No upper boundary is declared for the
LIST size. The IfcComplexNumber type refers to a fixed-size,
indexed list (ARRAY). In this case, the indices between brackets
indicate the “lowest and highest indices which are valid for an
array value of this data type” [4, p.24]. Therefore, an instance of
IfcComplexNumberwill be an array of exactly two REAL sim-
ple data type instances, indexed 1 and 2.

Image of Fragment 2
Image of Fragment 3

Fragment 4. Example of three data type declarations referring to aggregation data types
(LIST, ARRAY).

Fragment 6. Printout of the ENUMERATION data type declaration IfcAddressTypeEnum,
which refers to a list of the allowed values within this enumeration (OFFICE, SITE, HOME,
DISTRIBUTIONPOINT and USERDEFINED).

107P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
An appropriate example of a SET aggregation data type dec-
laration is available in Fragment 5. In this Fragment, an ENTITY

IfcArbitraryProfileDefWithVoids is declared with one of
its attributes (namely InnerCurves) pointing towards a SET

of IfcCurve data types. This SET is an unordered aggregation
of different IfcCurve instances [4, p.27].
Fragment 5. Printout of the IfcArbitraryProfileDefWithVoids entity data type
declaration in EXPRESS including an attribute declaration that refers to a SET

aggregation data type declaration.

Fragment 7. Printout of the SELECT data type declaration IfcMetricValueSelect,
which refers to a number of allowed data type instantiations: IfcAppliedValue,
IfcMeasureWithUnit, IfcReference, IfcTable, IfcTimeSeries, and IfcValue.
The IFC4_ADD1 schema does not include BAG aggregation
data types, so we do not present any example here. The
definition of a BAG aggregation data type is comparable to
the definition of a SET aggregation data type. A BAG data type
can, however, contain the same instances more than once,
whereas SET data types can only contain different elements
[4, p.26].
2.4. Constructed data type declarations

Two types of constructed data types can be declared
in an EXPRESS schema, namely ENUMERATION (e.g.
IfcDistributionSystemEnum) and SELECT (e.g.
IfcActorSelect).
2.4.1. Enumeration data type declarations
An enumeration data type declaration is identified by the

keyword ENUMERATION, as shown in Fragment 6. Any instanti-
ation of such data type should refer to one of the values listed in
the enumeration.
2.4.2. Select data type declarations
A select data type declaration is identified by the keyword

SELECT, as shown in Fragment 7. Any instantiation of such
data type should refer to one instance of the listed types or
entities. It must be noted that a select data type declaration
might include various other EXPRESS data types, including
defined (named) data types, other select data types, and
entity (named) data types. The declaration of the
IfcMetricValueSelect select data type represents an exam-
ple of such a mixture, since it lists one defined (named) data

Image of Fragment 4
Image of Fragment 5
Image of Fragment 6
Image of Fragment 7

108 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
type (i.e. IfcValue) and five entity (named) data types (i.e.
IfcAppliedValue, IfcMeasureWithUnit, IfcReference,
IfcTable, and IfcTimeSeries).
2.5. Entity (named) data type declarations

Entity (named) data type declarations are identified by the
keyword ENTITY and form most of the content of an
EXPRESS schema in the case of IFC. An example declaration
is given in Fragment 8, namely IfcBSplineCurve. After
the name of the entity data type, a specification can be
Fragment 8. Printout of the entity (named) data type declaration IfcBSplineCurve.

Fragment 9. Printout of the entity (named) data type declaration IfcObject.
given of the hierarchical structure through statements that
make use of the keywords SUPERTYPE and SUBTYPE. In this
case, IfcBSplineCurve is an abstract supertype of
IfcBSplineCurveWithKnots, implying that only
IfcBSplineCurveWithKnots can be explicitly instantiated
(i.e. no IfcBSplineCurve instances are allowed) while
inheriting all the properties from IfcBSplineCurve.
The IfcBSplineCurve entity is also a SUBTYPE of
IfcBoundedCurve. An entity data type can have multiple
supertypes and multiple subtypes [4].

The declaration of the entity attributes follows the declara-
tion of the hierarchical structure. It is possible to declare explic-
it, derived, and inverse attributes [4, p.41]. These attributes
are defined exclusively within the scope of the entity data
type under which they are declared, and they establish a
relationship with other data types that are declared elsewhere
in the EXPRESS schema (i.e. simple data types, named data
types, aggregation data types, constructed data types,
entity data types). It is also possible to refer to two-
dimensional aggregations, such as the LIST of LIST elements
that can be found in IFC4_ADD1.exp (cf. the attribute
ControlPointsList of entity IfcBSplineSurface).

A specific kind of attribute that can be defined for an entity
data type is a derived attribute, identified by the keyword DE-

RIVE. These are typically attributes that can be derived from
the other entity data type attributes through simple rules or
more complex routines. In the case of the ControlPoints at-
tribute in Fragment 8, for instance, a reference is made to the
declared FUNCTION IfcListToArray() in order to calculate
the value of the ControlPoints attribute.

A second example of an entity data type declaration is given
in Fragment 9 for IfcObject. This Fragment shows the usage
of the OPTIONAL keyword, implying that all attributes without
this annotation are required attributes in the definition of an in-
stance of such an entity data type.
Furthermore, Fragment 9 shows the usage of inverse attri-
butes with the keyword INVERSE. Any such INVERSE state-
ment declares an attribute that is inverse to an attribute that
has been declared elsewhere and in the opposite direction. In
the case of the IsDeclaredBy attribute in Fragment 9, for

Image of Fragment 8
Image of Fragment 9

109P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
example, the attribute going in the inverse direction can be
found in Fragment 10, namely the RelatedObjects attribute
of the IfcRelDefinesByObject entity data type. Finally, the
usage of local WHERE rule declarations within an entity data
type declaration is also displayed in Fragment 9.
Fragment 10. Printout of the entity (named) data type declarationIfcRelDefinesByObject.

Fragment 12. Printout of the RULE declaration IfcSingleProjectInstance.
2.6. FUNCTION declarations

The IFC4_ADD1.exp schema includes 45 FUNCTION

declarations with a variable level of complexity. Fragment 11
shows a simple example FUNCTION declaration that is used
in the declarations of the IfcElementQuantity and
IfcPhysicalComplexQuantity entity data types. The FUNC-
TION IfcUniqueQuantityNames defines (1) what input data
it expects, namely a set of IfcPhysicalQuantity instances,
and (2) what output it generates, namely one simple LOGI-

CAL data type instance. The calculation from input data to
output data is given in the body of the FUNCTION declara-
tion. In the case of the IfcUniqueQuantityNames, the
number of elements in the argument is counted and the re-
sult is returned.
Fragment 11. Printout of the FUNCTION declaration IfcUniqueQuantityNames.

Fragment 13. Definition of the ifcOWL ontology.
2.7. RULE declarations

The EXPRESS language allows the declaration of rules that
“permit the definition of constraints that apply collectively to the
entire domain of an entity data type, or to instances of more
than one entity data type.” [4]. As an example, Fragment 12
shows one of the two RULE declarations made in the
IFC4_ADD1.exp schema. The head of this RULE declaration
indicates which entity data types are affected (i.e.
IfcProject), whereas the body of the declaration indicates
what restrictions apply to these entity data types (i.e. the
number of IfcProject instances in a model must not be
larger than one).
3. The EXPRESS to OWL conversion pattern

This section presents the proposed EXPRESS to OWL conver-
sion pattern that can be used to generate an ifcOWL ontology.
We will outline a reasonable number of conversion options
whenever they are available and relevant in the overall conver-
sion strategy. Section 5 will summarise a comparison of the dif-
ferent conversion patterns available in the literature. The
structure of the previous section will be followed by matching
the EXPRESS declaration examples (Fragments 1 to 12) with
corresponding OWL declarations (Fragments 13 to 43) using
the Turtle syntax [12].

Image of Fragment 10
Image of Fragment 11
Image of Fragment 12
Image of Fragment 13

110 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
3.1. OWL header

We propose to adopt a unique URI (namespace) for each
ifcOWL ontology corresponding to a distinct EXPRESS schema
of IFC. Currently, this results in four URIs for IFC2X3.exp,
IFC2X3_TC1.exp, IFC4RC4.exp, and IFC4_ADD1.exp, respective-
ly. We propose to use the following URI design for these ontol-
ogies: http://www.buildingsmart-tech.org/ifcOWL/

[schemaName], with [schemaName] being one of the four sche-
ma names. Fragment 13 shows in what this results in OWL
together with a few Dublin Core (dce) metadata annotations
added to the ontology declaration, indicating details about the
origins of the OWL ontology. The vann metadata annotations
indicate preferred namespace URI and namespace prefix, and
the cc:license property indicates which license is associated
to the ontology.

Alternatively, one could decide to use one version-
independent URI for the ifcOWL ontology. Such a URI
would then correspond to an equivalent ifcOWL namespace
that is used as base URI for the definition of the key ontology
entities (i.e. classes, object properties and data properties).
In this case, the ifcOWL namespace would not change in
time when the ifcOWL is updated after a new release of
the IFC standard, thus supporting backward compatibility
and re-use of data sets generated according to previous
IFC releases. In this case, the piece of information about
the specific IFC release that was used to generate the
ifcOWL ontology can be stored using an additional annota-
tion owl:versionIRI.

In theory, the IFC schema in EXPRESS is backward compati-
ble, thus the version-independent alternative should be
implementable. However, as the IFC schema changes quite a
lot from version to version, this backward compatibility is
Fragment 14. Printout of the ontologies that are used by the proposed ifcOWL
ontology.
hard to securelymaintain using onlyOWL constructs in one sin-
gular ifcOWL namespace. Therefore, we decided to opt for sep-
arate namespaces for the ontology URI (one namespace for
each IFC schema). To ensure backward compatibility, one
could add relations between the (four) different ifcOWL ontol-
ogies afterwards. This will likely allow a safer implementation
of the backward compatibility.

At the outset of any OWL ontology, a number of other ontol-
ogies are referenced, thereby declaring the appropriate pre-
fixes. In the proposed ifcOWL ontology, the namespace
prefixes listed in Fragment 14 are declared. We recommend
the usage of a separate namespace for classes and properties
that are specific to EXPRESS, namely http://purl.org/

voc/express#. This was also proposed by Hoang [46] and
Hoang and Törmä [47]. In this namespace, we can put ‘helper’
class and property declarations that are not specific to IFC, but
rather to EXPRESS itself. We will see examples of how this sep-
arate namespace is used in the following sub-sections.
3.2. Simple data type declarations

The notion of a data type in EXPRESS is considerably differ-
ent from a data type in OWL, since all declarations made in
EXPRESS are data type declarations. InOWL, however, a distinc-
tion is made between owl:Class and rdfs:Datatype decla-
rations. In other words, the EXPRESS data type declarations
could map both to owl:Class and rdfs:Datatype

declarations in OWL, depending on which kind of EXPRESS
data type is considered. For example, the simple data type dec-
laration STRINGwould map very well to the xsd:string data
type inOWL. On the other hand, the entity data type declaration
given in Fragment 9 maps far more naturally to an owl:Class

declaration in OWL. This is a conversion decision that should be
well-considered, as it hasmany implications further on in using
the RDF instances according to the ifcOWL ontology.

In the case of the simple data type declarations in EXPRESS
(e.g. REAL, INTEGER, and so forth), these can be converted to
OWL data type or class declarations. Fragments 15 and 16 give
an example of both options for the case of the simple data
type REAL.

If the rdfs:Datatype conversion option is adopted
(see Fragment 15), then an instance of an EXPRESS simple
data type (e.g. REAL) is converted to an RDF typed literal (e.g.
xsd:double). If the owl:Class conversion option (see
Fragment 16) is chosen, then an instance of an EXPRESS simple
Fragment 15. Printout of the RDF graph representation for one of the simple data
types (REAL) in the ifcOWL schema, illustrating the option to convert it into an
rdfs:Datatype.

http://purl.org/vocab/express/
http://purl.org/vocab/express/
Image of Fragment 14
Image of Fragment 15

Fragment 16. Printout of the RDF graph representation for one of the simple data
types (REAL) in the ifcOWL schema, illustrating the option to convert it into an
owl:Class.

111P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
data type is converted to an individual of a class (e.g.
express:REAL) and this individual is in turn linked to
an RDF typed literal via a functional owl:DatatypeProperty.
The required owl:DatatypeProperty must be properly
declared by defining its domain, range and label (e.g.
see Fragment 17 for express:hasDouble). Note that
express:REAL and express:hasDouble are declared within
the express namespace, as they are not concepts coming from
IFC, but from EXPRESS. Such concepts are placed in a separate
namespace, in order to be able to distinguish them from the
concepts specific to IFC, but also to allow reuse of such concepts
in OWL ontologies for EXPRESS schemas other than IFC. The do-
main declaration is done in the form of an owl:unionOf

construct, because, in some cases, several EXPRESS simple
data types (e.g. REAL and NUMBER) map to the same xsd

datatype (xsd:double). An overview of the proposed map-
ping between the simple data types in EXPRESS and the XSD
data types in OWL is given in Table 1.

If a conversion routine via an owl:Class declaration
and an accompanying owl:DatatypeProperty is adopted,
then an extra restriction with universal quantifier
(owl:allValuesFrom) can be added to the owl:Class decla-
ration for the corresponding datatype property. An example of
such a restriction can be seen in Fragment 16 for the property
express:hasDouble.
Fragment 17. Printout of the RDF graph representation of the express:hasDouble

datatype property as it would be required in combination with the owl:Class

declaration given in Fragment 16.
Table 1 includes one peculiar element, namely the simple
data type LOGICAL. This simple data type is similar to the
BOOLEAN simple data type, except that it can have three values
instead of two: TRUE, FALSE, and UNKNOWN. There is no XSD
data type that has these three values. This is normal, because,
setting this third value would actually make little sense in the
(semantic) web domain. Namely, the OWA states exactly that
anything that is not set is by default UNKNOWN. Hence, it is pos-
sible to consider this LOGICAL data type as equal to BOOLEAN,
as is also proposed in Table 1. Whenever an IFC file happens
to include this UNKNOWN value, it can simply be discarded. We
have opted for this option in our proposal, as this stays true to
the original EXPRESS schema and makes good sense in the
OWA of OWL2 DL.

Alternatively, the LOGICAL simple data type could be explic-
itly converted into a separate OWL class that enumerates the
three named individuals express:TRUE, express:FALSE,
and express:UNKNOWN (see Fragment 18). This can be
further constrained by adding an owl:oneOf constraint
to the express:LOGICAL class, which indicates that
the express:LOGICAL class contains exactly the three
given individuals express:TRUE, express:FALSE, and
express:UNKNOWN.
Fragment 18. Printout of the RDF graph representation of the express:LOGICAL class
and its three named individuals.

Image of Fragment 17
Image of Fragment 18
Image of Fragment 16

112 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
In summary, for EXPRESS simple data types, we can distin-
guish the conversion options that are listed in Table 2. Option
1 was documented in Fragment 15. In this option, a LOGICAL

will have to be converted into a datatype that is equivalent to
xsd:boolean. Option 2 was documented in Fragments 16
and 17, with LOGICAL eventually pointing again to the
xsd:boolean. Option 3 was documented in Fragments 16
and 17, with LOGICAL exceptionally converted as in Fragment
18. Herein we propose to follow option 2.
Fragment 19. Printout of the RDF graph representation for the IfcAreaDensityMeasure

Fragment 20. Printout of the RDF graph representation for the IfcAreaDensityMeasure
3.3. Defined (named) data type declarations

As shown in Fragments 2 and 3, a defined (named) data type
declaration in EXPRESS can refer either to a simple data type or
to another defined (named) data type. The conversion of these
defined (named) data type declarations thus depends in
part on the way in which simple data types are converted,
as rdfs:Datatype declarations or as owl:Class

declarations. Both conversion options are given for the
IfcAreaDensityMeasure declaration in Fragments 19 and
20, respectively. These conversion options can also be used
for the conversion of defined (named) data type declarations
that refer to other defined (named) data types, such as
IfcBoxAlignment (Fragment 3).

Hereinwe decided to choose the owl:Class conversion op-
tion (see Fragments 16 and 20) because, even if it leads to an
overhead in terms of triples in an RDF graph, this is the only so-
lution that guarantees a safe conversion from EXPRESS to OWL,
as it will be better explained in Section 3.5.2.
Fragment 21. Printout of the additional OWL statements that allow to represent
ordered lists, including the express:List class declaration and the three
object property declarations express:hasContents, express:hasNext, and
express:isFollowedBy.
3.4. Aggregation data type declarations

In the following subsections we present the conversion pat-
tern for aggregation data types (i.e. BAG, LIST, SET, ARRAY),
while referring to the relevant EXPRESS declaration examples
given before (i.e. IfcCompoundPlaneAngleMeasure,
IfcLineIndex, IfcComplexNumber, and the InnerCurves

attribute of IfcArbitraryProfileDefWithVoids). The BAG

data type does not appear in the IFC4_ADD1 schema, so we de-
cided not to devote a separate section on the conversion of this
aggregation data type. If necessary, the general-purpose conver-
sion pattern for BAG proposed by Barbau et al. [24] can be
adopted.
3.4.1. LIST aggregation data types
Lists (or any kind of ordered sequence) cannot be easily rep-

resented in an RDF graph, because RDF relies on a triple struc-
ture that inherently allows to link only two concepts, not
collections of multiple concepts (Fig. 1). Lists are thus typically

Image of Fragment 19
Image of Fragment 20
Image of Fragment 21

Fragment 23. Printout of the RDF graph representation for class INTEGER_List, which
relies on the definitions presented earlier in Fragment 21.

113P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
represented in RDF by linking each concept to the next using
rdf:List, rdf:first and rdf:rest declarations (see [14]
and [48]). When using this construct in an OWL ontology, how-
ever, the ontology goes beyond OWL2 DL expressiveness
(see Fig. 2), thus impeding the use of generally available seman-
tic web tools. This would violate the first criterion that we have
set in Section 1.3.4 (i.e. to keep ifcOWL in OWL2 DL). Therefore,
this conversion routine is not a viable option.

There have been suggestions to represent ordered lists in a
fashion alternative to therdf:List, rdf:first and rdf:rest

declarations [48]. Most of these alternative suggestions rely on
additional statements that correctly define the relations be-
tween the elements of a list to remain in OWL2 DL expressive-
ness, so that the first conversion criterion can be met. Herein,
our suggested solution relies on the class express:List to
represent the list elements as proposed by Drummond et al.
[48]. Each element of the list is related to the following element
in the list by using the object property express:hasNext,
that is a sub-property of the transitive property
express:isFollowedBy. Finally, each list element is linked
with its actual content via the object property
express:hasContents. These definitions (see Fragment 21)
are declared in the express namespace so that they can be
used in other ontologies in different contexts, since they are
not specific to IFC but rather to EXPRESS.

In order to be fully compliant with the list proposal by
Drummond et al, [48], one could also include an
express:EmptyList class declaration, as shown in
Fragment 22. Instances of this class, which is declared as a
subclass of express:List, can then be used to mark the
end of the list. We did not include this express:EmptyList
in our proposal, as it does not seem to bring much added
value.
Fragment 22. Printout of the express:EmptyList class declaration that could be added
to the statements in Fragment 21 in order to be fully compliantwith Drummond et al. [48].
Any specific ordered list can be defined as a subclass
of express:List while specialising the relevant
restrictions. Fragment 23 shows how the class
express:INTEGER_List is used to define an item in a
list of INTEGER instances, while restrictions are used
on object properties express:hasContents and
express:hasNext to specify that the content of the
list item must be an INTEGER instance and the next
item in the list must be an INTEGER_List instance, re-
spectively. All these class declarations are declared within
the express namespace.
Fragment 24. Printout of the RDF graph representation for the
IfcCompoundPlaneAngleMeasure defined data type, which refers to a LIST

aggregation data type declaration, as displayed earlier in Fragment 4.

Image of Fragment 23
Image of Fragment 24
Image of Fragment 22

114 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
IfcCompoundPlaneAngleMeasure is defined as a list of
INTEGER instances (see Fragment 4) and, therefore, it is con-
verted as a subclass of express:INTEGER_List (see
Fragment 24).

The size limits of aggregation data types can be bounded or
unbounded. For instance, IfcCompoundPlaneAngleMeasure
has a lower bound equal to three and an upper bound
equal to four, whereas IfcLineIndex has a lower bound
equal to two and an unbounded upper limit. The con-
straints on the size of the list could be well defined via car-
dinality restrictions (owl:maxQualifiedCardinality,
owl:minQualifiedCardinality, or
owl:qualifiedCardinality) on the transitive object
property express:isFollowedBy, as shown in Fragment
25 for IfcCompoundPlaneAngleMeasure. Because
the cardinality restrictions are set on the transitive object
property express:isFollowedBy, one should only start
counting after the first instance of express:List. As a re-
sult, if an EXPRESS LIST has at least three elements and at
most four elements, it means that that first instance of
express:List is followed by at least two instances of
express:List and at most three instances of
express:List.

However, the declaration of a cardinality restriction on
a transitive object property would cause ifcOWL to be
outside of OWL2 DL expressiveness [49, Section 8.2],
again violating our first criterion. An alternative way in
which cardinality restrictions for EXPRESS LISTs might
by expressed, is given in Fragment 26. In this proposal,
cardinality restrictions are not set on the transitive prop-
erty express:isFollowedBy, but instead, universal
(owl:allValuesFrom) and existential quantifiers
(owl:someValuesFrom) are used together with the non-
transitive property express:hasNext, which is allowed in
OWL2 DL and which allows to indirectly set the maximum
and minimum cardinality constraints defined in EXPRESS
schemas. The number of nested restrictions that is added de-
pends on the cardinality that needs to be set. In the case of
IfcCompoundPlaneAngleMeasure, three universal
quantifiers are added (see Fragment 26) to specify that
the fourth item in the list (express:INTEGER_List)
cannot be followed by another item (using an
owl:qualifiedCardinality of 0). Furthermore, two exis-
tential quantifiers are used in Fragment 26 to define a
restriction on property express:hasNext specifying
that the first list item must be followed by an
express:INTEGER_List instance, which in turn
must be followed by another express:INTEGER_List

instance.

The proposal in Fragment 26 can be generalised to constrain
the list size for any data type (e.g. DTypeX) defined as a LIST
aggregation of another data type (e.g.DTypeY). The pseudocode
of Algorithm 1 (see function ListMinSize) can be used to gener-
ate a restriction for theminimum list size (MinSize) if it is great-
er than one, whereas Algorithm 2 (see function ListMaxSize)
generates a restriction for the maximum list size (MaxSize) if
it is greater than one and not unbounded. If the minimum
and maximum size are equal (Size), then Algorithm 3 (see
function ListExactSize) can be employed instead of Algorithms
1 and 2.

Algorithm1. Generation of a restriction to constrain theminimum size
of a LIST aggregation data type.

Algorithm2. Generation of a restriction to constrain themaximumsize
of a LIST aggregation data type.

Unlabelled image
Unlabelled image

115P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
Algorithm 3. Generation of a restriction to constrain the exact size of a
LIST aggregation data type.

The presented conversion procedure for an EXPRESS LIST

is not ideal or highly performing. As outlined in Pauwels et al.
[50] and de Farias et al. [51], more elegant options are
Fragment 25. Printout of the RDF graph representation for the
IfcCompoundPlaneAngleMeasure defined data type, which refers to an
aggregation data type, as displayed earlier in Fragment 4.

Fragment 26. Alternative definition of cardinality restrictions on LIST classes,
using a specific number of universal (owl:allValuesFrom) and existential
quantifiers (owl:someValuesFrom) on the non-transitive property
express:hasNext.
available by replacing the verbose and complex LIST con-
structs with (1) semantically more meaningful and more di-
rect object properties or (2) using datatype properties
pointing to Well-Known Text (WKT) values. Examples of
these two alternative approaches can be found in Pauwels
et al. [50]. Because they cannot be generally applied and
they diverge from the original EXPRESS schema, however,
these alternatives are not appropriate options for the general
purpose ifcOWL ontology targeted in this article. In our pro-
posal, we therefore chose to adopt the definition given in
Fragment 26, which is as rich as the original EXPRESS repre-
sentation and remains in OWL2 DL, and thus fits best to our
conversion criteria.

Unlabelled image
Image of Fragment 25
Image of Fragment 26

Fragment 29. Printout of the RDF graph representation for the
IfcPropertySetDefinitionSet defined data type, which refers to a SET

aggregation data type in EXPRESS.

Fragment 27. Printout of the RDF graph representation for the IfcComplexNumber

defined data type, which refers to an ARRAY aggregation data type declaration, as
displayed earlier in Fragment 4.

116 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
3.4.2. ARRAY aggregation data types
ARRAY data type declarations (see IfcComplexNumber

in Fragment 4) are not much different from LIST data type
declarations, the one difference being that an ARRAY is
fixed in size whereas a LIST is not fixed in size [4, p.24].
We propose to use the conversion routine for LIST data type
declarations also for ARRAY data type declarations (see
Fragment 27), adding also a restriction to set the size of the
Fragment 28. Partial printout of the owl:Class declaration for the
IfcArbitraryProfileDefWithVoids entity data type declaration displayed in
Fragment 5, including a cardinality restriction on the minimum size of the set
(cf. SET[1:?] of IfcCurve).
array. Such restriction can be generated by exploiting the
pseudocode in Algorithm 3.
3.4.3. SET aggregation data types
The SET aggregation data types are unordered aggregations

of instances that are supposed to be different from each other
[4, p.27]. This is naturally represented in OWL through a com-
mon non-functional object property that can be assigned an
unlimited number of times to the same instance. Cardinality
Fragment 30. Printout of the RDF graph representation for the IfcAddressTypeEnum

enumeration data type declaration displayed earlier in Fragment 6.

Image of Fragment 28
Image of Fragment 29
Image of Fragment 30
Image of Fragment 27

117P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
restrictions for this non-functional property allow to
represent possible constraints on the size of the set, as
defined in the EXPRESS schema. An example of how this
can be converted is given in Fragment 28 for the
IfcArbitraryProfileDefWithVoids entity data type dec-
laration given earlier in Fragment 5.

The SET aggregation data type declaration in Fragment 4 can
be represented as in Fragment 28 because it is declared within
an EXPRESS attribute declaration. This attribute declaration
maps well to an OWL property declaration for which value and
cardinality restrictions can be declared (see Section 3.6 for fur-
ther details). However, in the IFC4_ADD1 schema, theSET aggre-
gation data type is also used in the declaration of the defined data
type IfcPropertySetDefinitionSet. Unfortunately, in this
case, no attribute is involved and, therefore, it is not possible to
convert the relation between IfcPropertySetDefinitionSet

and IfcPropertySetDefinition by means of a restriction on
a non-functional OWL object property that maps an attribute
declaration (since no such property is available). The best possi-
bility to copewith this one case is likely tomodify the original IFC
schema in EXPRESS and replace the defined data type
IfcPropertySetDefinitionSet with an attribute declaration
that points to a SET of specific EXPRESS data types. This would
allow to use the conversion procedure just explained, using
non-functional OWL object properties.

As such a modification of the EXPRESS schema lies
beyond our capacities, however, we propose to convert this ex-
ception as displayed in Fragment 29, namely by defining
IfcPropertySetDefinitionSet as an owl:Classwith a uni-
versal restriction (owl:allValuesFrom) on the predefined ob-
ject property express:hasSet. This object property is not
directly converted from the EXPRESS schema and, therefore, it
represents an overhead that is required to cope with the
misalignment between EXPRESS and OWL. The constraint
on the minimum size of the SET is converted using an
owl:minQualifiedCardinality restriction (see Fragment 29).
Fragment 32. Printout of the RDF graph representation for the IfcAddressTypeEnum

enumeration data type declaration displayed earlier in Fragment 6, including
the declaration of its individuals, without renaming of named individuals and
3.5. Constructed data type declarations

The ENUMERATION data type and SELECT data type declara-
tions are quite peculiar of the EXPRESS language and have no
immediate equivalent in OWL. These data types could be con-
verted into owl:Class or rdfs:Datatype declarations. We
Fragment 31. Printout of the RDF graph representation for the SITE_of_

IfcAddressTypeEnum named individual referenced by the IfcAddressTypeEnum

class declaration in Fragment 30.

without the oneOf restriction. Note that we only list 10 of the 161 classes of which
ifc:USERDEFINED is an instance.
propose to choose the owl:Class option, as the following sub-
sections will illustrate.
3.5.1. Enumeration data type declarations
A first conversion option (option 1) consists in

converting any ENUMERATION data type into an owl:Class

that is equivalent to one of a limited set of named

Image of Fragment 31
Image of Fragment 32

Fragment 33. Printout of the RDF graph representation for the IfcMetricValueSelect
select data type declaration displayed earlier in Fragment 7.

Fragment 34. Partial printout of the RDF graph representation for the IfcBSplineCurve
entity (named) data type declaration displayed earlier in Fragment 8 (class header).

118 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
individuals (owl:NamedIndividual), each individual
representing one enumeration item. Therefore, the ENU-

MERATION data type declaration of IfcAddressTypeEnum
given earlier in Fragment 6 is converted into the represen-
tation reported in Fragment 30.

Since the enumeration items are definedwithin the scope of
the ENUMERATION, it may happen that the same name is used
for items belonging to different enumerations. Because an
owl:NamedIndividual does not have such a local scope, am-
biguity might occur and result in inconsistencies. Therefore,
while converting the enumeration to an owl:Class, we pro-
pose to uniquely name its set of named individuals by adding
a suffix according to the following naming convention:
[NameOfNamedIndividual]_of_[EnumerationName]. This
naming convention is followed if and only if such an ambiguity
indeed occurs. For the example in Fragment 30, ifc:HOME and
ifc:DISTRIBUTIONPOINT are not renamed, whereas the
other owl:NamedIndividual declarations are renamed to
guarantee a unique URI.

As a slight variation (option 2), one could opt to follow this
naming convention for all enumeration items, but this would
result in notably more changes compared to the original IFC
schema, which would violate the second and third criteria
given in the Introduction (keep as closely as possible to the
original IFC schema and to the corresponding IFC instance
file). Anyhow, the original name of the enumeration item,
as defined in the EXPRESS schema, is preserved by the annota-
tion rdfs:label added to each owl:NamedIndividual

(see Fragment 31). Finally, each enumeration class is defined
as a subclass of the predefined class express:ENUMERATION
(see Fragment 30).

Two alternative conversion options were suggested by
Krima et al. [41], Barbau et al. [24] (option 3) and Hoang [46],
Hoang and Törmä [47] (option 4). Both options enforce
no renaming, and the proposal by Krima et al. [41], Barbau
et al. [24] (option 3) additionally avoids the use of the
owl:oneOf restriction. Indeed, named individuals (such as
ifc:USERDEFINED)may belong tomultiple classes. This is fea-
sible in OWL and results in a less specific, but also less restricted
ifcOWL ontology, as one can see in Fragment 32. Note that we
only list 10 of the 161 classes in Fragment 32 of which
ifc:USERDEFINED would in this case be an instance.

The four conversion options documented above are
summarised in Table 3. Herein we suggest to adopt the first
conversion option, i.e. converting any ENUMERATION data
type into an owl:Class that is equivalent to one of a limited
set of named individuals (owl:NamedIndividual),
while minimising the number of renaming, as shown in
Fragment 30.
3.5.2. Select data type declarations
We propose to convert any SELECT data type into an

owl:Class that is equivalent to a union of a limited set of
owl:Class statements (option 1). Thus, the SELECT data
type declaration given earlier in Fragment 7 is converted
into the representation given in Fragment 33.

As an alternative (option 2), it is possible to replace
the owl:unionOf restriction with a simple hierarchical
rdfs:subClassOf declaration, which would result in a less re-
stricted, but also less specific ifcOWL ontology (there would be
no distinction between the conversion of SUBCLASSOF declara-
tions and SELECT data type declarations in EXPRESS). This alter-
native option is adopted by Krima et al. [41], Barbau et al. [24],
Hoang [46], and Hoang and Törmä [47]. These two main
conversion options are summarised in Table 4. Herein we

Image of Fragment 33
Image of Fragment 34

Fragment 36. Printout of the RDF graph representation for the object property

119P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
suggest to adopt the first conversion option, i.e. converting
any SELECT data type into an owl:Class that is equivalent
to a union of a limited set of OWL classes.

In both options summarised in Table 4, the conversion of
SELECT data type declarations is rather straightforward, but it
is in both cases of crucial importance because it affects the
whole EXPRESS to OWL conversion strategy. As we anticipated
in Section 2.4.2, a SELECT data type declaration can refer to any
other data type declared in the EXPRESS schema (i.e. simple
data types, named data types, aggregation data types, and enti-
ty data types), as shown in the following critical examples of
IFC4_ADD1.exp:

• IfcColourOrFactor includes the entity data type
IfcColourRgb and the defined data type
IfcNormalisedRatioMeasure.

• IfcTrimmingSelect includes the entity data type
IfcCartesianPoint and the defined data type
IfcParameterValue.

• IfcPresentationStyleSelect includes the enumeration
data type IfcNullStyle and the entity data types
IfcTextStyle, IfcFillAreaStyle, IfcCurveStyle, and
IfcSurfaceStyle.

However, the data types included in a SELECT data type
should all be converted in the same way to avoid inconsis-
tencies in the ifcOWLontology, because anowl:unionOf state-
ment (see Fragment 33) cannot include references to both
owl:Class and rdfs:Datatype instances. As we saw in
Sections 3.2 and 3.3, a simple data type and a defined data
type declaration can be represented both as an owl:Class

and rdfs:Datatype declaration, whereas aggregation data
type and entity data type declarations (see next Section 3.6)
must be converted into owl:Class declarations. If the simple
data type and defined data type declarations were converted
into rdfs:Datatype declarations, it would result in an
owl:unionOf statement involving both owl:Class and
rdfs:Datatype.

Therefore, as anticipated in Section 3.3, we propose to
convert all simple data type and defined (named) data
type declarations as owl:Class declarations, thus
Fragment 35. Printout of the RDF graph representation for the object property
ifc:Degree, which is used to convert the entity (named) data type declaration
IfcBSplineCurve displayed earlier in Fragment 38.
choosing for the options given in Fragments 16 and 20.
This decision is consistent with the literature as already
suggested by Schevers and Drogemuller [38] (referring to
the conversion as “objectifying the EXPRESS types into OWL
classes”) and Barbau et al. [24] (referring to the conversion
as “data wrapping”). Finally, each select class is defined as a
subclass of the custom, predefined class express:SELECT

(see Fragment 33).
3.6. Entity (named) data type declarations

There is a common agreement among previous approaches
in the literature to convert EXPRESS entity (named) data type
declarations into owl:Class declarations. Indeed, most of the
elements that are part of an entity data type declaration in
EXPRESS, if not all, have direct parallels in owl:Class

declarations.
3.6.1. Class hierarchy statements
The SUBTYPE OF declaration is converted into a declaration

using rdfs:subClassOf. If the EXPRESS entity is anABSTRACT

SUPERTYPE OF, then the corresponding owl:Class is declared
as a subclass of the union (owl:unionOf) of its subclasses.
Moreover, if the subclasses must be disjoint (see declaration
ONE OF in EXPRESS), then an OWL axiom involving
owl:disjointWith is added to the conversion. Fragment 34
shows the conversion of these core owl:Class

statements, which correspond to the first four lines of the
IfcBSplineCurve entity (see Fragment 8).

In the other lines (besides the first four) listed in Fragment 8,
five regular attributes and two DERIVE attributes are declared.
Herein, for sake of conciseness we avoid to list the conversion
result for all the attributes that are declared for the entity
IfcBSplineCurve (see Fragment 8), but we limit ourselves
to two key reference examples, namely the Degree and
ControlPointsList attributes.
3.6.2. Regular attributes
We suggest to convert any regular attribute declared within

an entity (named) data type declaration as an object property
declaration in OWL with the addition of a proper set of restric-
tions to the declaration of the owl:Class. Only object proper-
ties (and no data properties) are employed to convert the

Image of Fragment 35
Image of Fragment 36

Fragment 38. Partial printout of the RDF graph representation for the IfcBSplineCurve
entity (named) data type declaration displayed earlier in Fragment 8 (restrictions on
property ifc:ControlPointsList of IfcBSplineCurve).

Fragment 37. Partial printout of the RDF graph representation for the IfcBSplineCurve
entity (named) data type declaration displayed earlier in Fragment 8 (restrictions on
property ifc:Degree).

120 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
attributes because all simple data type and defined (named)
data type declarations are converted into owl:Class declara-
tions, as explained in Section 3.5.2.

The suggested conversion for the Degree and
ControlPointsList attributes is shown in Fragments 35
and 36, respectively. Any regular attribute is converted into
an owl:ObjectProperty, while explicitly adding also the
declaration of the domain and range. In these two cases, the
properties are declared as owl:FunctionalProperty

because the maximum cardinality of the attribute is equal
to one. Moreover, we propose to guarantee that each object
property is characterised by one rdfs:domain and
rdfs:range.

Because EXPRESS attributes are defined in the scope of
the entity (see Section 2.4.1), it can occur that multiple
attributes in different entity scopes have the same
name, thus being just homonyms. The uniqueness of the
object property name can be enforced by following a
similar approach adopted to rename enumeration
items with identical names (cf. Section 2.4.1). In this case,
the renaming convention consists in adding a suffix that recalls
the name of the entity where the attribute is defined, i.e.
[NameOfAttribute]_of_[NameOfEntity]. This convention
is different compared to the work by Krima et al. [41], where
the renaming is enforced for all properties, even in case of no
ambiguity, by adding a prefix that recalls the nameof the entity,
i.e. [NameOfEntity]_has_[NameOfAttribute].

Anyhow, as a novelty with respect to the state of
the art, we propose to keep track of the original name of
the attribute by adding an annotation rdfs:label to
each object property. An example is represented by
the conversion of the attribute ControlPointsList into
the ifc:ControlPointsList_of_IfcBSplineCurve

object property (Fragment 36), which has the
original name ControlPointsList as its rdfs:label prop-
erty. Note that the range of the corresponding object property
is not the class ifc:IfcCartesianPoint, but the
class ifc:IfcCartesianPoint_List, because the
EXPRESS attribute ControlPointsList refers to a
LIST.

The range type and cardinality constraints of relevance
for each attribute in EXPRESS are added as restrictions to
the OWL class that acts as the domain of the property.
Fragments 37 and 38 illustrate the declaration of such
restrictions for the object properties ifc:Degree and
ifc:ControlPointsList_of_IfcBSplineCurve of class
ifc:IfcBSplineCurve. A universal quantifier restriction
(owl:allValuesFrom) is added in all cases. For the
examples in Fragments 37 and 38, an additional
owl:qualifiedCardinality restriction is added, with its
value set to one (‘1’), because the original entity
attributes are strictly required and have a maximum
cardinality equal to one (‘1’). The following examples will
show the use of the owl:maxQualifiedCardinality and
owl:minQualifiedCardinality restrictions (Fragments 40
and 43).

Image of Fragment 38
Image of Fragment 37

Fragment 39. Printout of the RDF graph representation for the object property
ifc:ObjectType_of_IfcObject that is used to convert the entity (named) data type
declaration IfcObject displayed earlier in Fragment 9.

121P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
Unfortunately, it is not possible to add explicit
cardinality restrictions on the object property
ifc:ControlPointsList_of_IfcBSplineCurve in order
to represent also the LIST size limits (i.e. minimum two, max-
imumunbounded as defined in Fragment 8) because of themo-
tivations explained in Section 3.4.1. As a workaround, we
propose to add a further restriction using a correct combination
of universal and existential qualifiers to set the minimum list
size. In the example in Fragment 38, the last restriction enforces
the first item of the list to be directly followed by another item,
thus representing a minimum list size equal to two as required.
A further restriction is not needed for the maximum size
because the list is unbounded.

Also in this case the proposal in Fragment 38 can be
generalised to constrain the LIST size for any entity data type
(e.g. EntV) characterised by an attribute (e.g. AttrW) defined
as a LIST of another data type (e.g. DTypeZ). The pseudocode
of Algorithm 4 (see function AttrListMin) can be used to
generate a restriction for the minimum list size (MinSize) if it
is greater than one, whereas Algorithm 5 (see function
AttrListMax) generates a restriction for the maximum list size
(MaxSize) if it is greater than one and not unbounded. If the
minimum and maximum size are equal (Size), then Algorithm
6 (see function AttrListExact) can be employed instead of
Algorithms 4 and 5.

Algorithm 4. Generation of a restriction to constrain the minimum
size of an attribute defined as a LIST aggregation data type. Function
GenRestrMinSize from Algorithm 1 is reused.

Algorithm5. Generation of a restriction to constrain themaximum size
of an attribute defined as a LIST aggregation data type. Function
GenRestrMaxSize from Algorithm 2 is reused.
Algorithm 6. Generation of a restriction to constrain the exact size
of an attribute defined as a LIST aggregation data type. Function
GenRestrExactSize from Algorithm 3 is reused.
3.6.3. DERIVE attributes
Since the DERIVE attributes (e.g. ControlPoints of

IfcBSplineCurve, cf. Fragment 8) depend directly on the
content and structure of other attributes, the conversion of
these attributes should be paired with additional specific
rules, maybe in the form of the Semantic Web Rule Language
(SWRL) [52], that constrain their values to the attributes they
depend on in order to avoid inconsistencies. However, the addi-
tion of rules to the ifcOWLwas considered out of scope, because
the attention is focused mainly on the declarations that are
needed to support the conversion of an IFC file into an RDF
graph (cf. criterion n.3 at the end of Section 1.3). Therefore,
the herein proposed conversion pattern neglects both the
DERIVE attributes and the WHERE rules that can be found in
some of the EXPRESS entity declarations (e.g. rule SameDim in
IfcBSplineCurve, cf. Fragment 8). On the other hand, if
the goal was to instantiate an RDF graph from scratch while
following the ifcOWL ontology and remaining consistent
with the original IFC schema, then it would be required to in-
clude these rules in the ifcOWL ontology to check the consis-
tency of the graph.
3.6.4. The OPTIONAL keyword
The IfcObject entity (named) data type declaration

(see Fragment 9) is converted in a similar fashion as shown
for IfcBSplineCurve, even if two differences need to
be mentioned. First of all, if the OPTIONAL keyword is
used (cf. ObjectType attribute of IfcObject), then

Unlabelled image
Unlabelled image
Unlabelled image
Image of Fragment 39

Fragment 40. Partial printout of the RDF graph representation for the
ifc:IfcObject entity (named) data type declaration displayed earlier in Fragment 9
(owl:maxQualifiedCardinality restriction).

122 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
the attribute is not strictly required and an
owl:maxQualifiedCardinality restriction should
be used. This restriction then replaces the
owl:qualifiedCardinality restriction used otherwise
(see previous Fragments 37 and 38). Fragment 39
shows the declaration of the object property
ifc:ObjectType_of_IfcObject and Fragment 40
then finally shows the application of the
owl:maxQualifiedCardinality restriction to this object
property.
3.6.5. INVERSE attributes
We propose to convert INVERSE attributes (e.g.

IsDeclaredBy attribute of IfcObject) as already shown for
regular attributes, but with the addition of a statement express-
ing the inverse relation (see the conversion of IsDeclaredBy
in Fragment 41).
Fragment 41. Printout of the RDF graph representation for the ifc:IsDeclaredBy

property, which parallels the IsDeclaredBy attribute declared in Fragment 9.
However, the outlined conversion procedure of the
INVERSE attributes is not always safe. Indeed, there are two sit-
uations where these attributes must be ignored, because their
conversion would lead to unwanted results in combination
with a reasoning engine:

• An attribute has two or more INVERSE attributes. This is, for
example, the case of attribute RelatedDefinitions of entity
IfcRelDeclares. This attribute has two inverse attributes:
HasContext of entity IfcObjectDefinition and
HasContext of entity IfcPropertyDefinition. If all these
INVERSE attributes were converted to object properties in
ifcOWL, then a reasoning engine would infer that the two
HasContext object properties are equivalent. Moreover,
other inferences would lead to say that some classes are
equivalent to owl:Nothing.

• A regular attribute or its INVERSE attribute has a LIST or an
ARRAY as its range. Given the particular conversion pattern
needed for ordered lists (see Section 3.4.1), if the INVERSE

attributes were converted to object properties, then there
would be a mismatch between the range of an object prop-
erty and the domain of its inverse. Therefore, a reasoning
engine would infer that the range of the object property is
equal to the intersection of two disjoint classes. An
example of this case is represented by attribute Addresses
of entity IfcPerson and attribute OfPerson of entity
IfcAddress.

As a final example, the conversion of the entity
IfcRelDefinesByObject (cf. Fragment 10) and its
Fragment 43. Partial printout of the RDF graph representation for the
ifc:IfcRelDefinesByObject entity (named) data type declaration displayed
earlier in Fragment 10 (owl:minQualifiedCardinality restriction).

Image of Fragment 40
Image of Fragment 41
Image of Fragment 43

Fragment 42. Printout of the RDF graph representation for the
ifc:Declares_of_IfcObject property, which parallels the Declares attribute
declared in Fragment 9.

Table 2
Overview of the key available conversion options for simple data types, with the proposed
option marked in grey background.

Option 1 rdfs : Datatype LOGICAL
same as BOOLEAN

Option 2 owl : Class
(incl. unionOf)

LOGICAL
same as BOOLEAN

Option 3 owl : Class
(incl. unionOf)

LOGICAL as ENUM

123P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
attribute RelatedObjects shows the use of the
owl:minQualifiedCardinality restriction to convert an
attribute characterised by the use of a SET with a minimum
size greater than zero. The conversion of the attribute
RelatedObjects is shown in Fragment 42, and the partial
conversion of entity IfcRelDefinesByObject is given in
Fragment 43.
3.7. FUNCTION and RULE declarations

We did not handle FUNCTION and RULE declaration types in
the conversion from the EXPRESS schema into an ifcOWL ontol-
ogy, because they are most often used to restrict the content of
an IFC file. In recall of our third criterion in the Introduction, we
aim first and foremost to use this ontology for the conversion of
existing IFC files into equivalent RDF graphs, not at the creation
from scratch of RDF graphs that follow the ifcOWL ontology.
Since the restrictions represented by these FUNCTION and
RULE declarations are normally already checked during the
generation of an IFC file, then the converted RDF graphs should
naturally comply with these FUNCTION and RULE declarations
as well.

Nevertheless, some of these FUNCTION and RULE declara-
tions might be converted into ontology equivalents. A proposal
in this direction is made by Terkaj and Sojic [23]. Yet, most like-
ly, the regular set of OWL class expressions will not suffice, but
the use of an appropriate rule language from the semantic web
Table 1
Overview of the simple data types defined in EXPRESS and the
corresponding XSD datatypes used in OWL.

EXPRESS OWL

NUMBER xsd:double

REAL xsd:double

INTEGER xsd:integer

LOGICAL xsd:boolean

BOOLEAN xsd:boolean

STRING xsd:string

BINARY xsd:hexBinary
domain (e.g. SWRL [52] or N3Logic [53]) might make the infor-
mation still available within a semantic web context.
4. Towards the implemented software tools

4.1. Implementation of the EXPRESS to OWL converter

The proposed EXPRESS to OWL conversion pattern can be
implemented in a number of different algorithms. In our re-
search, we worked on two parallel converters, one in Java, one
in C++. The Java converter does not rely on any existing RDF
library for the conversion process itself. For basic checking of
the consistency of the resulting ifcOWL ontology, the Java con-
verter uses the Jena library [54]. The C++ convertermakes use
of the Redland C libraries [55].

The two converters provide identical ifcOWL ontologies
when receiving as input the IFC4_ADD1.exp schema, thus dem-
onstrating that the general conversion pattern is reproducible
and can be implemented using different programming lan-
guages. The resulting ifcOWL ontology file can be found online,
at [56], as it is produced by the C++ converter. Additionally,
the source code of the Java converter is provided and main-
tained at [57].

Obviously, alternative conversion patterns can be defined
depending on specific requirements. If the usage of highly
performing reasoning engines is required in the application
scenario, then an entirely different conversion pattern may be
implemented, for instance excluding some of themost complex
restrictions added to the ifcOWL ontology that would in this
Table 3
Overview of the key available conversion options for ENUMERATION data types, with the
proposed option marked in grey background.

Renaming oneOf

Option 1 Partial Yes

Option 2 All Yes

Option 3 None No

Option 4 None Yes

Image of Fragment 42
Unlabelled image
Unlabelled image

Table 4
Overview of the key available conversion options for SELECT data types, with the pro-
posed option marked in grey background.

unionOf subClassOf

Option 1 Yes No

Option 2 No Yes

124 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
case not be used (e.g. cardinality restrictions). As a second
example, if it is needed to generate RDF graphs directly
from the ifcOWL ontology and not via an intermediate IFC file,
then the ifcOWL must be enriched by additional rules and
constraints (cf. DERIVE, WHERE, FUNCTION, RULE). Also ifcOWL
ontologies in the OWL2 profiles EL, QL, or RL can be derived
from the proposed ifcOWL ontology, in support of specific use
cases.
4.2. Instantiating the TBox

The focus has been so far on the creation of an ifcOWL ontol-
ogy from an EXPRESS schema of IFC (TBox). This is also the
main contribution of this article. Yet, end users will eventually
mainly use the instances following this ontology (ABox).
There are a number ofways inwhich a TBox can be instantiated.
Herein we do not intend to provide a full and exhaustive
list of the options, including the advantages, disadvantages
and additional remarks, but it is possible to briefly outline the
key options and indicate which routines are more beneficial in
each scenario. We distinguish between (1) the instantiation of
the ifcOWL ontology from scratch and (2) the instantiation of
the ifcOWL ontology from an original IFC-SPF (STEP Physical
File).
4.2.1. ifcOWL instantiation from scratch
One of the most obvious but also most work-intensive

ways to instantiate an ontology is to do it from scratch, using
only an OWL ontology (TBox) as a resource. In this case, one
has two options: either using an ontology editor, such as
Protégé [42], or developing and using a dedicated software
tool that relies on appropriate programming libraries (e.g.
Jena [54] for Java and Redland [55] for C language). The first op-
tion is not recommended, because it costs a lot of work and
time, which is justified for developing an ontology TBox but
not for creating the instances, and because it can easily result
in errors and inconsistencies due to the manual nature of the
work.

The second option is more scalable and reliable. In this case,
an ontology-based application is developed to automate the
procedures of parsing and generation/removal of individuals
in the ABox, thus avoiding time-consuming operations to be
performed manually using an ontology editor. Furthermore,
sophisticated applications will be able to properly parse also
the TBox, thus retrieving the class hierarchy and the restrictions
characterising each class. The analysis of the restrictions plays a
key role to correctly generate new individuals and new rela-
tions between individuals, above all.

The developer of the ontology-based application can proper-
ly set the scope of the instance graph according to the specific
needs. For example, one might choose to create an RDF graph
with only a dozen of the hundreds of the ifcOWL classes and
properties. Alternatively, one might obviously also choose to
extend the scope and build a full ifcOWL instance graph that
is linked with concepts defined in other ontologies, such
as a safety ontology [58], a material library ontology [59],
energy performance related ontologies [60–63], a built heritage
ontology [64–66], or a geospatial ontology [67].

Our implementation work has not focused in this direction,
but more details and examples can be found in Terkaj and
Sojic [23]. In principle, as long as the ifcOWLontology is correct-
ly used while generating instances (using the approach
outlined above), anyone should be able to parse the generated
instance graph. It is thus not really necessary to agree on
strict guidelines about the instantiation of the ifcOWL ontology.
Nevertheless, there are a number of best practices and recom-
mendations. As soon as the ifcOWL ontology is instantiated, it
is typically recommended to be published so that others (not
necessarily everyone) can access the data. In this regard, we
suggest to follow the guidelines that are published for a partic-
ular case in building energy consumption by Radulovic et al.
[68].
4.2.2. Conversion of IFC-SPF files into RDF graphs
The second scenario in which an ifcOWL ontology can be

generated is closely tied to our third criterion. In this scenario,
it is assumed that the regular AEC expert keeps working in
existing BIM software for producing BIM models. These BIM
models can then be exported into IFC-SPF files using regular
IFC exporter plug-ins in the native software. In such a scenario,
which is currently the most common in the AEC domain, IFC-
SPFs are readily available for direct conversion into RDF
graphs that comply with the provided ifcOWL ontology.
What needs to be supplied in this case, is an out-of-the-box ap-
plication that supports the submission of any IFC-SPF and
returns an RDF graph that is compliant with the proposed
ifcOWL ontology. Such an out-of-the-box demo application is
temporarily publicly available at [69], providing the end user
with an RDF graph in TTL syntax after submission of the original
IFC file.
5. Comparison between the output of previous converters
and the proposed converter

Some of the key differences between the proposed conver-
sion pattern and other solutions available in the literature
have already beenmentioned in Section 3. This section presents
a more complete comparison by considering different criteria
and aiming to outline the novel contributions. The alternative

Unlabelled image

125P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
conversion patterns taken as a reference are listed below in re-
verse chronological order:

• the proposal by Hoang and Tӧrmӓ [47] and Hoang [46], 2014
• OntoSTEP, 2009–2012 [24,41]
• the first LDAC proposal, 2012 [43]
• the OWL/SWRL proposal by Zhao and Liu [70], 2008
• the early conversion proposal by Beetz et al. [71,25], 2005–
2009

• the early conversion proposal by Schevers and Drogemuller
[38], 2005

Since the OntoSTEP tool [72] implementing the conversion
pattern by Barbau et al. [24] is freely available, it is possible to
run a detailed comparison between the ifcOWL generated
using the OntoSTEP tool and the ifcOWL resulting from the con-
version procedure herein proposed. A comparison can also be
made with the ontology provided by Hoang and Tӧrmӓ [47].
The comparison is reported in Table 5, where it can be noticed
that our proposal is richer in terms of axioms (21,306 axioms
versus 17,498 for Barbau et al. [24] and 11,009 for Hoang
and Tӧrmӓ [47]. These additional axioms are mainly used
for defining a larger number of inverse and functional proper-
ties, disjoint classes, property ranges, equivalent classes and in-
dividuals. This richness is actually the most important
contribution of this paper, in comparison with existing ap-
proaches. By adding further restrictions and axioms, we aimed
at building an ifcOWL ontology that is semantically closer to
the original IFC schema in EXPRESS, in comparison to the pro-
posals available in the literature.
Table 5
Comparison between the output of the OntoSTEP tool [72], the ontology made available by Ho
from Protégé software tool [42].

Metrics Krima et al. [41],
Barbau et al. [24]

Axioms 17,498
Logical axioms 7971
Classes 1348
Object properties 1778
Data properties 4
Individuals 1155
DL expressivity ALUHN (D)
SubClassOf axioms 4257
EquivalentClasses axioms 0
DisjointClasses axioms 0
SubObjectPropertyOf axioms 186
InverseObjectProperties axioms 0
FunctionalObjectProperty axioms 62
TransitiveObjectProperty axioms 62
ObjectPropertyDomain axioms 1592
ObjectPropertyRange axioms 174
FunctionalDataProperty axioms 0
DataPropertyDomain axioms 7
DataPropertyRange axioms 4
ClassAssertion axioms 1627
AnnotationAssertion axioms 5240
Table 5 reports a quantitative evaluation of the
differences between the three main ontologies considered
here, but it is also useful to consider some fundamental
differences between the available and documented ap-
proaches in terms of criteria and suitable application scenar-
ios (see Table 6), and in terms of key features (see Table 7).
The following subsections will delve into the key technical
differences.

The line in Table 5 about DL expressivity might need a bit
more explanation, although it would lead us too far to go in
full detail here. More details about the different levels of DL ex-
pressivity can be found in Kontchakov and Zakharyaschev [74],
more particularly around slide 18 of the presentation [75]. The
DL expressivity (ALUHN(D),ALCON(D),SROIQ(D)) captures
which kind of DL statements are made in the ontology. AL
stands for Attributive Language, and ALC stands for
Attributive Language with Complements. Furthermore, the H
in ALUHN (D), for example, indicates that the ontology
includes role inclusions or role hierarchies (subPropertyOf);
(D) indicates that datatype properties, data values or data
types are used; the I indicates that inverse properties are
used; and so forth. The S in SROIQ is an abbreviation for
ALC. Instead of using these symbols to explain the differences
between the three ontologies, we will directly refer to the actu-
al type of statements made in the ontologies.

The ontology generated with the OntoSTEP tool [72], which
was considered tofill in Tables 5 and 7, seems to show somedif-
ferences with the conversion pattern documented in Krima
et al. [41], and Barbau et al. [24]. For example, Barbau et al.
[41] proposed to convert LIST cardinality restrictions in a fash-
ion that is similar to what we presented in Algorithms 4 and 5,
ang and Tӧrmӓ [47] and the output of the procedure herein proposed. Statistics retrieved

Hoang and
Törmä [47]

Current proposal (Pauwels and Terkaj, 2016)

11,009 21,306
8591 13,649
1556 1230
854 1578
9 5
1158 1627
ALCON (D) SROIQ(D)
4991 4622
268 266
2429 2429
0 1
0 94
853 1441
0 1
8 1577
6 1576
9 5
10 5
10 5
3 1627
0 3210

Table 6
Differences in criteria and application scenario between the existing conversion procedures and the procedure proposed here.

Criteria differences Krima et al. [41], Barbau et al. [24] Hoang and Törmä [47] Current proposal (Pauwels and Terkaj, 2016)

Criterium 1 General-purpose for all EXPRESS schemas Allow OWL2 DL as well as the EL, QL, RL profiles Remain first and foremost in OWL2 DL
Criterium 2 Remain first and foremost in OWL2 DL Publication of flexible, less restricted linked data Stay true to original IFC schema
Most suitable application
scenario

Publication of all sorts of EXPRESS data
as linked data and combine with other
linked data sets

publication of flexible, less restricted linked data Publication of IFC data as linked data, thereby staying
as close as possible to the original schema in EXPRESS

126 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
but making use of EmptyList. However, this proposal is not
implemented in the OntoSTEP tool [72].
5.1. OWL profile

The goal of obtaining an ifcOWL ontology in OWL2 DL
(SROIQ(D)) was defined as one of the key requirements in
Table 7
Fundamental differences between the existing conversion procedures and the procedure prop

Conversion differences Krima et al. [41],
Barbau et al. [24]

Hoang and Tö

Simple data type Option 2 in Table 2 Option 3 in T
Defined data type OWL class OWL class
Defined data type as an
aggregation SET data type

OWL class – OWL class
– subclassOf
– Cardinality
[73] to define

Defined data type as an
aggregation data type LIST

(or ARRAY)

OWL class – OWL class
– subclassOf
– Cardinality
[73] to define

Constructed SELECT data type Option 2 in Table 4 Option 2 in T
Constructed ENUMERATION data
type

Option 3 in Table 3 Option 4 in T

Entity data type OWL class OWL class
Attribute of entity data type – Non-functional object property – Functional

– Property name always renamed – Property na
– Explicit domains, no explicit ranges – No explicit
– owl:AllValuesFrom restriction – owl:AllVa

– owl:maxCardinality restriction – owl:maxCa

Attribute of entity data type as a
SET

– non-functional object property – Functional

– owl:AllValuesFrom restriction on
a Set class

– owl:AllVa

subclass of Se
– Subclass of
cardinality co
to define the

Attribute of entity data type as a
LIST (or ARRAY)

– Non functional object property – Functional

– owl:AllValuesFrom restriction on
a List (Array)

– owl:AllVa

subclass of Li
– Subclass of
cardinality co
to define the

INVERSE attribute N/A N/A

DERIVE attribute N/A N/A
WHERE rule N/A N/A
FUNCTION N/A N/A
RULE N/A N/A
this research and article. However, this goal was not shared
by all previous efforts. For example, the research by Hoang
and Tӧrmӓ [47] aims at supporting the OWL EL, QL and RL
profiles as well. As these three are subsets of OWL2 DL, it
should be possible to generate ifcOWL ontologies in these
three last profiles as well, starting from the proposal made
here. By first focusing on OWL2 DL and aiming to include as
much as axioms as possible, we ensure that we have at least
osed here.

rmä [47] Current proposal (Pauwels and Terkaj, 2016)

able 2 Option 2 in Table 2
OWL class

Set based on [73]
constraint on property slot

the set size

– OWL class
– Restriction on owl:ObjectProperty

express:hasSet to define the list size

List based on [73]
constraint on property slot

the list size

– OWL class
– subclassOf List based on [48]
– Restrictions to define the list size
(Algorithms 1,2,3)

able 4 Option 1 in Table 4
able 3 Option 1 in Table 3

OWL class
object property – Non-functional object property
me never renamed – Property name renamed if necessary
domains and ranges – Explicit domains and ranges
luesFrom restriction – owl:AllValuesFrom restriction
rdinality restriction – owl:qualifiedCardinality or

owl:maxQualifiedCardinality restriction
object property – Non-functional object property with specified

domain and range
luesFrom restriction on
t

– owl:AllValuesFrom restriction

Set characterised by
nstraint on property slot [73]
set size

– owl:minQualifiedCardinality and/or
owl:maxQualifiedCardinality restriction or
owl:qualifiedCardinality restriction

object property – Functional object property with a subclass of
express:List as its range

luesFrom restriction on
st (Array)

– owl:AllValuesFrom restriction on subclass of
express:List

List (Array) characterised by
nstraint on property slot [73]
list (array) size

– Restrictions to define the list size
(Algorithms 4,5,6)

– Object property
– owl:inverseOf

N/A
N/A
N/A
N/A

127P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
one ‘maximal’ version that is as close as possible to the orig-
inal schema in EXPRESS.

Many of the earlier proposals, including Schevers and
Drogemuller [38], Beetz et al. [25] aimed at an OWL DL pro-
file, as was the case in our approach. Note that this is not the
same as OWL2 DL, as OWL DL is based on SHOIN (D) and
OWL2 DL is based onSROIQ(D).SROIQ(D) can hereby con-
sidered as a more expressive variant of SHOIN(D), with the
H (role hierarchy) being subsumed by the more expressive
R (role hierarchy, complex role inclusion axioms, reflexivity
and irreflexivity, role disjointness), and with the N (cardi-
nality restrictions) being subsumed by the more expressive
Q (qualified cardinality restrictions). Many of the decisions
in these early proposals are thus similar to the decisions
made here, having mainly differences in the details and in
a number of extensions that were not available in the earlier
OWL DL.

Earlier approaches typically identified the conversion of
EXPRESS simple data types (i.e. REAL, INTEGER, and so forth)
into ‘slots’ orOWLdatatype properties as problematic. As point-
ed out in [38], the resulting ontology would not be in OWL DL
(cf. Section 3.5.2). Therefore, the authors adopted an alternative
approach, which was also followed here (see Fragment 17),
that consists in ‘objectifying’ the data properties and
converting them into object properties with an additional
value property.

Finally, the ifcOWL ontology generated according to
OntoSTEP [24] comes in the OWL DL profile and its DL expres-
sivity is defined as ALUHN (D), that is less expressive
than the SROIQ (D) expressivity of the ifcOWL
proposed in this paper. Also the ALCON (D) is less
expressive than the SROIQ (D) targeted here.
Nevertheless, and most importantly, the three types of DL
expressivities outlined in Table 5 (ALUHN (D), ALCON (D),
and SROIQ(D)) are all within DL expressiveness (and not in
OWL Full or one of the OWL DL subsets (EL, QL, RL) reported
in Fig. 2).
5.2. Inverse attributes

The explicit conversion of the INVERSE attributes into
inverse object properties is a novel contribution with
respect to the previous works in the literature (cf.
InverseObjectProperties axioms in Table 5 and the I in
SROIQ(D)), probably because of the associated complexity
and the need of detecting unsafe conditions as highlighted
in Section 3.6.5. The availability of inverse properties gives
more flexibility in the instantiation and exploration of an
RDF graph based on ifcOWL. Moreover, the number of in-
ferences that can be generated is increased. Finally, the
availability of inverse properties is particularly relevant in
the case of ifcOWL because it enables the generation of re-
strictions that are required for converting some of the
WHERE rules [23].
5.3. Domain and range restrictions for object properties

The way in which object properties and their domain and
range restrictions are represented is a very important feature
of an ontology. This can be done in a number of ways, thereby
defining what the ontology can eventually be used for.
Interestingly, the conversion of entity attributes into object
properties with domain and range restrictions is handled
differently in each of the three approaches outlined in
Table 5. This can be seen in the row that includes the
ObjectPropertyDomain and ObjectPropertyRange axiom
counts, showing values of 1592, 8, 1577 and 174, 6, 1576,
respectively.

We have proposed to rename the non-unique
object properties (see Fragments 35 and 36), so that
each attribute can be converted into an object property
with exactly one domain and one range. So, in our pro-
posal, all domains and ranges are explicitly included,
coming forth from our effort to stay as close as possible
to the original IFC schema in EXPRESS (criterion n.2 in
Section 1.3). This decision explains the nearly equal
number of domain and range restrictions (1577 and
1576) in Table 5 (cf. ObjectPropertyDomain and
ObjectPropertyRange axiom counts). The only object
property without an explicit domain is
express:hasContents (see Section 3.4.1).

The ontology proposed by Hoang and Tӧrmӓ [47], however,
explicitly avoids renaming of attributes aswell as the definition
of domain and range (although they are included in the OWL
class declarations, as was also proposed here in Fragment 37).
This explains the low number (8 and 6) in Table 5. The result
is an ifcOWL ontology that is very flexible (the same object
property can be reused in various contexts), but not that specif-
ic since it is not possible to provide a unique definition for some
of the object properties.

The proposal by Barbau et al. [24] defines the domain for all
properties, but the range only for the object properties that are
used to convert LIST, ARRAY and SET data types. All properties
are always renamed, in order to allow setting one domain for
each property. This results in 1592 domain definitions versus
only 174 range definitions in Table 5.
5.4. WHERE rules for defined data types

Although we did not yet fully translate WHERE rule state-
ments in EXPRESS, we prepared for such an extension by
converting all simple data types in EXPRESS into owl:Class

statements. Indeed, as WHERE rules in EXPRESS often act upon
the simple data types referenced by any of the declared
EXPRESS types or entities, most of these rules can be converted
into class expressions acting upon the owl:Class representa-
tions of these simple types, instead of immediately having to
rely on an additional rule language like SWRL or N3Logic, as is
for instance suggested in [70,43]. Further WHERE rules defined
for subclasses of IfcRoot can be converted into class

128 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
expressions that are customised for the ifcOWL ontology, as
proposed in Terkaj and Sojic [23].
5.5. OPTIONAL statements and functional properties

An important distinction between the RDF data model and
the EXPRESS data model lies in the distinction between an
OWA and a CWA (see Section 1.2.3). This has an effect on the
way in which EXPRESS OPTIONAL attributes should be
interpreted and converted. Barbau et al. [24] suggest that “in
the case of an optional attribute, the ‘ObjectAllValuesFrom’ con-
struct is used to link the entity to the union of the attribute type
and the class owl:Nothing. This solution is adopted to explicitly ex-
press the semantics of the OPTIONAL keyword: a value is not
required for this attribute.”. Instead, we propose to convert any
OPTIONAL property into a common owl:ObjectProperty,
because a property is by default optional in RDF. All other
properties are essentially required properties in EXPRESS (al-
though many typically have an empty value), so they result
in owl:FunctionalProperty statements combined with ap-
propriate cardinality restrictions on owl:ObjectProperty

(see Fragment 35).

Using an owl:FunctionalProperty statement results in a
one-to-one relation between a class instance and its (function-
al) property.We can use this conversion option as a default, be-
cause this one-to-one relation is also the default in EXPRESS. If
an attribute is meant to refer tomultiple elements, it always re-
lies on an aggregation data type declaration (LIST, SET, BAG,
ARRAY). In [24], the use of the owl:FunctionalProperty

statement is limited to the object properties that are used to
convert lists, arrays and sets. This explains the considerable dif-
ference in the FunctionalObjectProperty axiom count in Table 5
(62 for Barbau et al. [24], as opposed to 1441 for the current
proposal in this article). Note that all object properties defined
by Hoang and Tӧrmӓ [47] (854) are defined as functional object
properties (853), except for the property expr:slot, which is
an object property used for the representation of LIST, ARRAY,
and SET aggregation data types.
5.6. LIST aggregation data types

The attributes referring to a LIST aggregation data type in
EXPRESS are essentially considered to be functional (or one-
to-one), at least in the sense that the attribute links one entity
with one list. This is maintained in our conversion of a LIST ag-
gregation data type, thereby following criterion n.2 in the
Introduction (i.e. match the original EXPRESS schema as closely
as possible), so we can rightfully maintain the use of an
owl:FunctionalProperty also for required attributes refer-
ring to a LIST. This is an important decision, considering the
options that are listed in Pauwels et al. [50] to convert LIST
data types in EXPRESS into OWL equivalents.

Regarding the actual conversion of the LIST data type
itself, various suggestions have already been made in the
literature. The minority opts to use the common construct via
rdf:List, rdf:first, and rdf:rest, which results in an
OWL Full profile (not desired here). Schevers and Drogemuller
[38] appear to rely on this construct, as well as the proposal
in Pauwels and Van Deursen [43]. In order to retain an
OWL DL profile, diverse variations were proposed on the
theme suggested by [48], as we discussed before. They aim to
translate LIST data types into appropriate OWL class expres-
sions, almost all of them relying on an artificially added List

construct.
5.6.1. Comparison with Barbau et al. [24]
Our conversion pattern as well as the proposal by Barbau

et al. [24] rely on the work by Drummond et al. [48]. There
are slight differences in the actual implementation, however.
For example, whereas we propose to use three additional
properties only (see Fragment 21: hasNext, isFollowedBy,
and hasContents), the proposal by Barbau et al. [24] in-
cludes more specific subproperties of these three (e.g.
array_of_real_is_followed_by), which allows to set
more strict range and domain restrictions (similar to
Fragments 35 and 36). We propose to restrict domains and
ranges using restrictions that are added to specific additional
class declarations (see Fragments 23 and 26). This difference ex-
plains the difference in SubObjectPropertyOf axiom count in
Table 5 (186 versus 0 versus 1), as well as the difference in ob-
ject property count between Barbau et al. [24] (1778) and the
current proposal in this article (1578).

In addition, Barbau et al. [24] define the 62 subproperties of
has_next as regular object properties; the 62 subproperties of
is_followed_by as transitive properties; and the 62
subproperties of has_content as functional properties. This
explains the numbers in Table 5 for FunctionalObjectProperty,
TransitiveObjectProperty and SubObjectPropertyOf axiom
counts. Also the 174 ObjectPropertyRange axioms in Table 5
Barbau et al. [24] are all associated to the conversion of aggrega-
tion data types, since no range restrictions are added to regular
properties by Barbau et al. [24].
5.6.2. Comparison with Hoang and Tӧrmӓ [47]
The ontology proposed by Hoang and Tӧrmӓ [47]

relies on an entirely other ontology for the representation
of EXPRESS aggregation data types, namely the Ordered
List Ontology (OLO), which was originally proposed by
Abdallah and Ferris [73]. This OLO approach is a bit different
from the proposal for ordered lists by Drummond et al. [48],
as it includes an explicit index for each of the items in the list
(expr:slot).

In the proposal by Hoang and Tӧrmӓ [47], the statistics for
Object property count (854), FunctionalObjectProperty axiom
count (853), TransitiveObjectProperty axiom count (0) and
SubObjectPropertyOf axiom count (0), are all considerably
lower. The only meaningful numbers here (Object property
count (854), FunctionalObjectProperty axiom count (853))

129P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
are associated with the regular EXPRESS data types, not the ag-
gregation data types. Indeed, the aggregation data types are all
converted into owl:Class and rdfs:subClassOf construc-
tions, for which a considerable number of restrictions is added
using the two additional properties expr:slot and
expr:item (which come from Abdallah and Ferris [73]). This
explains the lower numbers related to property representations
in Table 5 and the higher numbers related to class representa-
tions in Table 5 (class count (1556) and SubClassOf axiom
count (4991)).

In conclusion, there are three proposals, each with a
slightly different syntax. We propose here to generate
restrictions according to the functions defined in Algorithms 1
to 6. These restrictions are partially similar to what was pro-
posed by Krima et al. [41] and Barbau et al. [24], even though
such proposal was not implemented in their converter [72].
These restrictions are considerably different from what is
proposed by Hoang and Tӧrmӓ [47] because they rely on the
OLO ontology.
5.7. SET aggregation data types

Barbau et al. [24] and Hoang and Tӧrmӓ [47] propose to con-
vert the SET aggregation data type declarations using the com-
plex constructs that are also used for LIST and ARRAY

aggregation data types. This is significantly different from
what we propose here. Instead, we propose to simply convert
a SET into a non-functional object property, and appropriate
cardinality restrictions are added to represent the constraints
on the size of the SET aggregation data type. These cardinality
restrictions are possible since the transitive object property
ifc:isFollowedBy is not involved. This is similar to what is
proposed in Schevers and Drogemuller [38].
5.8. Naming conventions for object properties

As reported in Barbau et al. [24], “EXPRESS attributes are
defined to be within the scope of the entity. In OWL, properties
have a global scope”. So, as soon as an attribute with the same
name appears in multiple data type declarations, one has
either the option to (1) assign multiple domains to this
owl:ObjectProperty or owl:DataTypeProperty or to
(2) rename the attribute so that it becomes unique and it is
again only in scope of the original data type it was declared
for in EXPRESS (see Fragment 8). The former option is proposed
by Hoang and Tӧrmӓ [47]. This explains the lower number of
object properties in Table 5 for Hoang and Tӧrmӓ [47] (854),
as opposed to Barbau et al. [24] (1778) and our proposal
(1578).

The proposal by Hoang and Tӧrmӓ [47] is an exception,
since most of the early proposals include the domains
and ranges, as well as the latter (renaming) option (e.g.
Schevers and Drogemuller [38]). Also in Barbau et al. [24],
the renaming option is chosen, using the naming
convention [ClassName]_has_[PropertyName] for all
properties. We propose to turn this around, into
[PropertyName]_of_[ClassName], so that one immediately
sees the property namewhen needing to instantiate this partic-
ular class. Moreover, we propose to add an additional
rdfs:label annotation property that retains the original
name of the property, which is not included in Barbau et al.
[24]. Finally, we propose to rename only the properties that
are not unique within one and the same schema, allowing us
to stay as close as possible to the naming used in the original
EXPRESS schema.
5.9. Naming conventions for enumeration individuals

The same renaming issue emerges for the individuals enu-
merated in an EXPRESS enumeration data type. We proposed
to rename only the duplicate individuals in an ENUMERATION
(see Fragment 30). This results in 1627 named individuals, as
opposed to 1155 and 1158 for Barbau et al. [24] and Hoang
and Tӧrmӓ [47], who both suggest to not rename the individuals
that belong to more than one enumeration (see Fragment 32).
In fact, these individuals simply belong tomultiple OWL classes
in the resulting ifcOWL schema.
6. Conclusions

In this article, we have looked into the conversion of
EXPRESS schemas into OWL ontologies. We have specifically
looked into the conversion of IFC4_ADD1.exp into an ifcOWL
ontology. Such conversion procedures have been proposed be-
fore. Yet, as of now, the resulting ontologies do not appear to
evolve into one referential standard or recommended ifcOWL
ontology.

Therefore, we looked into the existing efforts in obtaining an
ifcOWL ontology from the EXPRESS schemas of IFC, and we
analysed which features would be required in order to obtain
a usable and recommendable (industry-wide) ifcOWL ontolo-
gy. We ended up with the following requirements or criteria
for a usable and recommendable ifcOWL ontology:

1. The ifcOWL ontology should remain in OWL2 DL.

2. The ifcOWL ontology should match the original EXPRESS
schema as closely as possible.

3. The ifcOWLontology is to be used primarily to allow the con-
version of IFC instance files into equivalent RDF graphs.

Following these criteria, we proposed a conversion proce-
dure that results in an ifcOWL ontology that goes beyond the
existing proposals andmight indeed evolve into a recommend-
able version. This might in turn better support application de-
velopment for construction industry relying on semantic web
technologies.

130 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
A number of open issues still needs to be addressed by fur-
ther research efforts:

• RULE and FUNCTION declarations are procedural algorithms
that cannot be converted into OWL2 DL class expressions.
An alternative approach needs to be used for converting
these declarations.

• WHERE rule declarations are not included in the proposed con-
version approach, although they canbe converted to some ex-
tent. This is the subject of Terkaj and Sojic [23] for the specific
case of ifcOWL.

• This is one of the first conversion proposals that properly han-
dles INVERSE attributes in EXPRESS, except for a small num-
ber of exceptional cases. In a future version of the IFC schema,
such exceptional cases might be avoided, which would likely
be beneficial for both the EXPRESS schema and the ifcOWL
ontology.

• In our conversion proposal, we have opted to convert LIST
data types using additional statements (express:List,
express:hasNext), after Drummond et al. [48], as was also
proposed by most of previous EXPRESS to OWL conversion
proposals. In the future, it might prove to be a better approach
to use one of the conversion options outlined in Pauwels et al.
[50].

• The current proposal suggests amaximal version of the ifcOWL
ontology, i.e. an ifcOWL ontology that uses all available con-
structs available in OWL2 DL (SROIQ(D)). In a next step,
this ontology should be decomposed to generate ontology
modules that are in the OWL profiles with less expressiveness
(DL, EL and QL), thus following the suggestions made by
Hoang and Tӧrmӓ [47].

• Through an ontological analysis of IFC, the ifcOWL ontology
might be greatly simplified so that it would become easier
to use the IFC information. This is the subject of a good num-
ber of initiatives, including Borgo et al. [76], Venugopal et al.
[77] and de Farias et al. [51].

• The EXPRESS to OWL conversion approach was built to be
general purpose, even if it was tested mainly for IFC. The ap-
proach will still need to be tested on other EXPRESS schemas in
order to make it really general purpose.

• Exploitation of ontology-related added values: CWA validation,
OWA reasoning, extension of IFC data model and integration
with other ontologies.
Acknowledgements

The authors would like to thank the reviewers for
their great efforts, which helped to improve the article
significantly. The first author gratefully acknowledges the fi-
nancial support provided by the Special Research Fund (BOF)
of Ghent University. The research of the second author has
been partially funded byMIUR under the Italianflagship project
‘La Fabbrica del Futuro’, Subproject 2, research project ‘Product
and Process Co-Evolution Management via Modular Pallet con-
figuration’, and by the EU 7th FP under the grant agreement No:
314156, ‘Engineering Apps for advanced Manufacturing Engi-
neering’.
References

[1] C.M. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A
Guide to Building Information Modeling for Owners, Managers,
Architects, Engineers, Contractors, and Fabricators, John Wiley &
Sons, Hoboken, NJ, USA, 2008.

[2] T. Liebich, Y. Adachi, J. Forester, J. Hyvarinen, S. Richter, T.
Chipman, M. Weise, J. Wix, Industry Foundation Classes IFC4 offi-
cial release, available online: http://www.buildingsmart-tech.org/
ifc/IFC4/final/html/index.htm (Last accessed on 21 August 2015)
2013.

[3] BuildingSMART International, BuildingSMART — international
home of openBIM available online: http://www.
buildingsmart.com (Last accessed on 21 August 2015) 2014.

[4] International Organization for Standardization, ISO 10303-11,
Industrial automation systems and integration — product data
representation and exchange — part 11: description methods:
the EXPRESS language reference manual, available online:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_de-
tail.htm?csnumber=38047 (Last accessed on 21 August 2015)
2004.

[5] BuildingSMART International, Summary of IFC releases, available
online: http://www.buildingsmart-tech.org/specifications/ifc-re-
leases/ (Last accessed on 21 August 2015) 2014.

[6] BuildingSMART International, PSD for IFC4 summary, available
online: http://www.buildingsmart-tech.org/specifications/pset-
releases/psd-for-ifc4/psd-for-ifc4-summary (Last accessed on 21
August 2015) 2015.

[7] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Sci. Am.
284 (5) (2001) 35–43.

[8] J.F. Sowa, Semantic networks, in: S.C. Shapiro (Ed.), Encyclopedia
of Artificial Intelligence, second ed.John Wiley & Sons, New York,
NY, USA 1992, pp. 1493–1511.

[9] G. Schreiber, Y. Raimond, RDF 1.1 primer — W3C working group
note 24 June 2014, W3C working group note, available online:
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
(Last accessed on 21 August 2015) 2014.

[10] F. Baader, W. Nutt, Basic description logics, in: F. Baader, D.
Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.),
Description Logic Handbook: Theory, Implementation, and Appli-
cations, Cambridge University Press, Cambridge, MA, USA 2003,
pp. 47–100.

[11] M. Hennessy, The Semantics of Programming Languages, John
Wiley & Sons, Chichester, UK, 1990.

[12] D. Beckett, T. Berners-Lee, Turtle — Terse RDF triple language —
W3C team submission 28 March 2011, W3C team submission
available online: http://www.w3.org/TeamSubmission/turtle/
(Last accessed on 21 August 2015) 2011.

http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0005
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0005
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0005
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0005
http://www.buildingsmart-ech.org/ifc/IFC4/final/html/index.htm
http://www.buildingsmart-ech.org/ifc/IFC4/final/html/index.htm
http://www.buildingsmart.com/
http://www.buildingsmart.com/
http://www.buildingsmart-ech.org/specifications/ifc-eleases/
http://www.buildingsmart-ech.org/specifications/ifc-eleases/
http://www.buildingsmart-ech.org/specifications/pset-eleases/psdorfc4/psdorfc4-ummary
http://www.buildingsmart-ech.org/specifications/pset-eleases/psdorfc4/psdorfc4-ummary
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0035
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0035
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0040
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0040
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0040
http://www.w3.org/TR/2014/NOTE-df11-rimer-
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0050
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0050
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0050
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0050
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0050
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0055
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0055
http://www.w3.org/TeamSubmission/turtle/

131P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
[13] T. Berners-Lee, D. Connolly, Notation 3 (N3): a readable RDF syn-
tax — W3C team submission 28 March 2011, W3C team submis-
sion, available online http://www.w3.org/TeamSubmission/n3/
(Last accessed on 21 August 2015) 2011.

[14] D. Brickley, R.V. Guha, RDF schema 1.1 — W3C recommendation
25 February 2014, W3C recommendation, available online:
http://www.w3.org/TR/rdf-schema/ (Last accessed on 21 August
2015) 2014.

[15] P. Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, S. Rudolph,
OWL 2 web ontology language primer (second edition) — W3C
recommendation 11 December 2012, W3C recommendation,
available online: http://www.w3.org/TR/2012/REC-owl2-primer-
20121211/ (Last accessed on 21 August 2015) 2012.

[16] D.L. McGuinness, F. van Harmelen, OWL web ontology
language overview — W3C recommendation 10 February
2004, W3C recommendation, available online: http://www.
w3.org/TR/owl-features/ (Last accessed on 21 August 2015)
2004.

[17] W3C OWL Working Group, OWL2 web ontology language doc-
ument overview (second edition) — W3C recommendation 11
December 2012, W3C recommendation, available online:
http://www.w3.org/TR/owl2-overview/ (Last accessed on 21
August 2015) 2012.

[18] W3C OWL Working Group, OWL2 web ontology language docu-
ment overview—W3Cworking draft 27 March 2009, W3C work-
ing draft, available online: http://www.w3.org/TR/2009/WD-
owl2-overview-20090327/ (Last accessed on 21 August 2015)
2009.

[19] B. Motik, B.C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL2
web ontology language reference profiles (second edition) —
W3C recommendation 11 December 2012, W3C recommenda-
tion, available online: http://www.w3.org/TR/owl2-profiles/
(Last accessed on 21 August 2015) 2012.

[20] R. Brachman, H. Levesque, Knowledge Representation and Rea-
soning, Elsevier, 2004.

[21] J. Tao, E. Sirin, J. Bao, D. McGuinness, Extending OWL
with integrity constraints, in: V. Haarslev, D. Toman, G.
Weddell (Eds.),International Workshop on Description Logics
(DL2010), vol. 573 of CEUR Workshop Proceedings 2010,
pp. 137–148.

[22] H. Perez-Urbina, E. Sirin, K. Clark, Validating RDF with OWL in-
tegrity constraintsavailable online: http://docs.stardog.com/
icv/icv-specification.html (Last accessed on 21 August 2015)
2012.

[23] W. Terkaj, A. Sojic, Ontology-based representation of IFC EXPRESS
rules: an enhancement of the ifcOWL ontology, Autom. Constr. 57
(2015) 188–201.

[24] R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fiorentini, S.
Foufou, R.D. Sriram, OntoSTEP: enriching product
model data using ontologies, Comput. Aided Des. 44 (6) (2012)
575–590.

[25] J. Beetz, J. Van Leeuwen, B. de Vries, IfcOWL: a case of transforming
EXPRESS schemas into ontologies, Artif. Intell. Eng. Des. Anal.
Manuf. 23 (1) (2009) 89–101.

[26] C. Bizer, T. Heath, T. Berners-Lee, Linked data — the story so far,
Int. J. Semant. Web Inf. Syst. 5 (3) (2009) 1–22.

[27] C. Bizer, A. Jentzsch, R. Cyganiak, State of the LOD cloudavailable
online: http://lod-cloud.net/state/ (Last accessed on 21 August
2015) 2011.
[28] M. Schmachtenberg, C. Bizer, H. Paulheim, State of the LOD cloud
2014, available online: http://linkeddatacatalog.dws.informatik.
uni-mannheim.de/state/ (Last accessed on 21 August 2015) 2014.

[29] R. Cyganiak, A. Jentzsch, The linking open data cloud diagram,
available online: http://lod-cloud.net (Last accessed on 21 August
2015) 2014.

[30] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer,
R. Van deWalle, J. Van Campenhout, A semantic rule checking en-
vironment for building performance checking, Autom. Constr. 20
(5) (2011) 506–518.

[31] S. Abdul-Ghafour, P. Ghodous, B. Shariat, E. Perna, A common
design-features ontology for product data semantics interopera-
bility, Proceedings of the IEEE/WIC/ACM International Conference
on Web Intelligence 2007, pp. 443–446.

[32] A. Yurchyshyna, C.F. Zucker, N. Le Thanh, C. Lima, A. Zarli, Towards
an ontology-based approach for conformance checking modelling
in construction, Proceedings of the 24th CIB W78 Conference
2007, pp. 195–202.

[33] A. Yurchyshyna, A. Zarli, An ontology-based approach for
formalisation and semantic organisation of conformance
requirements in construction, Autom. Constr. 18 (8) (2009)
1084–1098.

[34] B. Kádár, W. Terkaj, M. Sacco, Semantic virtual factory supporting
interoperable modelling and evaluation of production systems,
CIRP Ann. Manuf. Technol. 62 (1) (2013) 443–446 (ISSN 0007-
8506).

[35] W. Terkaj, T. Tolio, M. Urgo, A virtual factory approach for in situ
simulation to support production and maintenance planning,
CIRP Ann. Manuf. Technol. 64 (1) (2015) 451–454.

[36] S. Törmä, Semantic linking of building information models, Pro-
ceedings of the Seventh IEEE International Conference on Seman-
tic Computing, IEEE Comput. Soc. 2013, pp. 412–419.

[37] S. Törmä, Web of building data — integrating IFC with the web of
data, in: A. Mahdavi, B. Martens, R. Scherer (Eds.), eWork and
eBusiness in Architecture, Engineering and Construction: ECPPM
2014, CRC Press 2014, pp. 141–147.

[38] H. Schevers, R. Drogemuller, Converting the industry founda-
tion classes to the web ontology language, Proceedings of
the First International Conference on Semantics, Knowledge
and Grid, IEEE Computer Society, Washington, DC 2005,
pp. 556–560.

[39] L. Zhang, R.R. Issa, Development of IFC-based construction indus-
try ontology for information retrieval from IFC models, Proceed-
ings of the 2011 EG-ICE Workshop, University of Twente, The
Netherlands, July, 6–8, 2011.

[40] C. Agostinho, M. Dutra, R. Jardim-Goncalves, P. Ghodous, A.
Steiger-Garcao, EXPRESS to OWL morphism: making possible to
enrich ISO10303 Modules, in: G. Loureiro, R. Curran (Eds.), Com-
plex Systems Concurrent Engineering, Springer, London 2007,
pp. 391–402.

[41] S. Krima, R. Barbau, X. Fiorentini, R. Sudarsan, R. Sriram, OntoSTEP:
OWL-DL Ontology for STEP, National Institue of Standards and
Technology, NISTIR 7561.

[42] H. Knublauch, R.W. Fergerson, N.F. Noy, M.A. Musen, The Protégé
OWL plugin: an open development environment for semantic
web applications, The Semantic Web — ISWC 2004, Springer
2004, pp. 229–243.

[43] P. Pauwels, D. Van Deursen, IFC/RDF: adaptation, aggregation and
enrichment, Report of the First International Workshop on Linked

http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/rdf-chema/
http://www.w3.org/TR/2012/RECwl2-rimer-
http://www.w3.org/TR/2012/RECwl2-rimer-
http://www.w3.org/TR/owleatures/
http://www.w3.org/TR/owleatures/
http://www.w3.org/TR/owl2verview/
http://www.w3.org/TR/2009/WDwl2verview-
http://www.w3.org/TR/2009/WDwl2verview-
http://www.w3.org/TR/owl2-rofiles/
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0100
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0100
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0105
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0105
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0105
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0105
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0105
http://docs.stardog.com/icv/icv-pecification.html
http://docs.stardog.com/icv/icv-pecification.html
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0115
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0115
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0115
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0120
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0120
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0120
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0120
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0125
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0125
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0125
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0130
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0130
http://lodloud.net/state/
http://linkeddatacatalog.dws.informatik.uniannheim.de/state/
http://linkeddatacatalog.dws.informatik.uniannheim.de/state/
http://lodloud.net/
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0150
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0150
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0150
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0150
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0155
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0155
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0155
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0155
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0160
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0160
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0160
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0160
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0165
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0165
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0165
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0165
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0170
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0170
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0170
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0170
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0175
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0175
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0175
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0180
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0180
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0180
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0185
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0185
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0185
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0185
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0190
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0190
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0190
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0190
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0190
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0195
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0195
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0195
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0195
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0200
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0200
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0200
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0200
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0200
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0205
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0205
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0205
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0205
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0210
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0210

132 P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
Data in Architecture and Construction, Ghent, Belgium 2012,
pp. 2–5.

[44] G. Gao, Y.-S. Liu, M. Wang, M. Gu, J.-H. Yong, A query expansion
method for retrieving online BIM resources based on Industry
Foundation Classes, Autom. Constr. 56 (2015) 14–25, http://dx.
doi.org/10.1016/j.autcon.2015.04.006.

[45] W. Terkaj, G. Pedrielli, M. Sacco, Virtual factory data model, Work-
shop on Ontology and Semantic Web for Manufacturing OSEMA
2012, CEUR Workshop Proceedings, 886 2012, pp. 29–43.

[46] N.V. Hoang, IFC-to-linked data conversion: multilayering ap-
proach, The Third International Workshop on Linked Data in Ar-
chitecture and Construction, Eindhoven, Netherlands2015.

[47] N.V. Hoang, S. Törmä, Opening BIM to the web — IFC-to-RDF con-
version software, available online: http://rym.fi/results/opening-
bim-to-the-web-ifc-to-rdf-conversion-software/ (Last accessed
on 21 August 2015) 2014.

[48] N. Drummond, A. Rector, R. Stevens, G. Moulton, M. Horridge, H.
Wang, J. Sedenberg, Putting OWL in order: patterns for sequences
in OWL, OWL Experiences and Directions (OWLEd 2006)2006.

[49] M. Dean, G. Schreiber, OWL web ontology language reference —
W3C recommendation 10 February 2004, W3C recommendation,
available online: http://www.w3.org/TR/owl-ref/ (Last accessed
on 21 August 2015) 2004.

[50] P. Pauwels, W. Terkaj, T. Krijnen, J. Beetz, Coping with lists in the
ifcOWL ontology, Proceedings of the 22nd EG-ICE International
Workshop, Eindhoven, Netherland 2015, pp. 113–122.

[51] T. de Farias, A. Roxin, C. Nicolle, IfcWoD, semantically adapting IFC
model relations into OWL properties, The Third International
Workshop on Linked Data in Architecture and Construction, Eind-
hoven, Netherlands, 2015.

[52] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M.
Dean, et al., SWRL: A Semantic Web Rule Language Combining
OWL and RuleML, W3C Member submission, 212004 79.

[53] T. Berners-Lee, Notation 3 Logic: an RDF language for the semantic
web, available online: http://www.w3.org/DesignIssues/Nota-
tion3.html (Last accessed on 21 August 2015) 2005.

[54] Apache, Apache Jena, available online: https://jena.apache.org
(Last accessed on 21 August 2015) 2015.

[55] D. Beckett, Redland RDF libraries, available online: http://librdf.
org (Last accessed on 21 August 2015) 2015.

[56] W. Terkaj, P. Pauwels, OWL ontology file for the IFC4_ADD1.exp
EXPRESS schema, available online: http://linkedbuildingdata.net/
resources/20150824_IFC4_ADD1.owl (Last accessed on 21 August
2015) 2015.

[57] P. Pauwels, Implementation of IFC-to-RDF conversion by Ghent
University (Multimedia Lab — SmartLab) and Aalto University
available online: https://github.com/mmlab/IFC-to-RDF-converter/
(Last accessed on 21 August 2015) 2015.

[58] S. Zhang, F. Boukamp, J. Teizer, Ontology-based semantic model-
ing of construction safety knowledge: towards automated safety
planning for job hazard analysis (JHA), Autom. Constr. 52 (2015)
29–41.

[59] G. Costa, L. Madrazo, Connecting building component catalogues
with BIM models using semantic technologies: an application for
precast concrete components, Autom. Constr. 57 (2015) 239–248.

[60] H. Wicaksono, P. Dobreva, P. Häfner, S. Rogalski, Ontology devel-
opment towards expressive and reasoning-enabled building
information model for an intelligent energy management system,
Proceedings of the 5th International Conference Knowledge Engi-
neering and Ontology Development 2013, pp. 38–47.

[61] M. Kadolsky, K. Baumgärtel, R. Scherer, An ontology framework
for rule-based inspection of eeBIM-systems, Procedia Eng. 85
(2014) 293–301.

[62] K. Baumgärtel, M. Kadolsky, R. Scherer, An ontology framework
for improving building energy performance by utilizing energy
saving regulations, in: A. Mahdavi, B. Martens, R. Scherer (Eds.),
ECPPM2014: eWork and eBusiness in Architecture, Engineering
and Construction, CRC Press 2014, pp. 519–526.

[63] E. Corry, P. Pauwels, S. Hu, M. Keane, J. O'Donnell, A performance
assessment ontology for the environmental and energy manage-
ment of buildings, Autom. Constr. 57 (2015) 249–259.

[64] S. Cursi, D. Simeone, I. Toldo, A semantic web approach for built
heritage representation, in: G. Celani, D. Sperling, J. Franco
(Eds.), Computer-aided Architectural Design: The Next City —
New Technologies and the Future of the Built Environment
(CAADFutures 2015), vol. 527 of Communications in Computer
and Information ScienceSpringer 2015, pp. 383–401.

[65] D. Di Mascio, P. Pauwels, R. De Meyer, Improving the knowledge
and management of the historical built environment with BIM
and ontologies: the case study of the Book Tower, Proceedings of
the 13th International Conference on Construction Applications
of Virtual Reality 2013, pp. 427–436.

[66] P. Pauwels, R. Bod, D. Di Mascio, R. De Meyer, Integrating build-
ing information modelling and semantic web technologies for
the management of built heritage information, Proceedings of
the Digital Heritage International Congress (DigitalHeritage)
2013, pp. 481–488.

[67] E. Karan, J. Irizarry, J. Haymaker, BIM and GIS integration and
interoperability based on semantic web technology, J. Comput.
Civ. Eng. doi: http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.
0000519.

[68] F. Radulovic, M. Poveda-Villalón, D. Vila-Suero, A.G.-P. Víctor
Rodríguez-Doncel, R. García-Castro, Guidelines for linked data
generation and publication: an example in building energy con-
sumption, Autom. Constr. 57 (2015) 178–187.

[69] P. Pauwels, IFC repositoryavailable online: http://smartlab1.elis.
ugent.be:8889/IFC-repo/ (Last accessed on 21 August 2015) 2015.

[70] W. Zhao, J. Liu, OWL/SWRL representation methodology for
EXPRESS-driven product information model: part I. Implementa-
tion methodology, Comput. Ind. 59 (2008) 580–589.

[71] J. Beetz, J. van Leeuwen, B. de Vries, An ontology web language no-
tation of the industry foundation classes, Proceedings of the 22nd
CIB W78 Conference on Information Technology in Construction
2005, pp. 193–198.

[72] R. Sudarsan, R. Barbau, S. Krima, OntoSTEP plugin, available
online: http://www.nist.gov/el/msid/ontostep.cfm (Last accessed
on 21 August 2015) 2010.

[73] S.A. Abdallah, B. Ferris, The ordered list ontology 0.72 —
namespace document 23 July 2010, available online: http://smiy.
sourceforge.net/olo/spec/orderedlistontology.html (Last accessed
on 21 August 2015) 2010.

[74] R. Kontchakov, M. Zakharyaschev, An introduction to description
logics and query rewriting, in: M. Koubarakis, G. Stamou, G.
Stoilos, I. Horrocks, P. Kolaitis, G. Lausen, G.Weikum (Eds.), Reason-
ing Web — Reasoning on the Web in the Big Data Era, Vol. 8714 of
Lecture Notes in Computer Science, Springer 2014, pp. 195–244.

http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0210
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0210
http://dx.doi.org/10.1016/j.autcon.2015.04.006
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0220
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0220
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0220
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0225
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0225
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0225
http://rym.fi/results/openingim-o-he-ebfc-o-dfonversion-oftware/
http://rym.fi/results/openingim-o-he-ebfc-o-dfonversion-oftware/
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0235
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0235
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0235
http://www.w3.org/TR/owl-ef/
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0245
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0245
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0245
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0250
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0250
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0250
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0250
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0255
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0255
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0255
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
https://jena.apache.org/
http://librdf.org/
http://librdf.org/
http://linkedbuildingdata.net/resources/20150824_IFC4_ADD1.owl
http://linkedbuildingdata.net/resources/20150824_IFC4_ADD1.owl
https://github.com/mmlab/IFC-o-DFonverter/
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0285
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0285
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0285
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0285
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0290
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0290
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0290
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0295
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0295
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0295
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0295
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0295
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0300
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0300
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0300
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0305
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0305
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0305
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0305
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0305
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0310
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0310
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0310
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0315
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0315
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0315
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0315
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0315
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0315
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0320
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0320
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0320
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0320
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0320
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0325
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0325
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0325
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0325
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0325
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0330
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0330
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0330
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0330
http://smartlab1.elis.ugent.be:8889/IFC-epo/
http://smartlab1.elis.ugent.be:8889/IFC-epo/
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0340
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0340
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0340
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0345
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0345
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0345
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0345
http://www.nist.gov/el/msid/ontostep.cfm
http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0360
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0360
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0360
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0360
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0360

133P. Pauwels, W. Terkaj / Automation in Construction 63 (2016) 100–133
[75] R. Kontchakov, M. Zakharyaschev, An introduction to description
logics and query rewriting, available online: http://rw2014.di.
uoa.gr/sites/default/files/slides/An_Introduction_to_Description_
Logics.pdf (Last accessed on 21 August 2015) 2014.

[76] S. Borgo, E.M. Sanfilippo, A. Sojic, W. Terkaj, Ontological analysis
and engineering standards: an initial study of IFC, in: V.
Ebrahimipour (Ed.), Ontology Modeling in Physical Asset Integri-
ty Management, Springer 2015, pp. 17–43.

[77] M. Venugopal, C. Eastman, J. Teizer, An ontology-based analysis of
the industry foundation class schema for building information
model exchanges, Adv. Eng. Inform. doi: http://dx.doi.org/10.
1016/j.aei.2015.09.006.

http://rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf
http://rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf
http://rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0370
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0370
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0370
http://refhub.elsevier.com/S0926-5805(15)00243-5/rf0370

	EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology
	1. Introduction
	1.1. IFC and EXPRESS
	1.2. RDF and OWL
	1.2.1. The basics
	1.2.2. OWL semantics and OWL profiles
	1.2.3. Closed world assumption (CWA) versus open world assumption (OWA)

	1.3. Current status of IFC and RDF
	1.3.1. The parallels between IFC and RDF
	1.3.2. Why porting IFC data into the RDF data model?
	1.3.3. Previous proposals in the conversion of the EXPRESS schema of IFC into an OWL ontology
	1.3.4. Targeted criteria

	1.4. Paper outline

	2. The structure of EXPRESS
	2.1. Simple data type declarations
	2.2. Defined (named) data type declarations
	2.3. Aggregation data type declarations
	2.4. Constructed data type declarations
	2.4.1. Enumeration data type declarations
	2.4.2. Select data type declarations

	2.5. Entity (named) data type declarations
	2.6. FUNCTION declarations
	2.7. RULE declarations

	3. The EXPRESS to OWL conversion pattern
	3.1. OWL header
	3.2. Simple data type declarations
	3.3. Defined (named) data type declarations
	3.4. Aggregation data type declarations
	3.4.1. LIST aggregation data types
	3.4.2. ARRAY aggregation data types
	3.4.3. SET aggregation data types

	3.5. Constructed data type declarations
	3.5.1. Enumeration data type declarations
	3.5.2. Select data type declarations

	3.6. Entity (named) data type declarations
	3.6.1. Class hierarchy statements
	3.6.2. Regular attributes
	3.6.3. DERIVE attributes
	3.6.4. The OPTIONAL keyword
	3.6.5. INVERSE attributes

	3.7. FUNCTION and RULE declarations

	4. Towards the implemented software tools
	4.1. Implementation of the EXPRESS to OWL converter

	This link is http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=,",
	Outline placeholder
	4.2. Instantiating the TBox
	4.2.1. ifcOWL instantiation from scratch
	4.2.2. Conversion of IFC-SPF files into RDF graphs

	5. Comparison between the output of previous converters and the proposed converter
	5.1. OWL profile
	5.2. Inverse attributes
	5.3. Domain and range restrictions for object properties
	5.4. WHERE rules for defined data types
	5.5. OPTIONAL statements and functional properties
	5.6. LIST aggregation data types
	5.6.1. Comparison with Barbau et al. [24]
	5.6.2. Comparison with Hoang and Tӧrmӓ [47]

	5.7. SET aggregation data types
	5.8. Naming conventions for object properties
	5.9. Naming conventions for enumeration individuals

	6. Conclusions
	Acknowledgements
	References

